
A Genome-Wide Systematic Analysis Reveals Different
and Predictive Proliferation Expression Signatures of
Cancerous vs. Non-Cancerous Cells
Yedael Y. Waldman1*, Tamar Geiger2, Eytan Ruppin1,2*

1 The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel, 2 The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

Abstract

Understanding cell proliferation mechanisms has been a long-lasting goal of the scientific community and specifically of
cancer researchers. Previous genome-scale studies of cancer proliferation determinants have mainly relied on knockdown
screens aimed to gauge their effects on cancer growth. This powerful approach has several limitations such as off-target
effects, partial knockdown, and masking effects due to functional backups. Here we employ a complementary approach and
assign each gene a cancer Proliferation Index (cPI) that quantifies the association between its expression levels and growth
rate measurements across 60 cancer cell lines. Reassuringly, genes found essential in cancer gene knockdown screens
exhibit significant positive cPI values, while tumor suppressors exhibit significant negative cPI values. Cell cycle, DNA
replication, splicing and protein production related processes are positively associated with cancer proliferation, while
cellular migration is negatively associated with it – in accordance with the well known ‘‘go or grow’’ dichotomy. A parallel
analysis of genes’ non-cancerous proliferation indices (nPI) across 224 lymphoblastoid cell lines reveals surprisingly marked
differences between cancerous and non-cancerous proliferation. These differences highlight genes in the translation and
spliceosome machineries as selective cancer proliferation-associated proteins. A cross species comparison reveals that
cancer proliferation resembles that of microorganisms while non-cancerous proliferation does not. Furthermore, combining
cancerous and non-cancerous proliferation signatures leads to enhanced prediction of patient outcome and gene
essentiality in cancer. Overall, these results point to an inherent difference between cancerous and non-cancerous
proliferation determinants, whose understanding may contribute to the future development of novel cancer-specific anti-
proliferative drugs.
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Introduction

Cancer is one of the leading causes of death worldwide and it is

estimated that 12.7 million new cancer cases and 7.6 million

cancer deaths occurred in 2008 [1]. One of the hallmarks of

cancer is uncontrolled cellular proliferation [2,3]. Understanding

the determinants of cancer proliferation is an important task not

only from a biological but also from a clinical stance – as the basis

towards introducing new cancer therapies. Indeed, many chemo-

therapeutic agents target rapidly proliferating cells to fight cancer.

However, these agents have additional detrimental effects on the

non-cancerous, but proliferating tissues. In an attempt to find new

anti-cancer drug targets, various studies in recent years used short

hairpin RNA (shRNA) techniques and screened thousands of

genes to find those that are essential for cancer growth and

proliferation and are therefore putative targets for clinical

intervention in cancer [4–7]. While this approach was shown to

be powerful for the analysis of biological processes, shRNA screens

have a variety of limitations such as off-target effects, partial knock

down of the target genes and more [8–10]. Furthermore, as these

are essentiality screens, they are less adequate to highlight genes

involved in biological processes that have functional backups.

Here we set to explore the determinants of cancer proliferation

by employing a complementary, computational approach, study-

ing the association between gene expression and growth rate

measurements on a set of cancer samples. Previous studies that

analyzed cancer proliferation using expression data were limited in

their extent, focusing on a small set of genes: Ross et al. [11] found

that the expression of ribosomal proteins is highly correlated with

doubling times of cancer cell lines and Gaur et al. [12] performed

a similar analysis in order to find microRNAs whose expression is

correlated with the doubling times of cancer cell lines. Others had

defined and studied a set of proliferating genes based on prior

knowledge from the literature (Gene Ontology (GO) annotation)

[13]. Going beyond these earlier investigations, we present the first

genome-wide analysis of cancer proliferation based on gene

expression and growth rate measurements of 12690 genes across

60 cancer cell lines (the NCI-60 panel). We identify the genes and

cellular processes that are related to cancer proliferation and

determine whether their expression levels are positively or
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negatively associated with proliferation. By performing a similar

analysis on non-cancerous proliferating human cells, we find

marked differences between the genes whose expression is

associated with cancerous and non-cancerous proliferation. This

work lays the basis for future identification of selective anti-cancer

drug targets.

Results

Computing a cancer Proliferation Index (cPI)
We focus on studying the NCI-60 panel, consisting of 60

different cancer cell lines originating from nine different tumor

types [14]. This dataset contains growth rate measurements for all

60 cell lines and expression data for 12690 genes in these cell lines

(Materials and Methods). We assign for each gene a measure,

denoted as its cancer Proliferation Index (cPI). We define cPI as

the non-parametric Spearman correlation between the expression

of a gene and growth rate measurements across the NCI-60 panel.

An alternative definition, which was also used in a previous work

that analyzed proliferation determinants in yeast [15] is the slope

of the regression line between the expression of a gene over the

NCI-60 panel and growth rate measurements of these cell lines.

The two measures are highly correlated (R = 0.89, P-value%e-16,

12690 genes) and many of the results reported in the main text are

also obtained using the regression slope as the cPI measure (Text

S1). Table S1 provides the cPI values (by the two definitions) for

12690 genes analyzed in this study. Genes with high and positive

(or low, negative) cPI values are positively (negatively) associated

with cancer proliferation (see also Figures S1, S2, S3, S4).

