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ABSTRACT Pathogen population dynamics during infection are critical determi-
nants of infection susceptibility and define patterns of dissemination. However, deci-
phering these dynamics, particularly founding population sizes in host organs and
patterns of dissemination between organs, is difficult because measuring bacterial
burden alone is insufficient to observe these patterns. Introduction of allelic diversity
into otherwise identical bacteria using DNA barcodes enables sequencing-based
measurements of these parameters, in a method known as STAMP (Sequence Tag-
based Analysis of Microbial Populations). However, bacteria often undergo unequal
expansion within host organs, resulting in marked differences in the frequencies of
barcodes in input and output libraries. Here, we show that these differences con-
found STAMP-based analyses of founding population sizes and dissemination pat-
terns. We present STAMPR, a successor to STAMP, which accounts for such popula-
tion expansions. Using data from systemic infection of barcoded extraintestinal
pathogenic E. coli, we show that this new framework, along with the metrics it
yields, enhances the fidelity of measurements of bottlenecks and dissemination pat-
terns. STAMPR was also validated on an independent barcoded Pseudomonas aerugi-
nosa data set, uncovering new patterns of dissemination within the data. This frame-
work (available at https://github.com/hullahalli/stampr_rtisan), when coupled with
barcoded data sets, enables a more complete assessment of within-host bacterial
population dynamics.

IMPORTANCE Barcoded bacteria are often employed to monitor pathogen population
dynamics during infection. The accuracy of these measurements is diminished by
unequal bacterial expansion rates. Here, we develop computational tools to circum-
vent this limitation and establish additional metrics that collectively enhance the fi-
delity of measuring within-host pathogen founding population sizes and dissemina-
tion patterns. These new tools will benefit future studies of the dynamics of
pathogens and symbionts within their respective hosts and may have additional bar-
code-based applications beyond host-microbe interactions.
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During infection, microbial pathogens encounter a variety of barriers that impede
colonization and help prevent subsequent disease. These obstacles include innate

and adaptive effectors of the immune system, the microbiota, and anatomical and
chemical barriers, such as stomach acidity and physical niche availability (1).
Collectively, these restrictions, which generally act to protect the host and reduce the
size of the pathogen population postinoculation, are often referred to as a “bottle-
neck.” When bacteria in the inoculum contain multiple alleles, the allelic composition
of the bacterial population found at sites of colonization will differ from that in the
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inoculum after passing through the bottleneck, a phenomenon more broadly referred
to as genetic drift (2). In infection biology, bottlenecks are key determinants of whether
a host becomes colonized by a pathogen, govern paths of dissemination within indi-
vidual hosts, and influence transmission between hosts (3–9). However, the set of host
mechanisms that govern bottlenecks remain incompletely understood. Genome-scale
genetic screens in bacteria can be used to investigate host defense axes, but are them-
selves confounded by bottleneck effects that cause mutant strains in a population to
be eliminated by the host by chance alone, rather than through selection (10–16).

Infection bottlenecks are difficult to quantify if the experimental inoculum is com-
posed of bacteria of uniform genotype. Several methods that introduce allelic diversity
have been used to circumvent this issue and measure bottlenecks (7, 17). One
approach involves the introduction of artificial and fitness-neutral short random
sequence tags (barcodes) into otherwise identical cells. The comparison of barcode
abundances before and after infection through high-throughput DNA sequencing
then enables bottleneck quantification. Combining barcoding with deep sequencing is
widely generalizable and can be applied in several different contexts, such as experi-
mental evolution and cancer progression (18). Different analytical approaches and
metrics for comparisons of barcode frequencies have been created (19–21), including
Sequence Tag-based Analysis of Microbial Populations (STAMP), for analysis of infec-
tion bottlenecks (22). In STAMP, deep sequencing is used to determine the distribution
of barcode frequencies in an inoculum (the input) and in various organs (the output).
The changes in barcode distributions (i.e., allele frequencies) between input and out-
put are used to quantify the magnitude of genetic drift, which approximates the mag-
nitude of the bottleneck (23). Bottlenecks are measured as the size of the founding
population (FP), i.e., the number of unique cells from the inoculum that give rise to the
population in a sample. A small FP value is indicative of a “tight” bottleneck, whereas a
large FP indicates a “wide” bottleneck. FP is estimated by an application of an equation
from Krimbas and Tsakas, originally used to quantify genetic drift in insect populations
(23). In STAMP, the estimate of FP is known as Nb. We distinguish FP and Nb to empha-
size that FP is impossible to measure precisely, as it would require every cell in the
inoculum to possess a different tag and infinite sequencing depth. Nb calculation cir-
cumvents these limitations by quantifying the differences in barcode frequencies
between a reference inoculum and output organ samples. STAMP has been used in
several infection models across multiple anatomical sites to estimate FP and unveil
host determinants of infection bottlenecks (22, 24–27). Recent work has also enabled
the use of STAMP to measure bacterial replication and death rates (28).

