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Abstract

Motivation: Cross-(multi)platform normalization of gene-expression microarray data remains an unresolved issue.
Despite the existence of several algorithms, they are either constrained by the need to normalize all samples of all
platforms together, compromising scalability and reuse, by adherence to the platforms of a specific provider, or sim-
ply by poor performance. In addition, many of the methods presented in the literature have not been specifically
tested against multi-platform data and/or other methods applicable in this context. Thus, we set out to develop a nor-
malization algorithm appropriate for gene-expression studies based on multiple, potentially large microarray sets
collected along multiple platforms and at different times, applicable in systematic studies aimed at extracting know-
ledge from the wealth of microarray data available in public repositories; for example, for the extraction of Real-
World Data to complement data from Randomized Controlled Trials. Our main focus or criterion for performance
was on the capacity of the algorithm to properly separate samples from different biological groups.

Results: We present CuBlock, an algorithm addressing this objective, together with a strategy to validate cross-
platform normalization methods. To validate the algorithm and benchmark it against existing methods, we used two
distinct datasets, one specifically generated for testing and standardization purposes and one from an actual experi-
mental study. Using these datasets, we benchmarked CuBlock against ComBat (Johnson et al., 2007), UPC (Piccolo
et al., 2013), YuGene (Lê Cao et al., 2014), DBNorm (Meng et al., 2017), Shambhala (Borisov et al., 2019) and a simple
log2 transform as reference. We note that many other popular normalization methods are not applicable in this con-
text. CuBlock was the only algorithm in this group that could always and clearly differentiate the underlying biologic-
al groups after mixing the data, from up to six different platforms in this study.

Availability and implementation: CuBlock can be downloaded from https://www.mathworks.com/matlabcentral/fil
eexchange/77882-cublock.

Contact: xouse@anaxomics.com or xavier.daura@uab.cat

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since the first whole-genome microarray study of gene expression
was published in 1997 (Lashkari et al., 1997; Schena et al., 1995),
high-throughput gene-expression microarrays have been a standard
in many experimental designs in biological and biomedical research.
Although their use is being replaced by next-generation sequencing
techniques such as RNA-Seq (Nagalakshmi et al., 2008), the large
amounts of microarray data relevant to an equally large variety of
biological and biomedical problems and available in public data-
bases constitutes a valuable resource that will remain in use for
many years. The potentiality of resources such as the Gene
Expression Omnibus (GEO) as sources of Real-World Data

(RWD)—data derived from a number of sources, outside the context
of Randomized Controlled Trials (RCTs), and associated with out-
comes in an heterogeneous patient population (Berger et al.,
2017)—may in fact boost the use of the wealth of available micro-

array data in the near future. The importance of RWD as a comple-
mentary information source in drug-evaluation studies is based on
the observation that data from RCTs does not always match results
from observational studies (Trotta, 2012), mostly owing to the lim-
ited number of RCT patients, their over-monitoring and the limited
follow-up time. Thus, certain adverse drug reactions or lack-of-
efficacy problems are hidden until RWD studies are performed, and

drug administrations have come to encourage the extraction of in-
formation from sources complementary to RCTs to increase
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evidence around treatments (U.S. Food and Drug Administration,
2018; Sherman et al., 2017). A problem of RWD is that it tends to
be highly heterogeneous, thus requiring careful analysis and statis-
tical treatment (Bartlett et al., 2019; Berger et al., 2017). Translated
to the context of this study, microarray data relevant to a particular
problem will often originate from different laboratories and experi-
ments, possibly using different microarray platforms (Bumgarner,
2013) and almost certainly obtained in different batches. In order to
make a sensible use of such a heterogeneously sourced data, a data-
normalization step is required before data analysis. Normalization
can be relatively straightforward when dealing with different
batches of a same experiment using the same biological samples,
platform and operator, but gets increasingly complex as different
operators, platforms and sample sources are introduced. This often
leads to studies discarding part of the available data, which could
otherwise be used to increase the chances of discovery of meaningful
patterns or improve their statistics.

A main source for sample differences arising from systematic
biases is the mixing of data from different microarray platforms.
Unfortunately, most standard and widely used normalization meth-
ods are applicable to or have been developed for the single-
microarray-platform context (Rudy and Valafar, 2011), making
them generally inappropriate for the cross-study analysis of existing
datasets. On the other hand, most existing cross-platform normal-
ization methods, such as ComBat (Johnson et al., 2007), XPN
(Shabalin et al., 2008) or DWD (Benito et al., 2004), require the
data from different platforms to be normalized together—XPN and
DWD were in fact developed for pairwise cross-platform normaliza-
tion. For large datasets, normalizing platforms together can be re-
strictive. In addition to involving the normalization of a large joined
dataset, the eventual addition of new microarray data requires glo-
bal renormalization. This led to the more recent development of
sample-wise, cross-platform normalization methods such as SCAN
(Piccolo et al., 2012) and UPC (Piccolo et al., 2013), YuGene (Lê
Cao et al., 2014), DBNorm (Meng et al., 2017)—which can operate
sample or platform wise—and Shambhala (Borisov et al., 2019).
SCAN performs a sample-wise normalization assuming a double
Gaussian mixture distribution. It was, however, specifically
designed for Affymetrix and two-channel Agilent platforms, thereby
restricting its general use. Developed by the same authors, the
Universal exPression Code (UPC) builds on SCAN to generate stand-
ardized estimates of expression that have a consistent interpretation
across platforms, measuring how much the expression of the gene
deviates from model-estimated background levels within the sample.
Although, the derivation of UPCs is platform specific and, to our
knowledge, it is currently available only for Affymetrix and Agilent
microarrays through the package SCAN/UPC, the program offers
also a generic UPC function applicable to any microarray platform,
by making assumptions on the background and background-plus-
signal distributions. The other distribution-based normalization
method, DBNorm, scales the data distributions from the individual
microarrays to a common form, which does not need to be predeter-
mined (e.g. the distribution from a reference microarray). As a
downside, it is very slow. On the other end, YuGene uses a simple
transform that assigns a modified cumulative proportion value to
each measurement, making the normalization very fast. Finally,
Shambhala uses a harmonization method that transforms each pro-
file so that it approaches the output of a chosen golden-standard
platform.