The functional significance of the cPI measure
We first set out to compare the genes with significant (positive or

negative) cPIs to other cancer related gene sets, to learn more

about the potential overlap between these gene sets. First, in a

comparison to several large-scale shRNA screens of cancer

proliferation [4–7], we find that essential genes exhibit significantly

higher cPI values relative to non-essential genes in all these

screens. Second, we examined a set of 551 tumor suppressor genes

[16] and a set of 1352 genes that were found to acquire loss of

function mutations in various tumors and are therefore presumed

to be enriched with tumor suppressors [17]. In both cases we find

that these genes show significantly lower and negative cPI values as

compared to other genes, testifying that their decreased function-

ality may indeed enhance cellular proliferation (Figure 1 and

Figure S5). Third, we analyzed a known dataset of cancer-related

genes (CancerGenes) [18], some that are tumor suppressors and

some that are oncogenes. As genes belonging to this dataset may

affect proliferation in opposite directions, we hypothesized that

their absolute value of cPI (|cPI|) will be relatively high. Indeed,

we find that the set of cancer genes exhibit higher |cPI| values as

compared to other genes (P-value = 1.22e-5; 2735 genes; Materials

and Methods). Taken together, these results demonstrate the

relatedness of the cPI measure with important functional attributes

of cancer-related genes, including their essentiality and their

oncogenic role.

Cellular processes playing a key role in cancer
proliferation

Utilizing the cPI measure we set to examine which cellular

processes are associated with cancer proliferation. We use the GO

classification [19] and the set of pathways defined in the human

metabolic model [20]. A full list of all GO terms and metabolic

pathways whose members exhibit cPI values that are significantly

different than the background distribution is provided in Tables S2

and S3. Here we review the key results.

Not surprisingly, cell cycle related processes (mitosis, DNA

replication and packaging, telomere maintenance and more) that

are vital for cellular proliferation exhibit significantly positive cPI

values (after correcting for multiple hypotheses testing). In

agreement with Ross et al. [11], we find that translation is

positively correlated with proliferation in the NCI-60 panel, and

more generally that protein production related processes (ranging

from mRNA translation to protein localization in cell compart-

ments) are positively correlated with proliferation. In addition,

processes related to splicing also exhibit significant positive cPI

values. This may be related to protein production in general, but

may also have additional importance as splicing is known to play

an important role in cancer [21,22]. In addition, processes related

to oxidative phosphorylation also show significant positive cPI

values. On the other hand, many processes related to cell

migration (cell migration, locomotion, cell adhesion) are negatively

correlated with proliferation. This is in accordance with previous

studies reporting a ‘‘go or grow’’ dichotomy in cancer denoting a

negative correlation between invasive and proliferative phenotypes

in tumors [23–27]. The inverse relation between migration and

proliferation is further supported by additional datasets: first, we

find that sets of genes that are related to cell migration exhibit

significantly lower cPI values as compared to other genes: these

include genes in the human integrin adhesome [28] (P-

value = 5.54e-10) and genes whose silencing was previously shown

to significantly damage cell migration [29] (empiric P-va-

lue = 3.96e-2). Second, we assigned for each gene a measure for

its relatedness to cell migration based on PubMed papers

(Materials and Methods). This measure is significantly negatively

correlated with the cPI measure (R = 20.15, P-value = 1.08e-67;

12580 genes), in accordance with the ‘‘go or grow’’ dichotomy. In

addition to the analysis on all 60 cell lines in the NCI-60 panel, we

divided the cell lines into two groups based on growth rate.

Overall, the results were very similar in both the slow and fast

dividing cell lines (Tables S2 and S3). In addition, we repeated the

analysis for each specific cancer type alone, obtaining tumor

specific proliferation signatures. We find that genes associated with

cholesterol metabolism have significantly negative cPI values in

Author Summary

One of the hallmarks of cancer is uncontrolled cellular
proliferation, and therefore many anti-cancer drugs aim to
disrupt cancer proliferation. However, some of these drugs
(e.g., chemotherapeutic agents) affect normal proliferating
cells as well, resulting in undesirable side effects. Under-
standing the differences between cancerous and non-
cancerous proliferation can help us design new selective
drugs that kill cancer cells without harming normal cells. In
this work, we use genome scale gene expression and
growth rate measurements across 60 cancer cell lines (NCI-
60) to uncover genetic determinants of cancerous prolif-
eration. In parallel, gene expression and growth rate
measurements of non-cancerous cell lines allow us to
uncover determinants of non-cancerous proliferation.
Notably, we find marked differences between the cancer-
ous and non-cancerous proliferation. The two proliferation
signatures can be used jointly to enhance the prediction of
patient outcome in cancer. Notably, we find that certain
genes in the translation and spliceosome machineries are
involved in cancerous proliferation but not in non-
cancerous proliferation, highlighting them as putative
selective anti-cancer drug targets.

Cancerous vs. Non-Cancerous Cellular Proliferation
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colon cancer, in accordance with studies showing that high density

lipoprotein (HDL) cholesterol levels are inversely correlated with

the risk of colon cancer [30]. Additional results are found in Tables

S2 and S3. To evaluate the robustness of the results over different

gene expression measurements, we repeated the main analyses

using gene expression dataset of NCI-60 that was measured on a

different platform, obtaining qualitatively similar results (Text S1

and Tables S2 and S3).

Cancerous and non-cancerous proliferation signatures
are markedly different

We turn to study whether there are differences between the

genes playing a key role in cancerous vs. non-cancerous

proliferation. Obviously, if such differences can be identified, they

can serve as a basis for selectively targeting cancer proliferation in

the future. To identify the proliferation signature of non-cancerous

proliferating cells we analyzed a dataset of HapMap samples that

contains expression data and growth rates measurements for 224

lymphoblastoid cell lines from individuals from four different

populations [31]. We assign a non-cancerous PI (nPI) measure for

12690 genes in this dataset (Materials and Methods and Table S1).