Two key assumptions that underlie the calculation of Nb are that (i) all sampled bac-
teria in the population have experienced a singular, identical bottleneck and that (ii) all
cells grow at similar rates after passing through the bottleneck (22, 28). These assump-
tions oversimplify conditions within the host, as bacteria within an organ are likely
exposed to different environments depending on their suborgan localization. For
example, variation in the immune state of diverse host cells can impose different pres-
sures on bacteria (29). Furthermore, organ reseeding events can result in multiple pop-
ulations of bacteria within an organ that have undergone distinct bottlenecks.
Phenotypic heterogeneity in the pathogen population can also influence post-bottle-
neck expansion rates (30, 31). These additional sources of variation in barcode frequen-
cies result in a consistent underestimation of FP by Nb, because calculation of Nb relies
on comparing the similarity of barcode frequencies between an output organ sample
and a diverse input. The Nb value of an output sample will be larger if the barcode fre-
quency distribution in the organ sample more closely resembles the inoculum. As
genetic drift or uneven growth rates cause the barcode frequency distribution in the
output sample to vary, Nb decreases. However, Nb alone cannot distinguish between
genetic drift or uneven growth, and since both are prevalent in biological data, addi-
tional metrics are warranted and would markedly improve data interpretation. For
example, two organs may possess very similar FPs but one organ may be permissive to
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increased replication of a subpopulation. These organs would have different Nb and
would therefore be interpreted to differ in FP.

We found that in biological data, uneven growth often manifests as the expansion
of very few clones, which are evident as disproportionately abundant barcodes and
lead to consistent underestimates of the true FP by Nb. In infection contexts, uneven
pathogen growth may arise from multiple causes, including local host permissiveness
or phenotypic heterogeneity in the pathogen. Disproportionately abundant barcodes
may suggest multiple distinct populations within an organ, but uneven growth may
be present even within a single population. Here, we present STAMPR, a computational
approach that overcomes these limitations of STAMP. STAMPR is a successor to STAMP
that relies on an iterative barcode removal algorithm to account for the contribution of
clonal expansion to bottlenecks. In addition, STAMPR employs additional metrics to
evaluate dissemination patterns that characterize the extent to which individual barco-
des contribute to bacterial spread. Using data from systemic infection of barcoded
extraintestinal pathogenic E. coli (ExPEC) (32), we show that STAMPR enhances the fi-
delity of measurements of bottlenecks and dissemination patterns by accounting for
every barcode. We use these tools to reanalyze an independently generated and pub-
lished data set that explored Pseudomonas aeruginosa systemic spread (24). Our tools
readily detected and quantified previously unappreciated instances of clonal expan-
sion and dissemination in these data. STAMPR (freely available at https://github.com/
hullahalli/stampr_rtisan) therefore enables a deeper and more complete understand-
ing of within-host bacterial population dynamics.

RESULTS AND DISCUSSION
Highly abundant barcodes confound measurement of founding population

sizes. Our motivation for questioning the fidelity of Nb as a proxy for FP came from
observations where Nb values were often much smaller than the number of detected
barcodes in sequencing data. This discrepancy became particularly clear in analyses of
STAMP-based experiments investigating within-host ExPEC dissemination, the biologi-
cal findings of which are described further in a companion manuscript (32). In the
ExPEC systemic infection model, the pathogen is inoculated intravenously and samples
are taken from different organs to monitor dissemination and expansion. In multiple
organs, we found clonally expanded bacterial populations, intermixed with less abun-
dant, more diverse bacterial populations. By introducing additional variance to output
barcode frequencies, these highly abundant “outliers” confounded Nb, as samples with
hundreds of detectable tags yielded much lower Nb values (occasionally .10 fold). The
discrepancy between Nb (as a true measure of FP) and the number of barcodes is not
biologically plausible; if 100 barcodes are detected, the founding population must be
composed of at least 100 unique bacteria. While it is possible for an individual cell to
possess two barcodes, it is highly unlikely. During library preparation, individual colo-
nies are Sanger sequenced, confirming that the presence of multiple tags per cell is
below detection. Furthermore, within-run sequencing controls (samples with known
numbers of barcodes) serve to rule out that cross contamination or sequencing errors
significantly influence the data.

We sought to develop a computational approach that can recognize and account
for disproportionately abundant barcodes. This approach would not only need to
account for highly abundant tags, but be sufficiently unbiased to enable determination
of FP when it is difficult to identify “outliers” by visual inspection of barcode frequency
graphs. In an ideal system, every bacterium from the inoculum would be tagged with a
single unique barcode, in which case counting the number of barcodes would yield a
more accurate measure of FP than Nb. However, creation of highly diverse libraries has
been technically challenging, particularly for non-model organisms. An alternative
approach to improve the accuracy of FP estimates leverages the power of computa-
tional resampling, which, unlike Nb, is not affected by unequal growth rates.
Simulations can be performed on the input at a variety of sampling depths to deter-
mine the sample depth Ns that yields the same number of barcodes detected in the
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output sample. For example, if 100 barcodes are detected from an output sample
derived from an input library of 1,000 barcodes, then Ns represents the number of
reads that were sampled from the input such that 100 barcodes are detected; this
value will always be slightly larger than 100. Therefore, Ns, unlike Nb, is not skewed
when there is increased variation in barcode frequencies between an output organ
and the input.

To demonstrate our methodology, we first artificially recreated a sample in which
Nb underestimates FP by using a series of barcode frequency distributions from known
bottleneck sizes collected from in vitro-generated bottlenecks where FP sizes are
known. Combining the barcode frequencies observed in an ;1.4� 103 CFU FP and an
;1.4� 101 CFU FP (Fig. 1A) yielded distributions as shown in Fig. 1B. This mimics a
sample where ;14 cells have expanded faster than the other ;1,400 after both popu-
lations have passed through the same, singular bottleneck. The true FP for this artificial
population is close to 1.4� 103. However, the calculated Nb is 150, ;9-fold lower than
the true FP, because the expanded population is viewed in STAMP calculations as sub-
stantial variation between input and output barcode frequencies, leading to a marked
underestimate of FP. Experimental data from the ExPEC model revealed similar pat-
terns, where calculated Nb values were lower than the number of detected barcodes,
therefore smaller than the true FP (Fig. 2).