Some methods like UPC, Shambhala and MatchMixeR (Zhang
et al., 2020) have specifically included in their design the possibility
to integrate data from both microarray and RNA-seq sources. As a
matter of fact, any method that can be applied at the gene level
could be adapted for such studies. It should be kept in mind, how-
ever, that this requires source-specific preprocessing steps taking
into account the fundamental differences between these two types of
data. In fact, the conceptual differences between microarray and
RNA-seq gene-expression measurements are so significant that they
may require distinct normalization procedures (Rapaport et al.,
2013). In this study, we will solely focus on the application of

normalization methods for the integration of gene-expression
microarrays.

One should also note that the methods mentioned above were
not necessarily developed with a same purpose. For example,
ComBat was developed for the adjustment of batch effects and is
often used in combination with other methods in cross-platform
normalization procedures; although it does not normalize
platforms separately, we introduced it in this study because of its
broad use. Thus, the SCAN/UPC package offers the possibility to
apply ComBat after SCAN normalization and summarization at
gene-level—and before transformation to UPCs if so chosen. Thus,
methods like ComBat are often called integration methods, in so
that they integrate previously normalized data. Nevertheless,
ComBat has become, on its own, a popular first choice for cross-
platform normalization and a frequent benchmark standard for
other methods (Irigoyen et al., 2018; Walsh et al., 2015).
Shambhala, on the other hand, is classified as a harmonization
method because it uses a golden standard as reference, while
YuGene is a transformation and XPN, DBNorm and SCAN are
referred to as normalization methods. In this study, like in Rudy and
Valafar (2011), we will refer to all these methods as cross-platform
normalization methods so far as they are being used in the literature
to make data across different platforms comparable for the purpose
of analysis.

Although the number of normalization methods proposed in the
literature is large, to our knowledge there are no other major cross-
platform normalization methods that can be applied to gene-
expression microarrays in a platform agnostic way and that have
been tested and validated as such. To enable systematic studies
involving the download of microarray data from databases (possibly
at different times) and its normalization and storage for later re-
trieval, allowing a non-linear use of the data—for example, in suc-
cessive analyses incorporating different amounts of data as available
or necessary, it is essential that a downloaded microarray set need
not be normalized more than once. Here, we introduce a novel
cross-platform normalization method fulfilling all these conditions.
The algorithm is called CuBlock, which stands for Cubic approxi-
mation by Block. We validate its performance using various metrics
and compare it to six methods that can be used in a cross-platform
context, namely, the log2 transform of raw data, ComBat, YuGene,
DBNorm, Shambhala and UPC. Overall, CuBlock shows the best
performance in this group.

2 Materials and methods

In this section, we introduce the datasets used for the validation of
CuBlock and describe the data preprocessing approach and the
methods used for benchmarking and validation.

2.1 The datasets
We selected two benchmark datasets previously used in similar stud-
ies (Borisov et al., 2019; Rudy and Valafar, 2011). The first set (here
called the reference dataset) originates from projects MAQC
(MAQC-I) (MAQC Consortium, 2006) and SEQC/MAQC-III
(SEQC/MAQC-III Consortium, 2014), which made use of reference
RNA samples to assess repeatability of gene-expression microarray
data within a specific site, reproducibility across multiple sites and
comparability across multiple platforms. The second set (here called
the experimental dataset) originates from a study trying to assess
profile differences of human spermatozoal transcripts from fertile
and teratozoospermic males (Platts et al., 2007). The use of these
two datasets allows us to assess, independently, effects from tech-
nical replicates (same biosample, analyzed in different labs with
repetition) and biological replicates (different biosamples corre-
sponding to a same condition).

2.1.1 The reference dataset

The data of this set are accessible in GEO with accession numbers
GSE5350 (MAQC-I) and GSE56457 (MAQC-III), respectively. The
set contains microarray gene-expression data corresponding to four
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titration pools from two distinct reference RNA samples: (A)
Stratagene’s Universal Human Reference RNA pool; (B) Ambion’s
Human Brain Reference RNA pool; (C) pool with an A:B ratio of
3:1; (D) pool with an A:B ratio of 1:3. These biosamples had been
analyzed using different platforms and in different sites, as described
(MAQC Consortium, 2006; SEQC/MAQC-III Consortium, 2014).
Following the work from Rudy and Valafar (2011) and Borisov
et al. (2019), we selected data from six of the platforms (between
parentheses, data-set identifier in this study, GEO platform ID and
project of origin):

• Affymetrix Human Genome U133 Plus 2.0 Array (AFX,

GPL570, MAQC-I): three experiments (sites) (AFX_1 to

AFX_3), with four biosamples (A–D) per experiment and five

replicates per biosample (60 samples)
• Agilent-012391 Whole Human Genome Oligo Microarray

G4112A (AG1, GPL1708, MAQC-I): three experiments (AG1_1

to AG1_3), with four biosamples (A–D) per experiment and five

replicates per biosample (60 samples)
• Illumina Sentrix Human-6 Expression BeadChip (ILM,

GPL2507, MAQC-I): three experiments (ILM_1 to ILM_3),

with four biosamples (A–D) per experiment and five replicates

per biosample (59 valid samples)
• Illumina HumanHT-12 V4.0 Expression Beadchip (HT12,