In our analysis we used all 224 cell lines, but the results remain

qualitatively similar also when focusing on samples from different

populations or specific gender (Materials and Methods, Text S1

and Tables S2 and S3). Comparing the cPI and nPI measures of

genes, we find that cancerous and non-cancerous proliferation are

markedly different. First, the correlation between the two PI

measures is relatively low (R = 0.07, P-value%e-16). The differ-

ences are also reflected by the relation of these two measures to

other genomic measures. Both |cPI| and |nPI| are positively

associated with mean expression (in cancerous and non-cancerous

tissues, respectively), as well as with the degree of the gene’s

product in the human protein-protein interaction (PPI) network.

Nevertheless, when we turn to cPI and nPI (instead of |cPI| and

|nPI|) we observe different trends: while cPI is positively

correlated with both measures (mean expression and degree in

human PPI), the latter measures are not positively correlated with

nPI and we even find slightly negative association with expression

in normal tissues (Figures 2 and S6).

An analysis of GO terms points to key functional differences

between non-cancerous and cancerous proliferation on the process

level (Tables S2 and S3). Reassuringly, cell cycle processes exhibit

significantly positive PI values in both proliferation types.

However, protein production related processes exhibit an opposite

behavior - positive correlation with cancerous proliferation but

negative correlation with non-cancerous proliferation. The nega-

tive nPI values of protein production associated genes are also

supported by a previous study on non-cancerous immortalized

human keratinocytes that showed decrease in protein production

as proliferation increases [32]. Overall, in cancer cells the

expression of the translation machinery but also the expression

of macromolecule and protein catabolic processes increases as

proliferation increases. In contrast, in non-cancerous cells we

observe a decrease in both the expression of translation and

degradation machineries as proliferation increases, probably

allowing for a more efficient usage of proteins with less turnover

associated energy costs. Another mechanism accounting for the

decrease in translation in non-cancerous proliferation may be a

reduction in cell size [32].

Notably, we find marked differences between cPI and nPI

measures also with respect to gene essentiality in cancer. As

Figure 1. Essential genes and their cPI values. Using published shRNA screening data we defined sets of genes essential for cancer proliferation
in different cancer cell lines (Materials and Methods). Each of these sets exhibits significantly high cPI values as compared to non-essential genes
(Wilcoxon rank sum test). In contrast, tumor suppressor genes and genes with loss of function (LOF) mutations in various cancers show significantly
lower cPI values. The mean cPI value of all genes is also depicted as a reference.
doi:10.1371/journal.pgen.1003806.g001

Cancerous vs. Non-Cancerous Cellular Proliferation
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expected, the likelihood of a gene to be essential to cancer

proliferation increases as cPI increases (Figures 3A and S7A).

Yet, nPI exhibits a different behavior: genes with both highly

positive and highly negative nPI values are enriched with

essential genes, with some more enrichment for those with

negative values (Figures 3B and S7B). Focusing on a set of 3210

genes that exhibits differential proliferation (genes with positive

cPI and negative nPI values) we define a new measure, the

differential Proliferation Index (dPI). dPI combines the two other

measures (nPI and cPI) to reflect differential proliferation and

assigns higher values to genes with a more differential

proliferation signature (i.e., genes with high cPI values and

low nPI values; Materials and Methods). We find that this joint

measure better predicts cancer gene essentiality as compared to

each of the other two measures alone (Figures 3C and S7C).

This finding is highly intriguing, as it appears that information

on the association of a gene to proliferation in non-cancerous

cell lines can give us additional information on its association to

essentiality in cancer.

Furthermore, the usage of dPI may help us find genes that

might serve as selective drug targets – i.e., genes that are more

involved in cancer proliferation than in non-cancerous prolifera-

tion. Analysis of the 200 genes with the highest dPI values shows

them to be enriched in genes belonging to the translation (mainly

ribosomal proteins) and spliceosome machineries (Table S4). This

is in accordance with previous studies suggesting these biological

processes as targets in cancer therapy (Discussion).

nPI, cPI and dPI signatures predict growth rates
Not surprisingly, and as one could have expected, our measures

(nPI, cPI and dPI) can also predict growth rates in the NCI-60 and

HapMap panels. Thus, we defined for each of the three measures

a signature which is the set of genes with significant values of this

measure (Materials and Methods). We then trained a linear

Figure 2. cPI and nPI vs. mean expression and degree in the human PPI network. Sorting the genes according to their PI measure (nPI, cPI
or their absolute values) and binning them (200 genes in a bin), we calculate for each bin the average PI measure, mean expression and degree in the
human PPI network. (A) |cPI| vs. mean expression in the NCI-60 panel (R = 0.23, P-value = 3.42e-146 and R = 0.81, P-value%e-16 for the raw and binned
data, respectively). (B) |cPI| vs. degree in the human PPI network (R = 0.13, P-value = 2.15e-32 and R = 0.82, P-value%e-16 for the raw and binned data,
respectively). (C) cPI vs. mean expression in the NCI-60 panel (R = 0.19, P-value = 1.89e-100 and R = 0.54, P-value = 6.76e-6 for the raw and binned data,
respectively). (D) cPI vs. degree in the human PPI network (R = 0.16, P-value = 4.83e-48 and R = 0.86, P-value%e-16 for the raw and binned data,
respectively). (E) |nPI| vs. mean expression in 30 adult human tissues (R = 0.09, P-value = 3.44e-24 and R = 0.62, P-value = 2.37e-7 for the raw and
binned data, respectively). (F) |nPI| vs. degree in the human PPI network (R = 0.09, P-value = 9.79e-15 and R = 0.81, P-value%e-16 for the raw and
binned data, respectively). (G) nPI vs. mean expression in 30 adult human tissues (R = 20.06, P-value = 4.12e-12 and R = 20.47, P-value = 1.40e-4 for
the raw and binned data, respectively). (H) nPI vs. degree in the human PPI network (R = 0, P-value = 9.48e-1 and R = 20.07, P-value = 6.59e-1 for the
raw and binned data, respectively).
doi:10.1371/journal.pgen.1003806.g002