We developed an algorithm that provides a more complete estimate of FP (Fig. 1B
to D, computational workflow described in the Materials and Methods section, and
Text S1 in the supplemental material). Our approach was developed on computational
samples (such as in Fig. 1A) and our ExPEC experimental data sets, and yields more
accurate estimates of FP. In brief, the algorithm iteratively removes barcodes from the
output sample (from greatest to least abundant) and calculates Nb after each iteration.
A better estimation of FP for the artificial sample described above is equal to the Nb af-
ter the first ;10 most abundant barcodes are removed, which is ;103. Subsequent re-
moval of barcodes does little to change Nb (i.e., the y values plateau), and we refer to
;103 as a more “resilient” estimate of FP. We refer to plots of Nb versus iteration as “re-
siliency plots” (Fig. 1C) and this algorithm as the “resiliency algorithm.” The resiliency
plot can be used to define “breaks” that delineate discrete subpopulations within the
sample (shown as red lines in Fig. 1C and D, separating high-abundance barcodes,
low-abundance barcodes, and noise). Then, these subpopulations are weighted by the
fractional abundance of barcodes within breaks, enabling determination of a noise
threshold. Whenever samples are multiplexed, index hopping results in noise, where
usually,1% of reads are technical artifacts. Importantly, for most samples, noise repre-
sents a discrete subpopulation that can be detected by the resiliency algorithm.
Removing noise is important because, in some cases, noise can comprise more barco-
des than the true FP (e.g., Fig. 1A, sample with FP = 14).

After removing noise, a second resiliency plot is generated. Using this graph, the
algorithm then determines the maximum possible value for Nb. In addition, the number
of remaining barcodes is used to calculate Ns. The final output of the resiliency algorithm
is referred to as Nr, which is set equal to the maximum value among (i) Ns, (ii) the initial
Nb estimate, or (iii) the new maximum Nb from the second resiliency plot. Ns is used in
this manner since it is completely independent of relative barcode abundances and con-
siders only their presence or absence. For example, populations that have undergone
significant uneven growth post-bottleneck will have low Nb values, so Ns would yield the
greatest estimate of FP. Furthermore, this logic ensures that Nr will always be equal to or
greater than Nb. By accounting for the presence of every barcode, this approach more
accurately estimates FP regardless of the presence of disproportionately abundant barc-
odes in biological data (e.g., Fig. 2, Fig. S1). The sensitivity of Nb to highly abundant tags
can further be exploited by measuring the ratio of Nr/Nb, which in effect quantifies
unequal barcode distributions and can provide information about clonal expansion.

Computationally combining additional samples (as in Fig. 1) further confirms that
Nr provides a more accurate assessment of FP than Nb across most composite barcode
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distributions (Fig. S2). While Nb is accurate for single populations generated from in
vitro standards, it fails to accurately calculate FP for composite populations, which
more closely resemble in vivo data. However, since several parameters could poten-
tially influence the output of the resiliency algorithm, we additionally conducted a

FIG 1 Overview of the resiliency algorithm. (A) Two barcode frequency distributions from known CFU dilutions
(and thus known FPs) are shown, with calculated Nb values. The raw read counts of each barcode in these
samples are summed to give rise to the plot in B. This results in a computational sample that mimics a scenario
where ;14 cells have expanded at a much faster rate than the other ;1,400, despite both populations having
undergone the same bottleneck. From the data plotted in B, the resiliency algorithm is run to generate a
resiliency plot (displayed in C) by iteratively removing the most abundant barcodes and calculating Nb after each
iteration. Breaks in the graph (red lines in C) are algorithmically identified and visually superimposed on the plot
in B, resulting in the diagram shown in D. Breaks signify potentially discrete populations or noise, and the weight
of each population is determined as a fraction of total reads. An initial noise assumption is set by the user and,
in this example, was set to 1% of all reads. The largest log change in the weights determines a computationally
defined threshold for noise. From this, a new resiliency plot is generated without noise and the greatest value
among the original Nb value, the new maximum Nb from the second resiliency plot, or Ns is used to determine
Nr. In this example, Ns was the largest of these values, and is therefore the resulting value of Nr.
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series of simulations on computational samples modeled after the skew of the ExPEC
and P. aeruginosa libraries (Fig. S3). When a single population is present, increasing the
variability in growth rates after a single uniform bottleneck leads to a large decrease in
Nb, while Nr remains substantially closer to the true FP (Fig. S4A). In a similar manner,
when a small subpopulation possesses a faster growth rate, Nr, but not Nb, remains
accurate after several generations of exponential growth (Fig. S4B). Compared to Nb, Nr

is also more resistant to changes in the FP of the more diverse, slow-growing popula-
tion (Fig. S4C) or the less diverse, fast-growing population (Fig. S4D). These results are
consistent in libraries containing 1,000 or 10,000 barcodes. Furthermore, Ns more often
defines Nr than max(Nb). Together these simulations reveal that Nr provides a more ro-
bust estimate of FP than Nb; in addition, they demonstrate that accuracy of Nr at high
FPs is greater in the 10,000-barcode library than in the 1,000-barcode library (Fig. S4C).

