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Abstract
Objectives To prospectively validate three quantitative single-energy CT (SE-CT) methods for classifying uric acid (UA) and
non-uric acid (non-UA) stones.
Methods Between September 2018 and September 2019, 116 study participants were prospectively included in the study if they
had at least one 3–20-mm urinary stone on an initial urinary tract SE-CT scan. An additional dual-energy CT (DE-CT) scan was
performed, limited to the stone of interest. Additionally, to include a sufficient number of UA stones, eight participants with
confirmed UA stone on DE-CT were retrospectively included. The SE-CT stone features used in the prediction models were (1)
maximum attenuation (maxHU) and (2) the peak point Laplacian (ppLapl) calculated at the position in the stone with maxHU.
Two prediction models were previously published methods (ppLapl-maxHU and maxHU) and the third was derived from the
previous results based on the k-nearest neighbors (kNN) algorithm (kNN-ppLapl-maxHU). The three methods were evaluated on
this new independent stone dataset. The reference standard was the CT vendor’s DE-CT application for kidney stones.
Results Altogether 124 participants (59 ± 14 years, 91 men) with 106 non-UA and 37 UA stones were evaluated. For classifi-
cation of UA and non-UA stones, the sensitivity, specificity, and accuracy were 100% (37/37), 97% (103/106), and 98% (140/
143), respectively, for kNN-ppLapl-maxHU; 95% (35/37), 98% (104/106), and 97% (139/143) for ppLapl-maxHU; and 92%
(34/37), 94% (100/106), and 94% (134/143) for maxHU.
Conclusion A quantitative SE-CT method (kNN-ppLapl-maxHU) can classify UA stones with accuracy comparable to DE-CT.

Key Points
• Single-energy CT is the first-line diagnostic tool for suspected renal colic.
• A single-energy CT method based on the internal urinary stone attenuation distribution can classify urinary stones into uric
acid and non-uric acid stones with high accuracy.

• This immensely increases the availability of in vivo stone analysis.
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Abbreviations
AUC Area under the receiver operating

characteristics curve

CI Confidence interval
DE-CT Dual-energy computed tomography
HU Hounsfield unit
kNN K-nearest neighbors
maxHU Maximal attenuation in a region of interest
non-UA Non-uric acid
PACS Picture archiving and communication system
ppLapl Peak point Laplacian
ROC Receiver operating characteristics
SE-CT Single-energy computed tomography
UA Uric acid
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Introduction

Urinary stone disease continues to be an increasing reason for
health care admissions worldwide, with an incidence of 7%
among women and 11% among men in the USA in 2010 [1].
In northern Europe, an increasing frequency of uric acid (UA)
stones has been reported [2]. Approximately 7–11% of all
urinary stones are UA stones [3].

Distinguishing UA from non-UA stones is of particular
interest for the urologist, as the former can be treated with
alkalization of the urine, allowing for secondary prophylaxis
after ex vivo composition analysis of a passed or surgically
removed stone [4–7]. Ideally, a UA stone is identified and
dissolved in vivo, to facilitate stone passage and obviate sur-
gical removal [8, 9]. At present, in vivo stone composition
analysis is mostly accomplished with dual-energy CT (DE-
CT), which has shown high accuracy in several studies
[10–15].

Non-enhanced single-energy CT (SE-CT) is the first-line
diagnostic tool for suspected renal colic and is able to detect
nearly all urinary stones with high specificity. It is highly
reproducible for measuring stone size and useful for
predicting spontaneous stone passage [6, 14, 16]. If, in addi-
tion, this method could also predict the composition of the
stone, the patient would be able to leave the emergency room
with a tailored treatment on the first day of radiologic diagno-
sis [9].