Cancerous vs. Non-Cancerous Cellular Proliferation
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regression based predictor on these signatures to predict growth

rates (Materials and Methods). Reassuringly, we find that the

signatures of the cancer related measures can successfully predict

growth rates in the NCI-60 panel, significantly better than equal

size random sets of genes (empiric P-value = 3.96e-30 and

empiric P-value = 2.88e-25 for cPI and dPI, respectively), while

the nPI signature does not achieve significantly better prediction

compared to that obtained using random signatures (empiric P-

value = 0.31; Figure 4 and Figure S8). Turning to the HapMap

panel, we find that the non-cancerous signature nPI achieves the

best results (empiric P-value = 5.71e-33). cPI also exhibit

significant predictions accuracy, but to a lesser extent (empiric

P-value = 7.49e-19). Interestingly, not only the dPI signature

does not outperform random gene sets but it even shows

significantly poorer prediction capabilities (empiric P-va-

lue = 7.41e-26).

cPI and dPI signatures successfully predict survival
outcome analyzing clinical samples

Gene expression signatures can classify tumor classes and

predict patient survival [33–35]. Moreover, in various cases,

expression signatures for cancer prognosis contain many prolifer-

ation associated genes and thus much of the prognostic power of

these signatures is related to proliferation [13,36–39]. In this

Figure 3. Differential proliferation signatures and cancer gene essentiality. We grouped the genes into bins (200 genes in each bin)
according to their (A) cPI and (B) nPI values and measured for each bin the mean measure (cPI or nPI) and the enrichment of the genes in the bin in
essential genes in HeLa cells (blue), 12 cancer cell lines (green) and 72 breast, pancreatic, and ovarian cancer cell lines (red). (C) Focusing on a set of
3210 genes with positive cPI and negative nPI values, we defined the top 200 genes for each measure (lowest nPI, highest cPI, highest dPI,
correspondingly) and find that dPI shows the highest enrichment in all datasets. Enrichment is significant in all cases (hypergeomteric P-value,4e-3).
doi:10.1371/journal.pgen.1003806.g003

Cancerous vs. Non-Cancerous Cellular Proliferation
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context, we checked whether the signatures of the different

measures (nPI, cPI and dPI) have a prognostic power to predict

cancer patient survival. Similar to the analyses described above,

we trained a linear regression predictor for growth rate on the

NCI-60 (for cPI and dPI) and HapMap (for nPI) panels. Next, we

applied this predictor to classify clinical samples based on their

predicted growth rates to see whether such classification is

associated with prognosis (Methods). For that purpose we used

information on 888 patients with four different cancer types: two

breast cancer datasets (485 patients), a non-small cell lung

carcinoma (NSCLC) dataset (196 patients), a glioma dataset (77

patients), and a chronic lymphocytic leukemia (CLL) dataset (130

samples). Figure 5 (and Figure S9) and Table S5 show the

predictive power of the different signatures (nPI, cPI, dPI) on these

datasets. Overall, we find that the signatures of cancer associated

measures (cPI and dPI) achieve better results than the non-

cancerous associated measure (nPI). Specifically, the dPI signature

achieves significant results (logrank P-value,0.05) in all five

datasets, the cPI signature achieves significant results in four of the

datasets while the nPI signature achieves significant results in two

of the datasets. Cox regression analyses shows that in some but not

all cases, there is added value for the signatures beyond clinical

features such as grade, age, estrogen receptor status, lymph node

status and more (Table S5). Taken together, these results

demonstrate the predictive power of both cPI and dPI signatures

(beyond that of nPI) in various cancer types.

Cancer proliferation resembles that of microorganisms
while non-cancerous proliferation does not