GPL10558, MAQC-III): two experiments (ILM_COH and

ILM_UTS), with four biosamples (A–D) per experiment and

three replicates per biosample (24 samples)
• GeneChipVR PrimeViewTM Human Gene Expression Array (PRV,

GPL16043, MAQC-III): one experiment (AFX_USF_PRV), with

four biosamples (A–D) and four replicates per biosample (16

samples)
• Affymetrix Human Gene 2.0 ST Array (HUG, GPL17930,

MAQC-III): one experiment (AFX_USF_HUG), with four

biosamples (A–D) and four replicates per biosample (16

samples)

Note that in the MAQC-I study the following microarrays
from AG1 were discarded as outliers after the Agilent’s Feature
Extraction QC Report: AG1_1_A1, AG1_2_A3, AG1_2_D2,
AG1_3_B3. Since the data for these microarrays is nevertheless
deposited and we wanted our analysis to be as independent as
possible of platform-dependent data-preprocessing steps, we
considered also their inclusion. To this end, we evaluated the
correlation of the data between all AG1 samples and observed
that the ‘outliers’ are highly correlated to the non-outliers of
the same experiment and of the other two experiments (about
0.97 in both cases). A dimension reduction of the raw data
showed also no outliers. We therefore decided to include these
four microarrays in the dataset.

2.1.2 The experimental dataset

This dataset contains spermatozoal RNA samples from
normally fertile (N) and heterogeneously teratozoospermic (T)
subjects and is accessible in GEO with accession number GSE6969.
The samples had been analyzed on three different platforms
(between parentheses, data-set identifier in this study and GEO
platform ID):

• Affymetrix Human Genome U133 Plus 2.0 Array (AFF,

GPL570): 13 independent biosamples of type N and 8 of type T
• Illumina Sentrix Human-6 Expression BeadChip (ILL1,

GPL2507): five independent biosamples of type N and eight of

type T. All ILL1 biosamples are replicates of AFF biosamples.
• Illumina Sentrix HumanRef-8 Expression BeadChip (ILL2,

GPL2700): four independent biosamples of type N and 6 of type T

2.2 Data processing
To make the analysis as platform agnostic as possible, we took the
image-processed raw intensities for all non-control probes and disre-
garded any platform-dependent background-signal correction such
as that provided by mismatch probes in Affymetrix platforms. CEL
files for Affymetrix and txt files for the other platforms were used.
Probes with invalid intensities (NaN) in datasets HT12 and HUG
were ignored. For Affymetrix microarrays, the intensities of probes
constituting a probe set were averaged. We note that in the context
of this study preprocessing of Affymetrix probe sets by simple aver-
aging performed just as well as more complex treatments including
background correction and RMA median polish (Irizarry et al.,
2003), which was not completely unexpected—for example,
Hubbell et al. (2002) found that simple averaging performed com-
parably to more robust approaches from the Affymetrix Micro
Array Suite under low-noise conditions. From this point onward,
the Affymetrix probe-set-average intensities were treated the same
way as the raw probe intensities from the other platforms (the num-
ber of Affymetrix probe sets per gene being on the same order as the
number of probes per gene in other platforms). Note that we could
have skipped the probe-set-averaging step and worked directly with
all Affymetrix probes. While we tried this, it increased significantly
the computational cost of the normalization procedure (due to the
several-fold increase in number of probes) at a marginal gain. At this
point, probe-set average intensities (Affymetrix) and raw probe
intensities (other platforms) were log2 transformed—we also tried
applying quantile normalization in the preprocessing without it
improving significantly the results. CuBlock normalization was then
applied for each platform separately. Since probes vary among the
different microarray platforms, the normalized datasets were then
transformed from the probe level to the protein level by mapping
probes to UniProtKB accession numbers (ACs) and keeping only
those probes that map to an AC present in all platforms. The map-
ping to proteins was performed by taking the gene identifiers from
the GEO tables containing the microarray data. Each selected AC
was then assigned an intensity equal to the average of the normal-
ized intensities of associated probes in the given microarray. The
choice of UniProt ACs, rather than gene identifiers, was made to fa-
cilitate streamlining with protein-level post-normalization analysis
in studies where microarray data is used to infer protein expression
(i.e. probes matching CDS regions). We note, however, that
CuBlock delivers normalized data at the probe level, meaning that
the user is free to summarize the data at the gene level if appropriate,
and that potential information regarding, for example, probes
matching non-coding exon regions, will remain available.

To benchmark CuBlock against established normalization meth-
ods applicable in a generic cross-platform context, we compared it
to a simple log2 transform and to the methods ComBat (Johnson
et al., 2007), YuGene (Lê Cao et al., 2014), DBNorm (Meng et al.,
2017), Shambhala (Borisov et al., 2019) and UPC (Piccolo et al.,
2013). YuGene, DBNorm and UPC were applied following the same
procedure used for CuBlock, i.e. normalization of the log2 transform
of the probe intensities and successive mapping to ACs. ComBat
requires all microarrays to be normalized together, which implies
their merging before normalization. Therefore, in this case the map-
ping to UniProtKB ACs and selection of ACs present in the different
platforms was performed after log2 transform and before ComBat
normalization. We note that DBNorm allows normalization per
sample and per platform. We performed both, but show only the
results obtained with sample-wise normalization since they are bet-
ter. Comparison to Shambhala was done only for the datasets AFX,
AG1 and ILM from the reference dataset, since Shambhala-
normalized data for these sets has been already reported by the
authors as supplementary data to Borisov et al. (2019). DBNorm
was only used on the experimental dataset, as the calculations
turned out to be forbiddingly slow. To perform the calculations we
used the R package sva for ComBat (https://bioconductor.org/pack
ages/release/bioc/html/sva.html) and the packages provided by
YuGene (https://cran.r-project.org/web/packages/YuGene/index.
html) and DBNorm (https://github.com/mengqinxue/dbnorm)
authors in the respective papers. Calculations with these programs
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were performed with default settings. For DBNorm, in order to re-
produce the general case (e.g. this study), in which a reference
microarray cannot be straightforwardly selected, we used the
option of normalization into a normal distribution. For UPC
(https://www.bioconductor.org/packages/release/bioc/html/SCAN.
UPC.html), we used its generic function for expression set, which
takes expression � samples data, with default parameters from the
package.