In a recent exploratory study on 126 urinary (22 UA and
104 non-UA) stones, Lidén correlated quantitative CT param-
eters in the stones to the chemical composition [17]. The
highest (peak) attenuation (maxHU) of a single voxel in the
stone showed to be a powerful predictor of stone composition,
but, to increase the specificity, Lidén proposed a purely quan-
titative SE-CT method called peak point Laplacian/maxHU
(ppLapl-maxHU). The ppLapl-maxHU method uses the peak
attenuation in the examined stone, measured in Hounsfield
units (HUs), together with the difference between this peak
attenuation and the weighted mean attenuation of the sur-
rounding voxels (Laplacian), to obtain a cutoff value of 195
HU/1000 HU (ppLapl/maxHU) for differentiating UA from
non-UA stones. The cutoff values of the ppLapl-maxHU
method resulted in high sensitivity and specificity (95% and
99% respectively), but with the major limitation that the cutoff
values were defined post hoc, possibly causing an overestima-
tion of the accuracy in the study. External validation on a
separate dataset is therefore needed. An important advantage
of the measures maxHU and ppLapl, compared to the mean
attenuation often used for attenuation measurements of uri-
nary stones, is that these two measures are point estimates,
and therefore independent of segmentation parameters and
reproducible.

Additional analysis of the UA- and non-UA stone data in
the previous study suggested that machine learning, avoiding

the sharp cutoff lines in the ppLapl-maxHU method, might
perform even better than the original method [17]. K-nearest
neighbors (kNN) is a simple machine learning algorithm that
uses the features of annotated cases and, through a majority
vote, classifies new data according to how their neighbors in a
multi-dimensional space were classified [18].

Using the same data as used in the recently developed
ppLapl-maxHU method [17], a kNN algorithm was derived
(kNN-ppLapl-maxHU). We hypothesized that the kNN-
ppLapl-maxHU and the ppLapl-maxHU methods could dif-
ferentiate UA from non-UA stones on previously unseen SE-
CT with a sensitivity and specificity comparable to DE-CT
and greater than using only the peak attenuation (maxHU) of
the stones.

The purpose of the present study was to prospectively val-
idate two previously published (ppLapl-maxHU and
maxHU), and one derived (kNN-ppLapl-maxHU) quantita-
tive single-energy CT methods for classifying uric acid stones
on a separate, previously unseen stone dataset.

Materials and methods

This study was approved by the Regional Research Ethics
Board. Written informed consent was obtained from all pro-
spectively and retrospectively included participants.

Study participants

Between September 2018 and September 2019, 116 study
participants planned for elective urinary stone CT examination
on our DE-CT scanner, with at least one 3–20-mm urinary
stone, were prospectively included in the study to create a test
dataset for validating the index tests described below (65% of
prospective, eligible participants: due to fluctuating workload,
not all potentially eligible patients were asked to participate).
Because of the known low prevalence of UA stones in our
patient population, all eligible UA stones were included, but to
keep the heterogeneity of the non-UA stones as high as pos-
sible, only one non-UA stone per participant. For inclusion
and exclusion criteria, see Fig. 1.

A preliminary reading of the CT scans was performed in
patients accepting participation. Once the radiographer had
established that there was at least one urinary stone fulfilling
the criteria, the patient was included and a reference DE-CT
was performed. The definite decision about eligibility for in-
clusion was later made by a radiologist with 15 years’ experi-
ence in reading abdominal CTs (J.J.).

Based on the expected low number of UA stones in our
patient population, we made a pre-study-planned, additional
retrospective inclusion of UA stones demonstrated on DE-CT
between August 2016 and August 2018, where a SE-CT scan
was available. One DE-CT stone analysis examination during
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the prospective inclusion period was missed and therefore
retrospectively included. In total, eight (73%) of the retrospec-
tively eligible participants were included.

The sample size of ≥ 35 UA and 100–150 non-UA stones
was estimated with the objective of reaching the lower limit of
a 95% confidence interval (CI) of 80%, for the hypothesized
sensitivity of 95%, and the lower limit of 95% for the hypoth-
esized specificity of 97%.

Study protocol and technical specifications

All study participants were examined on a 2 × 128 channel
dual-source system (Somatom Definition Flash, Siemens)
using our local routine single-energy and a dual-energy pro-
tocol, for scan parameters, see Table 1. The mean dose length
product was 185 ± 55 mGy*cm (range 98–432) and the mean
volume CT dose index was 4.5 mGy (range 2.7–10) for the
SE-CT and 189 ± 101 mGy*cm (range 54–637) and 16 mGy
(range 5.6–41) for the DE-CT examinations, respectively. The
mean DE-CT scan length was 10.7 (range 3.8–61) cm.

The SE-CT and DE-CT reformats were pseudonymized
and saved with different keys in separate folders in the local
picture archiving and communication system (PACS, Sectra).