Lastly, and after showing that cancerous and non-cancerous

proliferation signatures are markedly different, we compare their

relation to the proliferation signatures of microorganisms. Two

previous studies measured gene expression under various growth

rates in the Saccharomyces cerevisiae yeast [15] and in the Lactococcus

lactis bacteria [40]. Both studies found that the expression of

translation related genes, and specifically of ribosomal proteins, is

upregulated as growth rate increases, in accordance with

cancerous proliferation, and opposite to non-cancerous prolifera-

tion. Furthermore, Brauer et al. [15] also calculated the slope

between expression and growth rate in yeast, analogues to our PI

measures. We find a significant correlation between cPI and yeast

PI for 1659 orthologous genes (R = 0.19, P = 6.12e-15), whereas

the correlation between nPI and yeast PI is much weaker

(R = 0.08, P = 4.47e-4). Notably, the correlation between nPI

and cPI on those 1659 genes (R = 0.11, P-value = 7.68e-6) is

weaker than the correlation between cPI and yeast PI measure. In

addition, we looked on sets of genes that were found to be essential

in two different yeast species. Indeed, we find that the cPI of their

human orthologous genes is significantly higher as compared to

other genes (mean cPI = 0.18, P-value = 1.09e-86 and mean

cPI = 0.18, P-value = 2.40e-100 for Saccharomyces cerevisiae (572

genes) and Schizosaccharomyces pombe (709 genes) essential genes,

respectively; Wilcoxon test). Similar analysis also reveals that these

genes tend to have higher nPI values as well, but to much smaller

extent (mean nPI = 0.02, P-value = 2.73e-6 and mean nPI = 0.02,

P-value = 6.90e-7 for Saccharomyces cerevisiae and Schizosaccharomyces

pombe essential genes, respectively; Wilcoxon test). These results

suggest that cancer and microorganisms’ proliferation are quite

similar and closer to each other and are both quite distinct from

non-cancerous proliferation. This may testify that cancer cells

utilize cell programs that are characteristic of unicellular

organisms, in contrast to the multi-cellular cooperative programs

of normal healthy human cells. Interestingly, an array of other

similarities between cancer and microorganisms were already

highlighted by previous studies [41].

Discussion

In the current work we identify gene signatures of cancer

proliferation, based on a large scale analysis of gene expression

and growth rate measurements of 12690 genes across the NCI-60

panel. The results show that the emerging cPI signature is highly

relevant, having clear functional correlates. Our analysis uncovers

genes and cellular processes that are associated with proliferation,

either positively or negatively, in various cancers.

Our non-cancerous analysis reveals marked differences between

cancerous and non-cancerous proliferation. Currently, we lack

additional datasets that include both expression and growth rate

measurements of non-cancerous cells or cell lines to further

support and generalize these results. Recently, Im et al. [42]

calculated growth rates for HapMap samples based on a different

experimental method and a model termed mixed effects model

averaging (MEM). They report a correlation of R = 0.30 between

Figure 4. Growth rate predictions of the (A) NCI-60 and (B) HapMap panels. For each signature (nPI, cPI, dPI) we report the correlation
between the predicted and measured growth rate in the panels. The mean R correlation (in blue) is compared to the mean R correlation of equal size
random sets of genes (in red; Materials and Methods).
doi:10.1371/journal.pgen.1003806.g004

Cancerous vs. Non-Cancerous Cellular Proliferation
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Figure 5. Kaplan-Meier curves for nPI, cPI and dPI signatures in various cancer datasets. (A) breast cancer (Ivshina et al., 249 samples); (B)
breast cancer (Miller et al., 236 samples); (C) glioma (Phillips et al., 77 samples); (D) NSCLC (Botling et al., 196 samples). (E) CLL (Chuang et al., 130
samples). The blue and red curves represent lowly and highly predicted proliferating samples, respectively. Additional information is found in Table
S5.
doi:10.1371/journal.pgen.1003806.g005

Cancerous vs. Non-Cancerous Cellular Proliferation
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their MEM growth rates and the growth rates directly measured

by Choy et al. [31] (and used in the current study). In their paper,

Im et al. also report a measure that is analogous to our nPI

measure, and is based on the association between MEM values

and expression levels on 176 HapMap samples measured in their

lab (136 of them also appear in our dataset). We used their

measure (termed here nPI-MEM) to see if it can support our

results. Overall, the results obtained by nPI-MEM are weaker than

those obtained by nPI. Several reasons may account for this. First,

gene expression of the same sample may very across time and as

opposed to Choy et al., growth rate and expression measurements

of each cell line were not necessarily taken in the same time. In

addition, Choy et al. used direct measurements of cell lines’ growth

rate while Im et al. used an estimator which is based on a model

and also on indirect measurements of growth rate. Nevertheless

and given all these limitations, we still find that the nPI-MEM is

more similar to nPI than to cPI. Thus, we find that nPI-MEM

shows significant correlation to nPI (R = 0.16, P-value = 1.32e-43;

7443 genes). The correlation between nPI-MEM and cPI is

significant but weaker (R = 0.065, P-value = 1.80e-8). When

focusing on a subset of 2187 genes whom Im et al. defined as

associated (either positively or negatively) with proliferation, the

correlation between nPI and nPI-MEM becomes much stronger

and much higher (R = 0.294, P-value = 1.58e-44) as compared to

the correlation between cPI and nPI-MEM on the same set of

genes (R = 0.118, P-value = 3.73e-8). Additional and detailed

results are described in Text S1 and in Table S6.

In addition to the support for the nPI measure from the

independent measurements of Im et al., we find additional support

by the fact that combining the two proliferation signatures (cPI

and nPI) has an added value in cancer research: the differential

proliferation measure dPI can better predict a likelihood of a gene

to be essential to cancer proliferation (Figure 3) as compared to

each of the proliferation measures (cPI and nPI) alone and also has

predictive power in patient prognosis (Figure 5).

Compared with genome-wide knockdown genetic screens, our

approach is less sensitive to the potential masking by backups of a

gene’s contribution to proliferation. Nevertheless, it obviously has

its own limitations. Similar to other high-throughput techniques,

there is experimental noise in the measurements. Obviously, a

correlation between expression and growth rate does not

necessarily imply causality and may reflect indirect associations.

The two different approaches, which exhibit a significant overlap

in their predictions, are complementary, and together lay the

foundation for small scale studies to validate specific emerging

predictions of interest.