2.3 Comparison and validation methods
To validate and compare the cross-platform normalization methods
evaluated in this study we used the methodology described below.
The objective was to increase the sensitivity, i.e. the identification of
true biological differences, while minimizing platform and various
kinds of replica effects. All validation methods were applied on a
subset of 500 proteins that best distinguish two given biological
groups.

To select the 500 proteins we first performed a differential ana-
lysis on the normalized data, for all platforms in the reference or ex-
perimental dataset. To this end, we performed Welch’s t-test to
evaluate, for each protein, the difference between the associated
mean intensities in units of uncertainty (the t-statistic) in two bio-
logical groups, A and B from the reference dataset (total of 16 624
proteins) or N and T from the experimental dataset (total of 16 937
proteins). Note that we deliberately avoid considerations on
whether the datasets meet the requirements of the t-test, since we
used the test simply to identify the 500 proteins with largest separ-
ation of group means per uncertainty unit, that is, with lowest asso-
ciated P-values, irrespective of the error in the P-value and,
therefore, of its valid interpretation as a probability. Although for
such purpose we do not require the calculation of FDR-adjusted P-
values (q-values) (Storey, 2002), since they conserve P-value rank-
ing, we did obtain them and show corresponding ROC-like curves
(the cumulative distribution function of the q-values) in
Supplementary Figure S1 (Supplementary Information). We decided
to select a fixed number of proteins, rather than proteins with a P-
or q-value below a given arbitrary threshold, to enable the compari-
son of methods using datasets of equal and reasonably large dimen-
sionality. We note, nevertheless, that the 500-protein cut
corresponds to an FDR well below 10–2 (Supplementary Fig. S1).
The differential analysis was performed with the MATLAB function
mattest.

2.3.1 Silhouette plot

Silhouette plots are graphical displays of data partitions
(Rousseeuw, 1987), where clusters are represented by so-called sil-
houettes generated by comparison of cluster tightness and separ-
ation. The method assigns a silhouette value between -1 and 1 to
each element of a cluster, indicating if the element is well clustered
(value close to 1), lies between two or more clusters (close to 0) or is
likely misclassified (close to -1). The silhouette plot is then generated
by representing the values for all elements as bars, for the different
cluster partitions. We computed three silhouette plots for the refer-
ence dataset: one identifying clusters with platforms, one where the
data was assigned to groups A [ C and B [ D and one where the
partitioning was represented by sets A, B, C and D. For the experi-
mental dataset, silhouette plots based on platform partitioning and
T versus N partitioning were computed. The MATLAB function sil-
houette was used to compute the silhouette plots.

2.3.2 t-SNE dimension reduction

t-SNE (Maaten and Hinton, 2008) is a stochastic dimension-
reduction method aimed to preserve the local structure of data
(keeping the low-dimensional representation of very similar data
points close together) while retaining essential traits of global struc-
ture. It analyzes the neighborhood of the data points by calculating
pairwise conditional probabilities representing their similarity. The
method then tries to find a low-dimensional representation that min-
imizes the difference between the high-dimensional and low-
dimensional conditional probabilities. The parameter controlling

the number of neighbors is called perplexity, and is typically given
values between 5 and 50. Due to its stochastic nature and the de-
pendence on the chosen perplexity parameter, the algorithm may
converge to irrelevant solutions. We thus performed 10 runs for
each of a number of perplexity values and selected the one produc-
ing the most consistent biological partitioning according to the aver-
age silhouette values. For the reference dataset we used perplexity
values from 5 to 50, in increments of 5, and selected the representa-
tion giving the best clustering relative to sets A, B, C and D. For the
experimental dataset, we used perplexity values 5, 10 and 15 and
selected the representation giving the best clustering relative to sets
T and N. The MATLAB function tsne was used to perform the t-
SNE dimension reduction.

2.3.3 Dendrogram

We performed a hierarchical clustering analysis using the Euclidean
distance as metric and the arithmetic mean as linkage criterion, and
represented the resulting cluster hierarchy as a dendrogram. To as-
sess the significance of the clusters, we applied multiscale bootstrap
resampling as provided in the R package pvclust (Suzuki and
Shimodaira, 2006). By default, this package considers 10 relative
bootstrap sample sizes (bootstrap sample size divided by total sam-
ple size), from 0.5 to 1.4, with 1000 resamplings per sample size,
leading to a total of 10 000 bootstrap resamples. The package pro-
vides two statistics to estimate the significance of the obtained clus-
ters: the bootstrap probability (BP) or frequency (expressed as
percentage) of observation of a given cluster in the bootstrap resam-
ples, and the approximately unbiased P-value (AU), an unbiased ver-
sion of BP. More details on multiscale bootstrap resampling can be
found in Shimodaira (2004). We plot the dendrograms using the R
package dendextend.