Index tests

The three index tests were created using the same data from a
previous study consisting of 126 stones with known pure UA/
non-UA composition [17]. While the ppLapl-maxHU and the
maxHU methods were published in the previous study, the
kNN-ppLapl-maxHU method was derived for the current
study. No data from the included stones in the current study
was used for the development of the kNNmethod. None of the
three index tests is commercially available at present.

Index test—ppLapl-maxHU

The two quantitative variables used for stone type prediction
were (1) the highest attenuating voxel in the stone (maxHU)
and (2) the value at the same position as for maxHU in a scaled
Laplacian filtered image (ppLapl). An interpretation of the
ppLapl is a computation of the attenuation difference between
the highest attenuating voxel value and the weighted mean of
the surrounding 26 voxels [17]. The pseudonymized SE-CT
images were exported to MATLAB R2019a (MathWorks
Inc.), where, 4 weeks after completing the inclusion process,
a radiologist (J.J.) marked each included stone using

Fig. 1 Flowchart of inclusion. SE-CT, single-energy CT; DE-CT, dual-energy CT; UA, uric acid; non-UA, non uric-acid
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previously developed, semi-automatic MATLAB software to
generate the maxHU and ppLapl-maxHU values (Figs. 2a and
3a). The application assigned a red color dot for UA stones
and a blue dot for non-UA stones, using the cutoff values
proposed in a previous study [17] (Figs. 2 and 4a).

Index test—kNN-ppLapl-maxHU

The kNN machine learning prediction method is based on the
ppLapl-maxHU method. The prediction model was created in
MATLAB using the nine nearest neighbors, a standard set-
ting, and Euclidean distance. The method thereby uses the
maxHU and ppLapl values of all the known stones from the
previously annotated dataset, compares themwith the position
of an unknown stone in a scatter plot, and performs a “major-
ity vote” between the nine stones closest to the unknown

stone. With only two variables in the kNN, the model can be
illustrated as a curved line separating the predicted UA from
non-UA stones in a scatter plot (Fig. 4b). The difference com-
pared to the rectangular area of UA stones in the original
method (Fig. 4a) is consequently the smoother curved line
separating the UA from the non-UA stones.

Index test—maxHU

The third index test used only the optimal maxHU, 745 HU,
defined previously [17] (Fig. 4c).

Reference test/ground truth

The stone classification (UA vs. non-UA) in DE-CT was
used as ground truth for each included stone, as DE-CT

Table 1 Scan parameters
Scan parameter Single-energy CT (SE-CT) Dual-energy CT (DE-CT)

Acquisition 128 × 0.6 32 × 0.6

Filter SAFIRE I30f3 D30f

kVp 120 100/Sn 140

Quality reference mAs 70 210/162

Pitch 1.2 0.7

Rotation time 0.5 0.5

CARE-kV Off N/A

CARE dose 4D On On

Scan area Upper kidney poles
to pelvic floor

Limited, surrounding
the stone(s)

Field of view (mm) 420 300

Slice thickness/increment
(axial reformat) (mm)

1/1 2/1

Slice thickness/increment
(coronal/sagittal reformat)

3/3 –

Sn, tin pre-filtration; kV, kilovolt; kVp, kilovoltage peak

Fig. 2 Index test (a) and reference test (b) evaluating a left-sided 11 ×
5 mm uric acid (UA) kidney stone in a 66-year-old man. a Index test: 1-
mm single-energy non-enhanced axial CT scan after export to external
software and marking of the kidney stone by the radiologist. The red star
indicates UA composition according to the peak point Laplacian-
maximum attenuation (ppLapl-maxHU) algorithm: in this case, the

combination of a peak point attenuation of 693 HU (< 1000 HU) and a
difference between this peak point attenuation and the mean of the
surrounding 26 voxels of 98 HU (< 195 HU). b Reference test: Post-
processed axial dual-energy CT image using the vendor’s stone
composition analysis application. Red indicates stone with UA
composition
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can reliably differentiate pure UA stones from non-UA
stones [10–13]. The DE-CT images were analyzed, using
the kidney stone application in Syngo.Via (Siemens), by a
radiologist (J.J.) in conjunction with the inclusion proce-
dure. If the stone was color-coded > 80% red (visual ap-
proximation), it was considered a UA stone, and if > 80%
blue, a non-UA stone (see Figs. 2b and 3b). The remain-
ing stones (n = 7) were considered UA/non-UA mixed
stones and removed from further analysis, since the DE-
CT has lower reliability for mixed stones and consequent-
ly is insufficient as a reference test [19–22].