Specifically, we find biological processes and machineries that

are enriched with genes with high dPI values that might be used as

putative selective anti-cancer drug targets. These include members

of the translation (mainly ribosomal proteins) and the spliceosome

machineries (Table S4). Notably, previous studies already

suggested these machineries as targets in cancer therapy. Thus,

targeting translation initiation [43,44] and elongation [45] cause a

therapeutic response in various tumors. Although the ribosome

plays an important role also in non-cancerous cells, extensive

reduction in ribosomal activity may be more tolerated in non-

cancerous cell proliferation but not in cancer cells where there is a

greater demand for it [46]. Indeed, targeting ribosomal RNA

genes selectively kills B lymphoma cells while maintaining a viable

wild-type B cell population [47]. Furthermore, FDA recently

approved the ribosome targeting drug SYNRIBO (omacetaxine

mepesuccinate), for specific cases of chronic myeloid leukemia

(CML). In addition, various compounds that inhibit cancer cells

growth target the spliceosome [48].

The results presented here lay a genome-scale view for future

studies aimed at teasing apart the differences between non-

cancerous and cancerous proliferation, paving the way towards

novel selective cancer therapeutics.

Materials and Methods

PI measure
The PI of a gene reflects the association between its expression

levels and growth rates measurements across a set of samples. In

the main text we use the non-parametric Spearman correlation

between the expression levels and growth rates as a measure for PI

while in Text S1 we perform a similar analysis using the slope of

the regression line between expression levels and growth rates. In

this case (the slope based measure) we normalized the PI measure

by dividing it with the median absolute PI value of this dataset. We

used a log2 transformation of the expression data. We assigned a

P-value for the PI measure of each gene based on the significance

of the correlation (Spearman P-value) or the regression line (F-

statistic P-value, as calculated by the MATLAB ‘regress’ function).

For cPI we used the NCI-60 panel (60 samples). Gene

expression data for the NCI-60 panel was downloaded from Gene

Expression Omnibus [49], GSE5846 series, and is based on [50].

Doubling times for the NCI-60 cell lines were downloaded from

the website of the Developmental Therapeutics Program (DTP) at

NCI/NIH (http://dtp.nci.nih.gov/docs/misc/common_files/

cell_list.html; accessed on August 2013). For tumor specific

analysis we used a subset of samples from the NCI-60 of the

specific tumor type. We ignored prostate cancer as the NCI-60 has

only 2 samples from this origin. To evaluate the robustness of the

expression measurements, we also repeated the analysis using gene

expression from a different platform (GSE29288), obtaining

similar results (Text S1 and Tables S2 and S3).

For nPI we used the HapMap panel. Gene expression and

growth rate measurements for 224 proliferating lymphoblastoid

cell lines of the HapMap panel were taken from [31] and were

collected from four different populations: Utah residents with

Northern and Western European ancestry (CEU; 56 samples),

Han Chinese in Beijing, China (CHB; 43 samples), Japanese in

Tokyo, Japan (JPT; 43 samples) and Yoruba from Ibadan, Nigeria

(YRI; 82 samples). A previous paper [51] suggested that some mix-

up might have occurred in the labels of the gene expression

samples of a few of the HapMap cell lines. To examine the

robustness of the results we also repeated our analysis for each

population alone (as the mix-up was found mainly in the Asian

populations). In addition, nPI values remain very similar if the

mix-up samples are excluded or re-classified according to [51]

(R.0.97, P-value%e-16 for nPI based on correlation or slope).

In addition to the nPI and cPI measures, we defined a new

measure, dPI (differential Proliferation Index), for the set of genes

exhibiting differential proliferation (genes with positive cPI but

negative nPI values). Specifically, let cPI(i) and nPI(i) be the cPI

and nPI values, respectively, of gene i. We define dPI(i), the dPI

value of gene i, as:

dPI(i)~
cPI(i)

nPI(i){min(nPI)ze

Where min(nPI) is the minimal nPI value among all genes. The

denominator (which is always positive as nPI(i)§min(nPI))
becomes smaller as nPI(i) decrease and hence the value of dPI(i)
increases. We added e (set to be 0.01) to avoid division in zero.

For yeast (S. cerevisiae) data, we used the slope of the regression

values between expression and growth rata measurements across
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36 samples (six media and six growth rates in each media), as

provided by Brauer et al. [15] and focused on 1659 genes whose

human orthologs had PI values as well. Orthology to human genes

was based on inParanoid 7.0 database [52].

Functional enrichment analysis
Given a set of genes (either GO term or metabolic pathway), we

compared the cPI (or nPI) distribution of the members of this set to

that of all genes in the panel. We evaluated the difference between

the two distributions using the Wilcoxon rank sum test. GO [19]

annotations were downloaded from www.geneontology.org on

March 2012. We included all annotations except for those inferred

from electronic annotation (IEA). Classification of genes into

metabolic pathways was based on the human metabolic model

[20].

GO Analysis was done for each ontology (‘‘molecular function,’’

‘‘biological process,’’ and ‘‘cellular component’’) separately and we

ignored terms with less than 25 genes (and metabolic pathways

with less then 5 genes). To address the problem of multiple

hypotheses we used Bonferroni correction.

For the enrichment analysis of the 200 selective genes (genes

with highest dPI values) we used DAVID Bioinformatics

enrichment tools [53] (functional annotation).