2.3.4 SVM classification

The goal of this analysis was to assert whether relevant patterns can
be found using the data from only one platform. Support vector
machines (SVM) (Cortes and Vapnik, 1995) are binary classifiers
applicable to problems that are reducible to a binary outcome, such
as the T and N phenotypes in our experimental dataset. We trained
a linear support vector machine model for each platform using the
following approach. To reduce feature-vector dimensionality, where
dimensions are proteins (more specifically their microarray-derived
intensities), while retaining the capacity to asses how well the 500
proteins separate the T and N populations, the training was per-
formed six times, starting with dimension 5 and increasing it up to
dimension 10. For each of 1000 runs with a given dimensionality,
we selected randomly from the 500 protein set as many proteins as
dimensions, extracted the corresponding data from sets T and N,
trained a linear SVM model for each platform, separately, and tested
it on the other two platforms. This led to a total of 6000 models per
platform. For each platform, we calculated the mean and standard
deviation of different classification scores over the 6000 models,
namely, Accuracy, Matthews Correlation Coefficient (MCC)
(Boughorbel et al., 2017), Balanced Accuracy and Area Under the
ROC Curve (AUC) (Fawcett, 2006). The MATLAB function svm
was used to train the SVM models.

3 Algorithm

The CuBlock algorithm relies on the simple and widely used as-
sumption that most genes are neither over- nor under-expressed
(Yang et al., 2002). Thus, a transformation following the cubic poly-
nomial x3 will leave most of the genes around 0 and slowly differen-
tiate the extremes, i.e. the under- and over-expressed genes. The
complementary idea in CuBlock is the use of a block-wise trans-
formation, which had been already implemented successfully in
XPN (Shabalin et al., 2008). To this end, CuBlock partitions probes
into clusters and, for each sample and probe cluster (i.e. for each
data block), transforms the data by a procedure that involves its
mapping to objective values between -1 and 1 (with density increas-
ing toward 0) and the fitting of a cubic polynomial to the resulting
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distribution (see below). By using data blocks, different profiles pre-
sent (mixed) in the full dataset are considered, and as many different
cubic polynomials are fitted to them, underlying different shapes
contained within the original distribution. A pseudo code of the
CuBlock algorithm is described in Figure 1. It calls two additional
algorithms with pseudo codes provided in Supplementary Figures S2
and S3 (Supplementary Information).

The input to CuBlock is a matrix X containing the log2 trans-
form of the gene-expression microarray intensities, where columns
are samples and rows are probes. As discussed in Section 2.2 it is up
to the user to decide any level of preprocessing of the input log2-
transformed intensities, for example, probe-set summarization for
Affymetrix microarrays.

CuBlock makes use of the k-means clustering algorithm (Lloyd,
1982) to partition probes in the space defined by the samples—a
probe data point is a vector of probe intensities of dimension equal
to the number of samples—and is applied per platform, i.e. the k-
means clustering is performed for all samples of a given platform. k-
means is an iterative algorithm that tries to partition the data into a
predefined number k of non-overlapping clusters, starting from a
random initialization of their centroids. Because of the random ini-
tialization, clusters from different runs may differ and the core part
of the CuBlock algorithm is repeated several times for different solu-
tions of k-means. Thus, input parameters k and N in Figure 1 refer
to the chosen number of k-means clusters and repetitions, which in
this work took values of 5 and 30, respectively. The number of clus-
ters was chosen to be low enough that the k-means algorithm will
not, for some partitions, converge always to the same solution and
high enough that blocks with different distributions will be
obtained. The CuBlock algorithm finds first a probe-cluster partition
in the space defined by the samples and then applies its normaliza-
tion scheme to data blocks defined as those (log2) probe-intensity
values from a sample that belong to a given cluster. Therefore, for k
clusters and m samples we have a total of k � m blocks. The advan-
tage of the normalization by block is that it decomposes the distribu-
tion of probe intensities of a sample into its different block
distributions, according to similarities between probes found by the
clustering algorithm in the space of all samples. These different dis-
tributions will enable the emergence of different patterns present in
the data. Instead, if the blocks were selected at random or the whole
sample was used, the normalization method would estimate parame-
ters based on a unique distribution, masking these different patterns.

Although we initially determine the probe clusters using all samples,
we then normalize sample by sample to reduce the dependence of
the normalization on the full sample collection. The strategy of nor-
malization by block is similar to that used by the cross-platform nor-
malization method XPN (Shabalin et al., 2008). However, XPN
defines probe clusters and sample clusters with two independent ap-
plication of k-means (one on the input matrix and the other on its
transpose) and blocks are then constituted by all possible combina-
tions of one sample cluster with one probe cluster.

For each block, and each of the N repetitions of the k-means
clustering, CuBlock fits a cubic polynomial to a mapped set of
points symmetrically distributed between -1 and 1 with density
increasing toward zero. This is performed in four steps, as shown in
Figure 1. First, the block data is linearly transformed to z-scores
(zero mean and unit standard deviation). These are then used as in-
put values of a mapping function whose output values will be used
to fit the cubic polynomial, as described in the pseudocode shown in
Supplementary Figure S2. The mapping associates the sorted values
present in the block to an equal number of equidistant points be-
tween -1 and 1, and takes these new points to an uneven power in
order to have their distance decrease as they approach zero from ei-
ther side (Supplementary Fig. S4). The exact uneven power will de-
termine how slow is the growth of the points around zero, and is
selected such that, on average, the values of the block that are within
standard deviation, i.e. the block values between -1 and 1, are
mapped to a value smaller than 0.1 (Supplementary Fig. S5). The al-
gorithm tries uneven powers between 3 and 21 and the first one that
fulfills the criterion is selected. Next, the algorithm finds the coeffi-
cients of a cubic polynomial that, when evaluated on the sorted
block data (input values), best fits the output values from the map-
ping function (Supplementary Fig. S4). We chose to fit a cubic poly-
nomial instead of a higher degree one to avoid overfitting.
Polynomial coefficients were obtained with the MATLAB function
polyfit, with degree 3.