The largest diameter of each stone was measured man-
ually in the axial plane 3-mm slice using the caliper tool
in the PACS workstation with a soft window setting of
C50/W400 and a zoom level of pixel-to-pixel × 8.

Statistical analysis

Analyses were performed using IBM SPSS for Mac OS,
v26.0.0.0 (SPSS Inc.), and MATLAB.

Sensitivity and specificity for, and accuracy of the predic-
tion of UA stones, using binomial distribution and 95% CIs
were calculated for the SE-CT classification methods (kNN-
ppLapl-maxHU, ppLapl-maxHU, and maxHU).

This analysis was made primarily for all stones grouped
together. Secondary analyses were performed: (1) prospec-
tively included stones and (2) including only one UA (the
most caudally positioned) or non-UA stone per patient.

Statistical significance of the difference between the index
methods was tested using McNemar’s test (level of signifi-
cance: p < 0.05).

Fig. 3 Index test (a) and reference test (b) evaluating a left-sided, 5 ×
3 mm non-uric acid (non-UA) ureteral stone in a 78-year-old man. a
Index test: 1-mm single-energy, non-enhanced axial CT scan after export
to external software and marking of the ureteral stone by the radiologist.
The blue star indicates non-UA composition, according to the peak point
Laplacian-maximum attenuation (ppLapl-maxHU) algorithm: A peak

point attenuation of ≥ 1000 HU (in this case 1398 HU) or a difference
between this peak point attenuation and the weighted mean of the sur-
rounding voxels of ≥ 195 HU (in this case, 182 HU) defines this as a stone
of non-UA composition. b Reference test: Post processed axial, dual-
energy CT image using the vendor’s stone composition analysis applica-
tion. The blue color indicates stone with non-UA composition
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Fig. 4 Single-energy CT (SE-CT) methods for classification of uric acid
(UA) stones based on maximal attenuation (maxHU) and peak point
Laplacian (ppLapl). The three different SE-CT methods for the classifi-
cation of UA and non-UA stones differ in the cutoffs for the radiomics

maxHU (the highest attenuating voxel in the stone) and ppLapl. a Rigid
cutoffs according to the original method [14]; b nearest neighbor method;
and c maxHU method
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Results

Altogether 124 participants (59 ± 14 years, 91 men) with 106
non-UA and 37 UA stones were evaluated. Thirteen men had
UA stones (14%) and 78 had non-UA stones (86%). Five
women (15%) had UA stones, whereas 28 (85%) had non-
UA stones. None of these stones has been used for the devel-
opment of the index methods. Table 2 shows the stone char-
acteristics. The mean age in the UA group was 69 ± 8 years
(range 50–77) and in the non-UA group 58 ± 14 (21–89).

Cross-tabulations of the results of the kNN-ppLapl-maxHU,
ppLapl-maxHU, and maxHU methods by the results of the
reference DE-CT are shown in Table 3. Scatter plots with the
distribution of maxHU and ppLapl for all stones, with cutoffs
according to the three different SE-CT classification methods
are shown in Fig. 5. Table 4 shows sensitivity, specificity, and
accuracy for the three methods. Table 5 displays sensitivity,
specificity, and accuracy of subgroups (a) prospectively includ-
ed stones and (b) only one included UA stone per patient.

The area under the receiver operating characteristics (ROC)
curve (AUC) for the kNN-ppLapl-maxHU, as well as the
maxHU, was 0.99. The AUC cannot be computed for the
ppLapl-maxHU method with two static cutoffs. Although
not statistically significant (p = 0.06) according to the
McNemar test, there was a tendency towards higher accuracy
for the kNN-ppLapl-maxHU method (98%) compared to the
maxHU method (94%). The 95% CI for the difference was -
0.5 to 9.5 percentage points.