Predicting growth rates
Growth rate prediction was based on lasso regression [54] on

the NCI-60 and HapMap panels. For each measure (nPI, cPI, dPI)

we focused on the genes with significant values (after using

Bonferroni correction) as determined by their P-values. As dPI is a

combined measure, the P-values for the dPI genes were defined as

the cPI P-values for these genes. We then used the expression

levels of these genes in the input samples to predict their growth

rates. We divided each panel (NCI-60 and HapMap) into training

and test sets. The test set was composed of two samples and the

other samples were in the training set. We trained a lasso

regression predictor on the training set (l= e-3, using a 5-fold

cross validation procedure on this set) to predict the growth rates

of the samples in the test set. We repeated this procedure (i.e.,

cross-validation) until growth rates were predicted for all samples

in the panel and we could evaluate the correlation between the

predicted and actual growth rates. We repeated this process 100

times (each time taking random divisions of train and test sets). We

evaluated the performance of the different signatures (nPI, cPI and

dPI) by comparing (using a Wilcoxon rank sum test) the

correlations values obtained by the signatures to that obtained

by performing the same analysis for equal size random sets of

genes. Each of the measure signatures (nPI, cPI and dPI) contains

a different number of genes (see Table S5) and therefore we used

different random sets for the different signatures.

Predicting survival
Given a set of clinical samples, we aim to separate the samples

into two groups based on expression data, and see whether these

two groups have significantly different survival outcome. The

separation of the samples into two groups is based on predicting

their growth rates and then clustering them into lowly and highly

proliferating samples (using K-means clustering, k = 2). The

significance of the separation was evaluated by a logrank test, as

described previously [55].

We predicted the growth rates of each sample similar to the way

we predicted growth rates in the NCI-60 and HapMap panels (as

described above). Specifically, we trained for each signature a lasso

regression predictor on a panel (HapMap panel for the nPI

signature, NCI-60 panel for the cPI and dPI signatures). We used a

5-fold cross validation procedure, and chose the l value that

minimizes mean squared error on this panel (using the MATLAB

‘lasso’ function). Table S5 exhibits the weights for the different

gene signatures. We then applied these predictors (one predictor

for each signature) to a clinical dataset and predicted for each

sample its growth rate. In cases where not all 12690 genes used in

the primary analysis were present in the clinical gene expression

data, the nPI, cPI and dPI signatures were taken from the genes

with significant nPI, cPI and dPI values respectively that were also

present in the clinical gene expression data. In both analyses

(predicting growth rates and predicting survival), we used a log2

transformation on the expression data.

The datasets included in our analysis are: Miller et al. (breast

cancer, 236 samples) [56], Ivshina et al. (breast cancer, 249

samples) [57], Phillips et al. (glioma, 77 samples) [58], Chuang et

al., (CLL, 130 samples) [59], and Botling et al. (NSCLC, 196

samples) [60].

Essential genes for cancer proliferation
Lists of essential genes for cancer proliferation were taken from

various short hairpin RNA (shRNA) screening: (a) 12 cancer cell

lines [6] (we used the ‘‘commonly essential’’ set); (b) 72 breast,

pancreatic, and ovarian cancer cell lines [7] (we used the set of

essential genes in all three tumor types); (c) DLD-1 (colon cancer)

cell line [5]; (d) HCT-116 (colon cancer) cell line [5]; (e) HCC-

1954 (breast cancer) cell line [5]; (f) HeLa cells [4] (a screen for cell

division related genes).

The enrichment of a certain group of genes with essential genes

is defined by the fraction of essential genes in this group divided by

the fraction of essential genes in a reference group. When

available, the reference group was the set of all genes that were

screened for essentiality (and have PI measure) and otherwise the

reference group was the set of all genes with PI measure. We used

hypergeometric test to evaluate the significance of the enrichment.

Similarly, we evaluated the PI measure of certain group of genes

(e.g., the cPI values of essential genes) by comparing their values to

that of a reference group (as explained above) using the Wilcoxon

rank sum test.

Yeast essential genes
A list of essential genes in yeasts was taken from Kim et al. [61]

for Schizosaccharomyces pombe and from Winzeler et al. [62] for

Saccharomyces cerevisiae. Orthology to human genes is based on

inParanoid 7.0 database [52].

Cancer related gene sets
A list of genes with loss-of functions mutations in cancers was

taken from [17]. In addition, we used a list of genes based on

CancerGenes, a database of cancer related genes [18]. A list of

tumor suppressor genes was taken from [16].

Cell migration analysis
We used two datasets of genes related to cell migration: (a) genes

in the human integrin adhesome [28] and (b) a list of genes whose

silencing damages cell migration [29]. We compared the cPI

distribution of the genes in human integrin adhesome (using

Wilcoxon test) for significance. As the list from [29] is relatively

smaller (24 genes have cPI values), we empirically assessed the

significance of their lower cPI values, by comparing the mean cPI

of this set to 100,000 random equal size gene sets from their

screening dataset. In addition, we quantified the association

between a gene and cell migration using PubMed [63]. For each

gene we counted the number of papers associated with it and with
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the MeSH term ‘‘cell migration’’. Association between papers and

genes was based on the gene2pubmed file (ftp://ftp.ncbi.nih.gov/

gene/DATA/; accessed August 2012).

Expression in normal tissues and human PPI data
Expression in 30 non-cancerous adult tissues and degree in the

human PPI were calculated as described in [64].

All the correlations reported in this work are the non-parametric

Spearman correlation.

Supporting Information

Figure S1 Expression vs. doubling times in the NCI-60 panel for

genes with extreme cPI values (correlation based). The genes in the

top two panels have cPI value above the 99.9 percentile (highest

cPI values) while the genes in the bottom two panels have cPI

values below the 0.1 percentile (lowest cPI values). The Gene ID

(Entrez) for each gene is written above the panel.

(TIFF)

Figure S2 Expression vs. growth rate in the HapMap panel for

genes with extreme nPI values (correlation based). The genes in

the top two panels have cPI value above the 99.9 percentile

(highest nPI values) while the genes in the bottom two panels have

nPI values below the 0.1 percentile (lowest nPI values). The Gene

ID (Entrez) for each gene is written above the panel.