If the block data is not symmetric or contains many outliers, a
cubic polynomial will produce a poor fit. Thus, the polynomial will
increase along the symmetric part of the block and decrease as it
reaches the outliers (Supplementary Fig. S6). Despite leading to a
poor fit, this feature can be used to identify asymmetry issues and
outliers. When this is the case and decreasing values are identified
after evaluating the polynomial on the block data, the decreasing
values are corrected in order to preserve data sorting upon normal-
ization. Roughly, the correction equates the decreasing values to the
last increasing value (after an increasing section) or to the last
decreasing value (before an increasing section). The precise correc-
tions are described in Supplementary Figure S6, and the cases where
the cubic polynomial might decrease are considered in
Supplementary Figure S3.

The output of CuBlock is a matrix of normalized gene-
expression values, where columns are samples and rows are probes.
As discussed in Section 2.2 it is up to the user to decide at which

Fig. 1. Pseudocode describing the CuBlock algorithm (see description in Section 3)

Fig. 2. Example histograms for samples from different platforms. (A–C) Histograms

before CuBlock normalization and after log2 transform. (D–F) Histograms after

CuBlock normalization. A, D: biosample A, platform AFX; B, E: biosample B, plat-

form AG1; C, F: biosample A, platform AG1
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level and using which database codes for the mapping to that level,
the probe values should be summarized.

Figure 2 shows the histograms of different samples before and
after normalization. While before normalization the samples
follow clearly different distributions, after normalization the
distributions are much more homogeneous. We note that before nor-
malization the distributions are clearly platform dependent (com-
pare A and C, which correspond to the same biosample but different
platforms, and B and C, which correspond to different biosamples
and the same platform). This effect is remarkably corrected after
normalization.

4 Results and discussion

The algorithm described in the previous section was applied to the
data introduced in Section 2.1 after preprocessing (see Section 2.2),
and the results were compared to those obtained with other normal-
ization methods as explained in Section 2.3. In line with the objec-
tives stated in the introduction, the discussion of the results evolves
around the ability of the methods to highlight biological patterns in
a multi-platform context. We want to note, however, that although
CuBlock was not developed for single-platform normalization—this
being already well covered by other methods, it can be also used for
this purpose. Thus, as a side example, Supplementary Figure S7
shows results for a third dataset, available in GEO with accession

number GSE65212 and involving five biological groups (Maire
et al., 2013a,b; Maubant et al., 2015), demonstrating that results
from CuBlock are very consistent with those from RMA
normalization.

4.1 Reference dataset: six platforms
Figure 3 and Supplementary Figures S8–S11 show the results
obtained with the different normalization methods using the dendro-
gram, silhouette and t-SNE analyzes, respectively. The three valid-
ation methods show that CuBlock and ComBat separate very clearly
the biological groups A, B, C and D (except for a couple of A points
in ComBat’s case). ComBat tends to produce tighter but less cleanly
separated clusters for these four groups, as illustrated by both the t-
SNE (Supplementary Fig. S9C) and silhouette (Supplementary Fig.
S8C) plots. CuBlock is the only method that clusters the biological
groups A and C, and B and D together in the dendrogram plot
(Fig. 3A), and this is also underlined in the corresponding silhouette
plot in Supplementary Figure S10A, showing high and homogeneous
silhouette values. On the contrary, log2, ComBat, YuGene and to a
smaller extent UPC tend to cluster C with D (Fig. 3B–E). In fact,
log2 and YuGene have difficulties to separate these two groups at
all, while UPC has serious difficulties to separate the groups C and
D from the parent groups (A and B; see also Supplementary Fig. S9).
Supplementary Figures S10 and S11 show silhouette plots using the
groups A [ C and B [D and the platforms as given clusters, respect-
ively. We note that even though CuBlock is shown to emphasize the
biological differences and Supplementary Figure S11A indicates
weak platform clusters, both the t-SNE (Supplementary Fig. S9A)
and dendrogram (Fig. 3A) plots show that, within each of the A, B,
C, D clusters, the samples are subclustered by platform. As can be
seen in these Figures, ComBat mixes the data from the different plat-
forms best, while YuGene, UPC and log2 are, approximately in this
order, worst at mixing platform data.

In Figure 3 and throughout this study, the log2 transform plays
the role of control method. As a second potential control, we also
used a common approach consisting in platform-specific normaliza-
tion of the samples followed by a centering transformation.
Supplementary Figure S12 shows the dendrogram plot of the RMA
method (background correction, quantile normalization, summar-
ization at the probe-set level for Affymetrix platforms and log2

transformation) followed by Z-score transformation (subtracting
the sample’s mean and dividing by its standard deviation). It can be
observed that the results are only slightly better than those from a
log2 transformation, for which reason we kept the latter as the sim-
plest approach.

4.2 Reference dataset: three platforms
To compare the results from CuBlock and Shambhala [the latter
reported by Borisov et al. (2019) for the same dataset], we also per-
formed the analysis for the three-platform subset used by the
authors of Shambhala, namely AFX, ILM and AG1. They had con-
cluded that Shambhala separates well A [ C from B [ D but not A
from C or B from D. Using our selection of 500 proteins that best
distinguish A from B, when looking at the results for Shambhala in
Supplementary Figure S13B, D we observe that, while A [ C forms
a relatively clear cluster, all the B [ D points from AG1 samples are
clustered with A [ C, making B [ D a well defined cluster only for
AFX and ILM. As illustrated by the t-SNE and dendrogram plots
and by the negative silhouette values in Supplementary Figure S13F,
Shambhala does also not distinguish A, B, C and D from each other
well. The results for CuBlock in Supplementary Figure S13A, C, E
show the same features already discussed in Section 4.1 using the
data for six platforms.