Discussion

Single-energy CT is the first-line modality for the detection of
urinary stones, whereas the in vivo stone analysis is usually
conducted with dual-energy CT, with limited availability in most
emergency radiology settings [23]. The purpose of this studywas
to prospectively validate two previously published and one

derived quantitative method (kNN-ppLapl-maxHU) for in vivo
prediction of uric acid (UA) stone type using the first-line single-
energy CT scan. The kNN-ppLapl-maxHU method obtained a
sensitivity for UA stones, 3–20 mm, of 100% (37/37), a speci-
ficity of 97% (103/106), and an accuracy of 98% (140/143). The
accuracy of both the ppLapl-maxHU and the maxHU method
was also high, 97% and 94%, respectively.

The close correlation between the attenuation and compo-
sition of a urinary stone is well known, and also the consider-
able overlap between UA and non-UA stones [24–26]. The
kNN-ppLapl-maxHU method is purely quantitative and com-
bines the highest attenuation within a stone with the attenua-
tions of the surrounding 26 voxels, giving an estimate of the
stone attenuation peakedness. The radiomics used in the kNN-
ppLapl-maxHUmethod have a logical interpretation. A small,
calcium-based stone can have the same peak attenuation as a
larger, UA-based stone, but the difference in attenuation be-
tween the highest attenuating voxel and the surrounding
voxels is generally larger in the calcium than in the UA stone
[17]. This corresponds well with previously published retro-
spective non-validated results. Nakada et al [24] used stone
size and attenuation to analyze a sample of 17 UA and 82 non-
UA stones and reached an accuracy of 86% (85/99); Ganesan
et al [27], using stone size, attenuation, and attenuation distri-
bution in a retrospective cohort of 52 calcium oxalate and 48
UA stones, reached an accuracy of 90%; and Zhang et al [28]
used stone texture analysis in a sample of 18 UA and 32 non-
UA stones and reached a sensitivity and specificity of 94%.

The original methods that are prospectively validated in the
present study (ppLapl-maxHU and maxHU) were developed
by Lidén [17] using the distribution of the clusters of UA and
non-UA stones in a scatter plot showing maxHU and ppLapl.
Also, the kNN-ppLapl-maxHU algorithm in the present study
was derived from only the previous data before analyzing the
new data that was collected for the present study.

Consequently, a main strength of the present study com-
pared to the previous is that the three tested algorithms were

Table 2 Stone characteristics

All
(n = 143)

Non-UA
(n = 106)

UA
(n = 37)

UA misclassified
as non-UA by
ppLapl-maxHU
(n = 2)**

Non-UA
misclassified
as UA by ppLapl-
maxHU (n = 2)**

Non-UA
misclassified
as UA by kNN-
ppLapl-maxHU
(n = 3)**

UA misclassified
as UA by kNN-
ppLapl-maxHU
(n = 0)

Max HU (HU)* 1092 ± 421 (223–1796) 1286 ± 292 (536–1796) 537 ± 155 (223–794) 602 (450–754) 873 (826–919) 760 (536– 919) -
ppLapl (HU)* 240 ± 110 (47–546) 282 ± 96 (51–546) 122 ± 39 (47–212) 206 (201–212) 95 (79–110) 133 (79–209) -
Size (mm)* 6.5 ± 3.0 (3.0–19) 6.3 ± 2.5 (3.0–15) 7.3 ± 4.1 (3.0–19) 4.0 (3.0–4.9) 9.4 ± 0.8 (8.8–10) 8.3 (6.1–10) -

SD, standard deviation;UA, uric acid;Max HU, maximum attenuation in a single voxel in a stone;HU, Hounsfield units; ppLapl-maxHU-method, peak
point Laplacian-maximum attenuation, SE-CTmethod using the highest attenuation voxel in the stone and the weighted mean of the surrounding voxels
to classify a urinary stone into UA or non-UA; kNN-ppLapl-maxHU-method, machine learning modification of the ppLapl-maxHU method using the
nine nearest neighbors for classification

Note: *Values are mean ± standard deviation (range). ** Standard deviation not calculated because of low number of stones
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predefined, thereby avoiding the problem of overfitting.
Although thirteen UA stones were retrospectively included,
the results were similar when using only the prospectively
included stones.