Identifying, quantifying, and visualizing shared barcodes between samples.
Barcoded libraries also permit analysis of inter-organ dissemination by analyzing the simi-
larity of tag frequencies between organs. Previous STAMP analyses identified the Cavalli-
Sforza chord distance (33) between samples to quantify the genetic distance (GD),
although other methods to assess allelic similarity between populations can be employed
(20–22, 25, 26). GD is high when two samples are dissimilar, and low when they are more
similar. We leveraged iterative barcode removal to obtain a more granular understanding
of the similarity between samples. Our motivation arose from the fact that GD values are
influenced by the abundance of tags in samples, as well as the number of shared tags.
Highly similar populations (low GD values) can result from the sharing of many barcodes
or very few highly abundant ones. Furthermore, the expansion of different clones that
overlay similar populations yields high GD values (Fig. S5A), whereas the sharing of domi-
nant clones between two samples yields low GD values, even if the underlying popula-
tions are dissimilar (Fig. S5B). We reasoned that additional metrics generated by our

FIG 2 Variations in Nr and Nb. Barcode frequency distributions for six samples from ExPEC systemic
infection (32) are shown. The y axes are displayed on a log scale to facilitate identification of noise.
For each sample, a red line indicates the first break identified by the resiliency algorithm and
delineates discrete subpopulations. The blue line indicates the threshold for noise. In each
subpopulation, the fraction of total barcodes represented is displayed. Nb and Nr values are indicated.
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iterative barcode removal strategy could, when coupled with GD, help to characterize dis-
semination patterns more completely.

Similar to the approach taken with the resiliency algorithm for calculation of Nr, we
iteratively removed the most abundant barcodes in both samples and created a score
quantifying the number of barcodes that contribute to genetic similarity between the
samples (RD, “resilient” genetic distance) (Fig. 3, Fig. S1). Low RD values indicate that
the samples share relatively few barcodes. Samples with both low RD and low GD
share only a few tags but are nevertheless highly similar; in this case, very few barcodes
are shared, but they represent significant fractions of the total CFU in both samples
(Fig. S5B). Samples with both high RD and GD share many tags, but the bulk of the
population (in terms of CFU) are dissimilar; this can occur when different sets of bacte-
ria expand in two samples, but both expansion events overlay relatively similar popula-
tions containing many barcodes (Fig. S5A). Samples with high RD and low GD are very
similar and share many barcodes; this is typically observed in samples with high FP
because they closely resemble the inoculum and therefore each other (e.g., early after
infection) (Fig. S5C). Samples with low RD and high GD are completely dissimilar, sug-
gesting they are unlikely to be related to each other either physically or temporally.
Application of this approach to our ExPEC data proved valuable because it enabled us
to distinguish between samples that were similar due to the dissemination of clones
(low RD, low GD) versus when they were similar because they all closely resembled the
inoculum (high RD, low GD, and high FP) (32).

Note that in this framework, “low” and “high” RD values are relative to the number
of barcodes in the library. We created an additional metric where RD values are log-
normalized (plus one) to the total number of detectable barcodes in the sample (an
output from the resiliency algorithm). We refer to this metric as a fractional RD (FRD),
which represents the relative abundance of shared barcodes in a pair of samples. FRD
essentially normalizes RD across all samples, and therefore permits comparisons
between samples. Similar to how high Nr/Nb ratios signify the presence of expanded
clones that overlay a diverse population, low FRD and low GD can signify the presence
of abundant shared clones that overlay diverse dissimilar populations. The directional-
ity of FRD calculations provides further information about similarity between

FIG 3 Workflow for RD calculation. (A and B) Barcode frequency distributions in two samples. The
top 10 most abundant barcodes in the top sample (A) are highlighted in red and identified in the
bottom sample (B). The RD algorithm iteratively removes the most abundant barcodes and calculates
GD after each iteration to generate the plot in C. These samples are moderately related to each
other, since they share the same dominant barcode, but their underlying populations are dissimilar.
RD is defined as the number of points on the plot in B that are below 0.8.
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populations. For example, consider a situation where organ A and organ B are similar
samples (low GD) that resemble the data in Fig. S5B. If RD= 11 (i.e., 11 barcodes are
shared between A and B), FRDA-B = log(111 1)/log(BB 1 1), where BB is the number of
barcodes in sample B, while FRDB-A = log(111 1)/log(BA 1 1), where BA is the number
of barcodes in sample A. High FRDA-B signifies that the barcodes that were shared
between the two populations represent a large fraction of all the barcodes in sample
B. Correspondingly, a low FRDB-A means that the barcodes that are shared between A
and B only represent a small fraction of the barcodes detected in sample A. The differ-
ence between FRDA-B and FRDB-A implies the existence of a larger, more diverse and
dissimilar underlying population in sample A but not sample B. In this example, we can
conclude that (i) samples A and B are similar (low GD); (ii) the similarity is driven by
only a few barcodes (low RD); and (iii) these few barcodes represent a large population
of sample B but overlay a more diverse resident population in sample A (high FRDA-B,
low FRDB-A). Note that FRD is strictly a metric that uses the number of barcodes, not
their abundance. Barcode abundance is considered in GD calculations, and therefore a
combined approach using all of these metrics (GD, RD, and FRD) is superior to using
any one metric individually.