4.3 Experimental dataset
Figure 4 and Supplementary Figures S14–S16 show the results
obtained for the human sperm dataset, after normalization with
CuBlock, log2, ComBat, YuGene, DBNorm and UPC. CuBlock is
the only normalization method that significantly distinguishes the
two biological groups, T and N. The dendrogram plots in Figure 4

Fig. 3. Dendrogram analysis of the reference dataset (six platforms) after normaliza-

tion with CuBlock (A), log2 (B), ComBat (C), YuGene (D) and UPC (E). Color bars

under the dendrograms indicate the biological group and platform corresponding to

each leaf; the BP (green) and AU (red) values (see Section 2.3.3) for some selected

clusters are indicated at the origin of the branches
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and t-SNE plots in Supplementary Figure S15 show that ComBat
has troubles to establish a clear boundary between the two groups,
particularly for the ILL2 platform, while the other methods tend to
misclassify the ILL2 samples corresponding to the N group.
Similarly to the results for the reference dataset (Section 4.1),
CuBlock tends to sort the samples by platform within the clusters T
and N (except for one T sample from ILL2). To investigate whether
patterns that are found using one platform can be extrapolated to
the other platforms, we performed a SVM classification test as
described in Section 2.3.4. The results are shown in Table 1. In all
cases, CuBlock outperforms the other methods. It is also worth not-
ing that no matter which platform is used for the training based on
CuBlock, the results are always very similar. To a lesser extent, this
is also true for DBNorm. However, using log2, ComBat, YuGene
and UPC, training with ILL2 gives worse results than with the other
platforms, probably due to the fact that this platform constitutes a
better defined cluster, as shown in the silhouette plots in
Supplementary Figure S16.

In Figure 4, it can be seen that ComBat clusters more strongly
AFF and ILL1 (which contains replicates of AFF) than CuBlock
does. In Supplementary Table S1 we provide, for the six normaliza-
tion methods, average pairwise Kendall rank correlations between
the replicates shared by the platforms AFF and ILL1, between the
non-replicates of these two platforms and between the other two
platform pairs, as well as a discussion on the correlation data. In
summary, we show that methods like ComBat will tend to correlate
samples from different platforms, even when they are not from the
same biological group (and should be therefore less correlated),
while methods like CuBlock tend to decorrelate the different

platforms to highlight existing patterns in the samples. In this sense,
CuBlock will never lead to a high correlation between replicates
(which might be desirable in some studies), but will on the other
hand enable comparison across platforms using a selected small set
of differentially expressed proteins.

4.4 Reference dataset: missing biological groups
CuBlock is a method that works with the actual distribution of the
data, without making any assumption on its shape. It is, in that
sense, dependent on the actual differences found in the input data at
the platform level—which are in turn highlighted by the block treat-
ment enabling the uncovering of the different distributions present
in the data. To test this dependence, we analyzed again the reference
dataset using CuBlock and ComBat while removing the groups B
and D from the platforms HUG and AG1. In other words, these two
platforms were normalized only with A and C samples. The bio-
logical difference between A and C is that 25% of C is made of B
RNA samples. The other four platforms were normalized with all
four biological groups. As it can be seen in Figure 5A, C, CuBlock
results in the clustering of the C samples of HUG and AG1 separate-
ly and closer to the D cluster of the other platforms than to their C
cluster. However, the A cluster remains a well-defined cluster for all
platforms. This suggests that, in the two platforms with missing
groups, CuBlock emphasizes the difference between the available
data, as predicted above. For HUG and AG1, this means emphasiz-
ing the differences between A and C (the only groups it sees), thus
bringing C closer to the D cluster formed by the other platforms,
since, as C itself, D is also a mixture of A and B. ComBat does how-
ever do similarly in this regard (Fig. 5B, D), with the C samples of
HUG and AG1 being even more mixed with the D samples, and the
A samples of the two platforms getting closer (see t-SNE plot) to the
C samples of the four other platforms, some of them ending up clus-
tered (see dendrogram) in this group.

5 Conclusion

We have introduced an algorithm for cross-platform normalization
of gene-expression microarray data as well as a strategy to validate
cross-platform normalization methods, with a focus on the capacity
of the algorithm to properly separate samples from different bio-
logical groups after normalization and across multiple platforms.
Overall, CuBlock showed good results on the two datasets used in
this evaluation, a dataset specifically generated for testing and stand-
ardization purposes and a dataset from an actual experimental
study. CuBlock could always differentiate, clearly, the underlying
biological groups after mixing data from up to 6 different platforms.
Nevertheless, we observed that within each biological group the al-
gorithm tends to subcluster samples by platform, indicating a
remaining, yet comparatively small, platform effect. The ComBat al-
gorithm (Johnson et al., 2007) showed also good performance on
the reference dataset, with better mixing of data from different plat-
forms than all the other methods tested. However, on the experi-
mental dataset, where samples are from different individuals and the
difference between biological groups might become less obvious
than in the reference dataset, ComBat did not perform as well.
Platform mixing was still good but the distinction between the two
biological groups was not clear. To rationalize the differences in
platform-mixing properties between CuBlock and ComBat, we per-
formed a rank correlation analysis and show that methods normaliz-
ing all platforms together, like ComBat, tend to correlate the data
from the different platforms, as opposed to methods normalizing
platforms separately, which tend to decorrelate them. While high
correlation among samples from different platforms might be desir-
able in some set-ups, there is no guarantee that this correlation will
be meaningful, as shown for ComBat, which in our test induced cor-
relation among platforms almost independently of the actual level of
expected correlation between them. As already mentioned, ComBat
also requires the platforms to be normalized together, making it a
less convenient method for systematic application to multiple data-
sets. On the other hand, DBNorm—used only with the experimental

Fig. 4. Dendrogram analysis of the experimental dataset after normalization with

CuBlock (A), log2 (B), ComBat (C), YuGene (D), DBNorm (E) and UPC (F). Color

bars under the dendrograms indicate the biological group and platform correspond-

ing to each leaf; the BP (green) and AU (red) values (see Section 2.3.3) for some

selected clusters are indicated at the origin of the branches
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dataset, as it proved computationally much more time demanding
than the rest, YuGene and UPC performed only slightly better than
log2. For the set evaluated, Shambhala lagged clearly behind the
other methods, arguably including a simple log2 transformation.