(TIFF)

Figure S3 Expression vs. doubling times in the NCI-60 panel for

genes with extreme cPI values (slope based). The genes in the top

two panels have cPI value above the 99.9 percentile (highest cPI

values) while the genes in the bottom two panels have cPI values

below the 0.1 percentile (lowest cPI values). The Gene ID (Entrez)

for each gene is written above the panel.

(TIFF)

Figure S4 Expression vs. growth rate in the HapMap panel for

genes with extreme nPI values (slope based). The genes in the top

two panels have cPI value above the 99.9 percentile (highest nPI

values) while the genes in the bottom two panels have nPI values

below the 0.1 percentile (lowest nPI values). The Gene ID (Entrez)

for each gene is written above the panel.

(TIFF)

Figure S5 Essential genes and their cPI values (slope based).

Using published shRNA screening data we defined sets of genes

essential for cancer proliferation in different cancer cell lines

(Materials and Methods). Each of these sets exhibits significantly

high cPI values as compared to non-essential genes (Wilcoxon rank

sum test). In contrast, genes with loss of function (LOF) mutations

in various cancers show significantly lower cPI values. The mean

cPI value of all genes is also depicted as a reference.

(TIF)

Figure S6 cPI and nPI vs. mean expression and degree in the

human PPI network (cPI and nPI are slope-based). Sorting the

genes according to their PI measure (nPI, cPI or their absolute

values) and binning them (200 genes in a bin), we calculate for

each bin the average PI measure, mean expression and degree in

the human PPI network. (A) |cPI| vs. mean expression in the

NCI-60 panel (R = 20.11, P-value = 2.53e-37 and R = 0.39, P-

value = 1.59e-3 for the raw and binned data, respectively). (B)

|cPI| vs. degree in the human PPI network (R = 0.04, P-

value = 9.54e-5 and R = 0.72, P-value = 3.35e-7 for the raw and

binned data, respectively). (C) cPI vs. mean expression in the

NCI-60 panel (R = 0.24, P-value%e-16 and R = 0.79, P-

value%e-16 for the raw and binned data, respectively). (D) cPI

vs. degree in the human PPI network (R = 0.18, P-value = 1.32e-

61 and R = 0.95, P-value%e-16 for the raw and binned data,

respectively). (E) |nPI| vs. mean expression in 30 adult human

tissues (R = 0.01, P-value = 2.11e-1 and R = 0.38, P-va-

lue = 2.94e-3 for the raw and binned data, respectively). (F)

|nPI| vs. degree in the human PPI network (R = 0.03, P-

value = 1.00e-2 and R = 0.20, P-value = 2.15e-1 for the raw and

binned data, respectively). (G) nPI vs. mean expression in 30

adult human tissues (R = 20.19, P-value = 3.89e-98 and

R = 20.82, P-value%e-16 for the raw and binned data,

respectively). (H) nPI vs. degree in the human PPI network

(R = 0.07, P-value = 1.05e-11 and R = 20.80, P-value = 5.15e-9

for the raw and binned data, respectively).

(TIFF)

Figure S7 Differential proliferation signatures and cancer gene

essentiality. We grouped the genes into bins (200 genes in each

bin) according to their (A) cPI and (B) nPI values and measured

for each bin the mean measure (cPI or nPI) and the enrichment

of the genes in the bin in essential genes in HeLa cells (blue), 12

cancer cell lines (green) and 72 breast, pancreatic, and ovarian

cancer cell lines (red). (C) Focusing on a set of 3331 genes with

positive cPI and negative nPI values, we defined the top 200

genes for each measure (lowest nPI, highest cPI, highest dPI,

correspondingly) and find that dPI shows the highest enrichment

in all datasets. Enrichment is significant in all cases (hypergeom-

teric P-value,e-5). nPI, cPI and dPI measures are slope-based

(see main text).

(TIFF)

Figure S8 Growth rate predictions of the (A) NCI-60 and (B)

HapMap panels. For each signature (nPI, cPI, dPI [slope based])

we compared between the predicted and measured growth rate in

the panels. The mean R correlation is presented here for each

measure (in blue), in joint with the mean R correlation of equal

size random sets of genes (in red). The three measures (nPI, cPI,

dPI) are slope-based.

(TIFF)

Figure S9 Kaplan-Meier curves for nPI, cPI and dPI signatures

(slope-based) in various cancer datasets. (A) breast cancer (Ivshina

et al., 249 samples); (B) breast cancer (Miller et al., 236 samples);

(C) glioma (Phillips et al., 77 samples); (D) NSCLC (Botling et al.,

196 samples). (E) CLL (Chuang et al., 130 samples). The blue and

red curves represent lowly and highly predicted proliferating

samples, respectively. Additional information is found in Table S5.

(TIF)

Table S1 nPI, cPI and dPI values for the genes analyzed in this

study.

(XLS)

Table S2 Functional analysis of cPI and nPI values (correlation

based).

(XLS)

Table S3 Functional analysis of cPI and nPI values (slope based).

(XLS)

Table S4 Gene associated with cancer specific proliferation (top

200 genes with highest dPI values).

(XLS)

Table S5 Survival prediction in five cancer data sets.

(XLS)

Table S6 nPI-MEM analysis.

(XLS)
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Text S1 Supplementary results (PI measure – correlation vs.

slope, replication of the NCI-60 results on a different expression

dataset, nPI and nPI-MEM).

(PDF)
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