Reanalysis of Pseudomonas aeruginosa bacteremia. We built our tools using a
systemic model of ExPEC infection (32). We further tested these tools and associated
metrics by reanalyzing data published in a recent study examining the trafficking of a
barcoded library of P. aeruginosa following its intravenous inoculation into mice (24).
This study revealed that gallbladder seeding by P. aeruginosa allows the pathogen to
disseminate to the intestines and ultimately to be shed in the feces (24). Our reanalysis
buttresses these conclusions and uncovered unappreciated patterns of P. aeruginosa
expansion and dissemination that were hidden in the data sets due to additional varia-
tion in barcode frequencies not captured by Nb. In most of the samples, Nr was greater
than Nb and, in many cases, the Nr/Nb ratio was .10, particularly in the liver and lungs
(Fig. 4A), indicating that there were significant clonal expansions at these sites. Here,
clonal expansion refers to markedly uneven tag distribution in the sequencing data.
Importantly, the Nr/Nb ratio reveals the presence of clonal expansion, but not its bio-
logical source. For example, highly abundant barcodes could result from expansion
that is confined to an organ or arise from transit from a different organ. This reanalysis
also revealed marked heterogeneity in Nr values within and between organs at 24 h
postinfection, despite very similar Nb values (Fig. 2C of reference 24). The large variance
in Nr values, for example in the liver and lung (Fig. 4A to C), reveals considerable differ-
ences in the sizes of the bottlenecks in different animals that were not captured by Nb.
The barcode frequency distribution plots shown in Fig. 4B to G underscore that Nb is
extremely sensitive to highly abundant tags and therefore does not adequately cap-
ture and quantify the marked differences of pathogen population structure within and
between organs. Nb is more similar to Nr when barcode frequencies are relatively even
(compare Fig. 4D and E). Therefore, using Nr in addition to Nb enables a more complete
understanding of the entire population structure in the host by accounting for less-
abundant barcodes. These underlying populations are important to detect, as they
may occupy distinct niches, contribute to persistent infections, or disseminate to other
organs in the host.

The potency of our approach is well illustrated by reanalysis of the data from single
animals infected with P. aeruginosa. For example, in mouse 1 (Fig. 5), there is a 2.5 log
difference between Nb and Nr in the lung, suggesting a large clonal expansion. The
lung sample was somewhat similar to the liver (GD= 0.66, RD= 739) and spleen
(GD=0.56, RD= 523), but completely dissimilar to intestinal organs (small intestine, ce-
cum, colon, and feces) and the gallbladder (GD. 0.8, RD= 0) (Fig. 5), revealing that a
set of dominant clones circulated systemically, but not enterically. However, the fact
that these GD values are modest and not closer to 0 suggests that some dominant
clones in each sample were not shared. Additionally, the relatively high RD values indi-
cate that removal of a few dominant barcodes does not abolish genetic similarity.
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Therefore, the populations in these systemic samples consist of underlying subpopula-
tions that are both similar and diverse. For example, the lung and liver do not share
many highly abundant barcodes, but both samples have similar underlying popula-
tions (Fig. 5C, blue brackets). Comparisons of Nr/Nb ratios in these organs also reveal
that dominant clones are present in the lung, liver, and spleen (460, 165, and 24,
respectively) (Fig. 5C). These observations are consistent with a model where the liver,
spleen, and lung each received a large portion of the inoculum and had distinct clonal
expansion events, some of which spread systemically. Elsewhere in the animal, there
was marked sharing of barcodes between the gallbladder and the intestines (GD, 0.2)
and these transferred barcodes comprised nearly all of the barcodes in the intestinal
organs (FRDgallbladder-intestine . 0.9). Consistent with Nr values, the small number of barco-
des transferred between the gallbladder and liver (GD= 0.74, RD= 28) comprised a
large fraction of the gallbladder population (FRDliver-gallbladder = 0.8) but only a small frac-
tion of the liver barcodes (FRDgallbladder-liver = 0.42). These FRD differences reveal that
large subpopulations of liver-resident bacteria are distinct from those in the gallblad-
der. Inspection of the barcode frequency distributions confirms that most expanded
clones in the liver are not derived from the gallbladder (Fig. 5D), consistent with their

FIG 4 Reanalysis of P. aeruginosa systemic infection population dynamics. (A) Nb values are displayed across
organs from Fig. 2C of reference 24, along with Nr values determined here. (B to G) Barcode frequency
distributions from individual samples B to G (as shown in A) are displayed to visualize the underlying
distributions that give rise to Nb and Nr values. These distributions are prior to noise correction by the
resiliency algorithm. These plots represent a wide range of barcode frequency distributions, even though Nb is
similar in all of them. Nr, by accounting for all barcodes, more robustly captures and quantifies the differences
between these samples.
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FIG 5 Reanalysis of P. aeruginosa population dynamics in a single animal. (A and B) GD (A) and FRD (B) values were calculated for all
organs in mouse 1 from Fig. 2C of reference 24. (A) Since GD is the same for a pair of samples in either direction, GD heatmaps are
symmetric along the diagonal. (B) The asymmetry of color along the diagonal in the FRD heatmap arises from the fact that only one
of the axes (the column names) serves as the reference, while the row names are simply the other sample in the pair used to
calculate RD. The liver and cecum are modestly similar samples as measured by genetic distance; however, FRDliver-cecum is greater
than FRDcecum-liver (asterisks). This indicates that the shared barcodes between the liver and cecum represent smaller fractions of the
total liver barcodes than the total cecum barcodes. Therefore, the liver, but not the cecum, has a larger resident nonshared
population. (C) Barcode frequency distributions after noise removal are shown for the lung. The top 10 barcodes are highlighted in
red and identified in the spleen and liver samples, demonstrating that these samples share some, but not all, dominant tags. This is
reflected in GD values in A. Nr and Nb values are displayed for reference. Blue brackets indicate the diverse underlying population. (D)
Same as C but the gallbladder (GB) serves as the reference for the top 10 barcodes and these barcodes are identified in the colon,
cecum, and liver.
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expansion within the liver, independently of transit to/from the gallbladder. These
analyses illustrate how our tools enable high-resolution mapping of population dy-
namics in a single animal.