Finally, we also showed, by training SVMs with single-platform
data from the experimental set, that when normalizing the data with
CuBlock the patterns that are found using one platform can be
extrapolated to the other platforms significantly better than when
the normalization is done with any other of the methods.

Because no assumptions are made on the distributions underly-
ing the input data, CuBlock can be thought of as a transformation
which result remains close to the input. CuBlock fits cubic polyno-
mials to data blocks that are found by k-means clustering, thereby
trying to best fit the different distributions found in the data corre-
sponding to a sample (different blocks need not have the same distri-
bution) and it does so without assuming a shape for these
distributions. As a consequence, CuBlock emphasizes the differences
within the input data at the platform level, making it sample-
composition dependent despite the only step in the algorithm where
the microarray samples from a given platform are considered to-
gether is when applying the k-means algorithm (afterwards, each
sample is considered separately). This sample dependence was high-
lighted in this study when analyzing the reference dataset after
removing biological groups in some platforms. Nevertheless, the
sample dependence is even more prominent for algorithms normaliz-
ing platforms together, such as ComBat.

We note that, while in this study the results were presented at the
protein level, CuBlock is applied and returns the normalized data at
the probe level, as an appropriate level for gene-expression microar-
rays. In fact, like most other methods, it could technically be applied
at any expression � samples level. Studying the effect of the applica-
tion of CuBlock and other cross-platform normalization methods at
different levels with appropriate (and possibly study-specific) pre-
processing steps could be an interesting development which would
ideally lead to an appropriate systematic integration of RNA-seq
with gene expression microarrays. This however goes beyond the
scope of this study.

In summary, we have shown that CuBlock can be applied to
data from multiple microarrays in a platform agnostic way and pre-
serves the biological grouping of the samples, demonstrating a good
performance for different types of samples. It is therefore a tool ap-
propriate for gene-expression studies based on multiple microarray
sets collected along multiple platforms and at different times, thus

Table 1. SVM classification scores (see Section 2.3.4)

Training platform Accuracy MCC Balanced accuracy AUC

CuBlock

AFF 0.88 6 0.08 0.76 6 0.17 0.86 6 0.10 0.98 6 0.03

ILL1 0.92 6 0.06 0.85 6 0.12 0.91 6 0.07 0.99 6 0.02

ILL2 0.86 6 0.16 0.74 6 0.32 0.86 6 0.17 0.99 6 0.04

log2

AFF 0.77 6 0.07 0.52 6 0.16 0.71 6 0.08 0.70 6 0.11

ILL1 0.80 6 0.06 0.64 6 0.11 0.81 6 0.06 0.81 6 0.04

ILL2 0.44 6 0.16 –0.13 6 0.35 0.46 6 0.16 0.24 6 0.31

ComBat

AFF 0.73 6 0.11 0.53 6 0.20 0.76 6 0.10 0.90 6 0.08

ILL1 0.76 6 0.08 0.57 6 0.15 0.77 6 0.08 0.90 6 0.06

ILL2 0.61 6 0.30 0.22 6 0.61 0.61 6 0.30 0.63 6 0.36

YuGene

AFF 0.81 6 0.07 0.63 6 0.15 0.77 6 0.08 0.91 6 0.06

ILL1 0.87 6 0.08 0.74 6 0.16 0.87 6 0.09 0.96 6 0.04

ILL2 0.55 6 0.07 0.07 6 0.17 0.53 6 0.07 0.97 6 0.11

DBNorm

AFF 0.81 6 0.07 0.62 6 0.16 0.77 6 0.09 0.91 6 0.07

ILL1 0.86 6 0.06 0.76 6 0.09 0.87 6 0.05 0.95 6 0.04

ILL2 0.79 6 0.13 0.61 6 0.24 0.77 6 0.13 0.96 6 0.11

UPC

AFF 0.74 6 0.08 0.45 6 0.22 0.68 6 0.10 0.82 6 0.08

ILL1 0.82 6 0.06 0.68 6 0.09 0.83 6 0.05 0.90 6 0.05

ILL2 0.57 6 0.10 0.10 6 0.24 0.54 6 0.11 0.75 6 0.34

Note: Mean and standard deviation over the 6000 models per platform and method.

Fig. 5. t-SNE dimension reduction and dendrogram plots for the reference dataset,

with exclusion of the B and D samples from platforms HUG and AG1, after normal-

ization with CuBlock and ComBat. Point color and shape indicate biological group

and platform, respectively (right-hand legend). (A) t-SNE for CuBlock normalized

data; perplexity (Prp) and mean silhouette index (SI) values (see Section 2.3.2): Prp

¼ 15, SI ¼ 0.80. (B) Corresponding analysis for ComBat-normalized data; Prp ¼
10, SI ¼ 0.67. (C, D) Dendrograms for CuBlock (C) and ComBat (D) normalized

data; color bars under the dendrograms indicate the biological group and platform

corresponding to each leaf
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facilitating the extraction of knowledge from the wealth of micro-
array data available in public repositories and enabling the use of
these repositories as sources of Real-World Data.
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