In contrast to measuring multiple parameters in a single animal, comparing single
metrics across animals enables detection of both consistent and heterogeneous facets of
population dynamics. For example, FRDliver-gallbladder was significantly higher than
FRDgallbladder-liver, indicating that the bacteria that are shared between the liver and gall-
bladder consistently represented a larger fraction of the population in the gallbladder
than in the liver (Fig. 6A). This contrasts to comparisons between the gallbladder and
the feces, which have FRD values in both directions consistently near 1, suggesting that
the fecal population is nearly entirely derived from the gallbladder (Fig. 6B). The underly-
ing anatomy in this infection model likely explains these differences. As proposed by
Batcha et al. (24), the liver first captures bacteria from blood and a small number of these
cells then seed the gallbladder, where they subsequently replicate in bile. This model
can explain why the liver often possesses its own resident population distinct from the
gallbladder, and FRD enables robust quantification of this phenomenon. This pattern
was observed in most animals, but mouse 9 was a clear exception (Fig. 6C). In this ani-
mal, the gallbladder population was one of the most diverse (high Nr) observed.
Furthermore, the gallbladder population in mouse 9 was nearly identical to all other

FIG 6 Gallbladder transmission dynamics. (A) FRD values are displayed for liver/gallbladder and feces/
gallbladder pairs. There is no significant difference between FRDgallbladder-feces and FRDfeces-gallbladder. In contrast,
FRDgallbladder-liver is significantly less than FRDliver-gallbladder (two-tailed paired t test), indicating that shared tags
typically represent a smaller fraction of tags in the liver than the gallbladder. The difference in FRD values
indicate that the liver has a resident population that is not shared with the gallbladder. Asterisks represent an
animal (mouse 9) that was a notable exception to this trend. The barcode frequency distribution (after noise
removal by the resiliency algorithm) of the gallbladder of this animal is presented in B. The top 100 most
abundant barcodes in the gallbladder are highlighted in red, and these barcodes are highlighted in other
organs in C. In this animal, the gallbladder appeared to be more diverse and only shared a fraction of its
population with other organs.
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organs (low GD). The gallbladder appears to account entirely for the population in the
liver (FRDgallbladder-Liver = 1, contrasting with mouse 1 in Fig. 5) and the gastrointestinal (GI)
organs. The gallbladder population also includes a set of nontransferred barcodes that
are absent from the liver and gastrointestinal organs (FRDcolon-gallbladder = FRDcecum-gallbladder =
FRDSI-gallbladder = 0.6, while FRDgallbladder-colon � FRDgallbladder-cecum � FRDgallbladder-SI � 1) (Fig. 6B
and C). Thus, in mouse 9, the gallbladder seeded the intestines with only a fraction of its
population.

By plotting the GD and FRD of each organ against all organs in the animal in a heat-
map, we can rapidly detect consistent and variable spreading events. For example, ex-
amination of the heatmaps in Fig. 5 and Fig. S6 reveal two groups of animals that vary in
the levels of systemic spread of gallbladder bacteria. In mice 1, 4, 5, 6, 7, and 10, the gall-
bladder appeared to be mostly dissimilar to the lungs and the spleen. In contrast, in
mice 2, 3, 8, and 9, the gallbladder population was highly similar to that of the lungs and
spleen. The variable magnitudes of the stochastic systemic spread of gallbladder bacte-
ria, very likely via blood, potentially explain these distinct dissemination patterns.
Therefore, the fate of bacteria that have seeded and replicated in bile can profoundly al-
ter pathogen populations in distal organs. More broadly, the STAMPR framework devel-
oped here can rapidly uncover stochastic and more subtle patterns of dissemination.

Summary and perspectives. Coupling barcoded bacteria with high-throughput
DNA sequencing enables powerful investigations of bacterial population dynamics. In
infection biology, comparisons of barcode abundances in an experimental inoculum
with those found in various host organs (the output) at different times postinoculation
enables inferences about the sizes of bottlenecks and patterns of pathogen dissemina-
tion. However, bacteria often undergo unequal expansion within an organ, resulting in
marked differences in the frequencies of barcodes in the output library compared to
the input. Here, we show that these differences confound calculations underlying
quantification of founding population sizes and dissemination patterns. We created a
new framework, called STAMPR, that provides a more comprehensive assessment of
within-host population dynamics.

Our approach accounts for unequal growth and highly abundant tags to provide a
more complete assessment of infection population dynamics. Two metrics (Nr and Nb)
define the number of organisms from the inoculum that give rise to the population in
an organ. Nb is highly sensitive to disproportionately abundant tags, while Nr is more
resistant to the presence of highly abundant barcodes. The Nr/Nb ratio measures the
magnitude of unequal growth, which is often very large in samples where very few
clones have expanded dramatically. Comparison of barcode frequencies between sam-
ples further enables assessment of bacterial dissemination, quantified by GD. We fur-
ther refine GD to determine the precise number of barcodes that are transferred
between samples, in a metric termed RD. Combining RD with founding population
sizes results in a directional metric (FRD) that quantifies the relative abundance of
shared bacteria within two samples. Taken together, we refine and establish eight
metrics for a pair of samples (Nb and Nr for samples A and B, and GD, RD, FRDA-B, and
FRDB-A) from which the entire underlying barcode frequency distributions can be sum-
marized (Fig. S1). Furthermore, when used across many organs, these metrics enable
high-resolution analysis of population dynamics in a single animal.

Reanalysis of previous infection data also highlights the power of our method to
uncover previously unappreciated dissemination dynamics. Importantly, though our
approach removes clonal expansions for more accurate calculation of the FP, it also
identifies them. Analyses of these heterogenous expansion events in organs and across
animals reveal that this previously unrecognized phenomenon is highly prevalent in
infection contexts. Approaches to visualize and quantify such events will set the stage
for future studies to characterize how host responses, spatial relationships, and inter-
ventions may govern these uneven replication dynamics. Future studies can provide
further resolution by employing these metrics with repeated sampling over time,
which would enable more precise determination of rates of population constriction
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and growth. We anticipate that applications of our new tools in future studies will
deepen our understanding of within-host (and between-host) bacterial population dy-
namics. Finally, our strategy to account for unequal tag abundance will also have utility
in studies beyond infection dynamics that rely on barcode frequency analysis, includ-
ing lineage tracing, cancer progression, and experimental evolution (18).

MATERIALS ANDMETHODS
Processing of STAMP reads. Reads were first demultiplexed on Illumina BaseSpace via i7 and then

further demultiplexed on CLC Genomics Workbench using the first 6 nucleotides. Trimming was per-
formed using the default parameters and only reads between 18 and 22 nucleotides (nt) were kept.
Trimmed reads were mapped to the list of 1,329 barcodes (obtained from reference 32) using the default
parameters in CLC and the mapping file was exported directly from CLC as a csv file containing barcodes
and read counts.

Calculation of Nb and Nr. Previous studies have “calibrated” Nb values to a known standard curve
and the calibrated values were referred to as Nb’. However, this calibration is only meaningful when the
biological data generally satisfies the assumptions of equal growth rates and uniform bottleneck that is
used to generate the standard curve and was therefore omitted from the analyses presented here.
Comparison of Fig. 5 in this study (uncalibrated) and Fig. S2C from reference 24 (calibrated) shows the
negligible impact of calibration on these data. To calculate Nb and Nr, metadata is first retrieved from a
csv file containing the barcode frequencies of the references and samples and from a table of CFU for
each sample. Replicates for reference vectors (i.e., values sequenced from the inoculum) are averaged. A
bottleneck for the reference vector is then iteratively simulated by resampling the reference vector from
a multivariate hypergeometric distribution. Each iteration is resampled to different depths, ranging from
1 read to 10 times the total number of barcodes in the sample in increments of 10. Therefore, a library
with 1,000 barcodes is iteratively resampled 1,000 times from 1 read to 10,000 reads. This is typically suf-
ficient to plateau the number of unique barcodes. At each iteration, the number of nonzero barcodes is
calculated and plotted against the resampling size. This plot is referred to as the “reference resample
plot.” The x axis value of this plot is referred to as Ns and represents a bottleneck size that yields a
desired number of barcodes. This plot is used later to identify the size of the computation-derived bot-
tleneck (Ns) that gives rise to the observed number of barcodes in the sample.

A user-specified noise-filtering step is included to assist the resiliency algorithm in locating noise. In
practice, this is estimated from control samples within a sequencing run for which the precise number
of barcodes is known. Reads that map to other barcodes are therefore a result of noise, likely due to
index hopping. Measuring the relative abundance of these reads enables a preliminary user-controlled
noise filtering prior to the more unbiased steps in the algorithm, as described below. For the ExPEC
study, noise was set to 0.5% (indicated by controls), while it was set to 1% for reanalysis of P. aeruginosa
data (a conservative estimate). The desired number of reads is simulated on the reference vector with a
multivariate hypergeometric distribution and subtracted from the output vector.

Next, we determine the number of required iterations for barcode removal, which is set to a minimum
value among the CFU of the sample (plus one) or the number of barcodes with more than 1 read. This ulti-
mately helps speed computation of Nr for low CFU samples, since it is not necessary to iterate for more
than the number of unique cells contributing to DNA in the sample. The reference and output vectors are
then matched and ordered by the output vector, and the first Nb is calculated from the Krimbas and
Tsakas equation. Next, the last row that contains the most abundant output barcode is removed, along
with the corresponding input barcode. Note that at early iterations, this is essentially the same as setting
the output barcode equal to the input barcode. After this removal, the second Nb is calculated; this process
is then iterated for the previously determined number of iterations to generate the first resiliency plot.

A local minimum can arise in the resiliency plot when barcodes resulting from bacteria present in the
sample (“real” barcodes) have been removed. This is due to the relatively similar sequence noise across all
samples, which are multiplexed in .50 samples per MiSeq lane. As the real barcodes have been removed,
the “noise” resembles the inoculum and begins to raise the Nb value. For example, if there are 100 “real”
evenly distributed barcodes in the sample and 100 “noise” barcodes, removal of the 90 most abundant barc-
odes will yield a population that resembles one where there is no noise, but 10 highly abundant clones over-
laying a more diverse population. This results in a low Nb value. When the 100 more abundant barcodes are
removed, there are no longer any highly abundant barcodes, so Nb increases. Biological data, however, is
rarely this clear, and therefore a goal of the algorithm is to identify all local minima, as they represent poten-
tial locations in which the barcode distribution could be approaching noise.

To accomplish this, the algorithm starts at multiple “initiation sites” across the resiliency plot. The
number of initiation sites is set equal to 1/15 the number of elements in the resiliency plot, which can
be calibrated as needed but is practical for STAMP data with ;102 to 103 barcodes. Each initiation site is
an x coordinate on the resiliency plot. For each of these sites, the algorithm performs the following com-
putation. A sample is drawn from a normal distribution with a mean equal to the position of the initia-
tion site and standard deviation equation to 1/10 the number of elements in the resiliency plot.
Decreasing the standard deviation decreases the “search space” and, therefore, increases the number of
local minima that can potentially be found. If the standard deviation is too large, only the global mini-
mum will be found. This sample is a “guess” for where to potentially move on the resiliency plot. Since
this “guess” is another x coordinate on the resiliency plot, the corresponding y coordinate is determined.
If this new y coordinate is less than the y coordinate of the initiation site, the mean of the next normal
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distribution is set to equal the guess. This process is repeated 1,000 times, where “guesses” are repeat-
edly drawn from a normal distribution and accepted only if they result in a lower y coordinate on the re-
siliency plot. In this manner, the initiation site settles to some value on the resiliency plot. The x coordi-
nates where this process settles after 1,000 iterations and across all initiation sites are known as
“breaks.” The location of the greatest log change in the resiliency plot is also determined and added to
the breaks; a similar parameter was used to separate true and false barcodes in a previous approach
(19). Collectively, each break represents some notable transition in the barcode frequencies of the out-
put sample relative to the input.

An “indices table” is then constructed around the breaks. For each break, fractional abundance for
those barcodes in between is calculated (referred to as “weights”). For example, if two breaks are located
at position 5 and 200 in the resiliency plot, then we calculate the fractional abundance of the first 5 barc-
odes and barcodes 6 to 200. Additionally, we identify the maximum Nb up to each break. In this exam-
ple, this would mean identifying the maximum Nb in the first 5 values of the resiliency plot and the max-
imum Nb in the first 200 values. The indices table combines the maximum Nb, weight, and breaks.

Next, noise is defined from the indices table as the greatest log change in weight; the breakpoint im-
mediately prior to the greatest log change represents the iteration in the resiliency plot after which all
real barcodes have been removed. Since the resiliency plot is derived from an ordered list of barcode fre-
quencies, this iteration can be traced back to barcodes above and below a specific number of reads. A
verification step is performed to ensure that all non-noise barcodes represent a set minimum of the total
number of reads (97% in this study) and can be altered as needed. After noise is determined, all barco-
des determined to be noise are set to 0 and a new resiliency plot is generated from this noiseless set of
data.

The final FP estimation from the resiliency algorithm, referred to as Nr, is equal to the maximum
value among (i) the maximum Nb in this new second resiliency plot, (ii) the original Nb estimate (i.e., the
output of the first iteration), or (iii) the value of Ns, which corresponds to the number of non-noise-
derived barcodes derived from the reference resample plot using inverse interpolation. This ensures that
Nr will always be greater than or equal to Nb and that Nr will never be less than the observed number of
counted barcodes. In this manner, this algorithm chooses the strategy that determines the FP that most
adequately captures all barcodes. Very complex libraries (e.g., .100,000 barcodes) would almost always
derive Nr values from the reference resample plot, while smaller libraries will more often use resiliency
plots to find the maximum Nb for large FPs. Similarly, if there is a substantial amount of variation in bar-
code frequency due to sources other than the bottleneck (such as phenotypic heterogeneity) such that
Nb is very low, Nr will be equal to Ns. An important implication of the use of Ns by the resiliency algo-
rithm is that the resolution limit of Ns increases when there are more barcodes (Fig. S4B). For example, if
the data is highly variable but all barcodes are present, Ns will be greater for a library of 1,000 barcodes
than for a library of 200 barcodes. Additionally, since Nr relies on simulations, the precise value differs
slightly each time the algorithm is run. One notable class of edge cases is samples with 1 CFU that can
yield Nr values of ;2; these cases can easily be corrected post hoc and do not affect data interpretation.

Calculation of GD and RD. Genetic distance (GD) is calculated by the Cavalli-Sforza chord distance
as described (22, 33). We analogize our approach for calculating Nr to genetic distance and created a
metric—RD—that measures the number of barcodes that contribute to “meaningful” relatedness
between samples. Low values of RD imply that few barcodes are shared, whereas high values of RD
imply that many barcodes are shared.

RD is calculated in single script as follows. Barcode frequency vectors are obtained after running the
resiliency algorithm after removal of noise. Both organs are paired and ordered by the geometric mean
abundance of each barcode. GD is calculated iteratively and barcodes are removed as done in the resil-
iency algorithm. RD is equal to the number of barcodes that yield GD values below 0.8 on the graph of
GD versus iteration. Figure S5 shows how this graph behaves for a variety of given inputs and how the
RD value is derived from them. The value 0.8 approximates the GD of two unrelated biological samples
(24), but this threshold can be adjusted depending on how the experimenter interprets “meaningful”
relatedness. In Bachta et al., this threshold was determined by calculating inter-animal GD, where these
samples are expected to be completely dissimilar. To assess the validity of this threshold without ani-
mals, we simulated a pair of random samples with varying FP values and calculated GD (Fig. S7). The
resulting curve reveals that two random samples with higher FP values will also have lower GD values,
since the odds of the same barcodes being present in a pair of samples increases with higher FPs. In
both ExPEC and P. aeruginosa libraries, GD= 0.8 intersects the curves after the upper asymptote but
before the steep decrease in the sigmoid. By plotting log10(FP) versus GD, future studies can verify that
GD= 0.8 intersects this curve at a similar location.

FRD is manually determined by dividing the log of each RD value (plus one) in each column of the out-
put table (all pairwise comparisons) by the log of the maximum value in each column (plus one). The max-
imum value of each column is the RD value of the sample compared with itself, which defines the column.

Data and code availability. All scripts used in this manuscript are available at https://github.com/
hullahalli/stampr_rtisan. Barcode frequency counts for ExPEC STAMP experiments were experimentally
derived from our companion manuscript (32) and are available at the above link to reproduce plots in Fig. 2
and 3, and Fig. S5. Barcode counts for P. aeruginosa STAMP experiments are provided in reference 24.
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