The kNN-ppLapl-maxHU model uses a previously ac-
quired dataset [17] to classify a stone of unknown type
through a “majority vote” between its nine closest neighbors
in a scatter plot. Compared to the original method’s rigid

Table 3 Cross-tabulations of single-energy CT (SE-CT) classification of urinary stones into uric acid (UA) and non-UA stones using dual-energy CT
(DE-CT) as reference. (a) kNN-peak point Laplacian-maxHU (kNN-ppLapl-maxHU); (b) peak point Laplacian-maxHU (ppLapl-maxHU); (c) maxHU

Dual-energy CT

Non-UA UA Total

a. kNN-ppLapl-maxHU * Dual-energy CT

kNN-ppLapl-maxHU Non-UA 103 0 103

UA 3 37 40

Total 106 37 143

Sensitivity: 100% (95%CI 91–100%)

Specificity: 97% (95%CI 92–99%)

Accuracy: 98% (95%CI 94–100%)

b. ppLapl-maxHU * Dual-energy CT

ppLapl-maxHU Non-UA 104 2 106

UA 2 35 37

Total 106 37 143

Sensitivity: 95% (95%CI 82–99%)

Specificity: 98% (95%CI 93–100%)

Accuracy: 97% (95%CI 93–99%)

c. maxHU * Dual-energy CT

maxHU Non-UA 100 3 103

UA 6 34 40

Total 106 37 143

Sensitivity: 92% (95%CI 78–98%)

Specificity: 94% (95%CI 88–98%)

Accuracy: 94% (95%CI 88–97%)

Sensitivity and specificity for the prediction of UA stones

ppLapl-maxHU, peak point Laplacian-maximum attenuation, SE-CT method using the highest attenuation voxel in the stone and the weighted mean of
the surrounding voxels to classify a urinary stone into UA or non-UA; kNN-ppLapl-maxHU, machine learning modification of the ppLapl-maxHU
method using the nine nearest neighbors for classification;maxHU, SE-CTmethod using the single voxel with the highest attenuation in a stone as cutoff
(< 745 ➔ UA stone)

Dual-energy CT: Kidney stone application Syngo.Via

Table 4 Sensitivity, specificity, and accuracy for the prediction of UA stones by three single-energy CT methods. Dual-energy CT as a reference
standard

Sensitivity, 95% CI Specificity, 95% CI Accuracy, 95% CI

All included stones (37 UA, 106 non-UA). kNN-ppLapl-maxHU 100% (37/37) 91–100% 97% (103/106) 92–99% 98% (140/143) 94–100%

ppLapl-maxHU 95% (35/37) 82–99% 98% (104/106) 93–100% 97% (139/143) 93–99%

maxHU 92% (34/37) 78–98% 94% (100/106) 88–98% 94% (134/143) 88–97%

UA, uric acid; Non-UA, non-uric acid; 95% CI, 95% confidence intervals; ppLapl-maxHU, peak point Laplacian-maximum attenuation, single-energy
CTmethod using the highest attenuation voxel in the stone and the weighted mean of the surrounding voxels to classify a urinary stone into UA or non-
UA; kNN-ppLapl-maxHU, machine learning modification of the ppLapl-maxHU method using the nine nearest neighbors for classification; maxHU,
single-energy CT method using the single voxel with the highest attenuation in a stone as cutoff (< 745 ➔ UA stone)
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cutoff of 195 HU/1000 HU, the proposed kNN method is
appealing, as it creates a smoother curved line between the
UA and non-UA stones. In our material, however, both
methods had excellent accuracy (97–98%) and either method
can be used. Given this high accuracy for both methods,
achieving a statistically significant difference in accuracy be-
tween them would demand a very high number of included
stones, which is difficult to achieve considering the relatively
low prevalence of UA stones. An advantage of the kNN-
ppLapl-maxHU method is its plasticity; a future addition of
more training examples to the algorithm is likely to further
increase its accuracy. Although our hypothesis that the accu-
racy of the kNN-ppLapl-maxHU would be higher than the
accuracy of the method using only maxHU could not be sta-
tistically proven, there was a strong tendency towards a higher
accuracy (98% vs 94% (p = 0.06)).

To our knowledge, this is the first prospective valida-
tion study of a SE-CT method for in vivo classification of
UA and non-UA urinary stones. The results of this study
are comparable to previously published results for DE-CT
[11–13].

This study has limitations. Three stones in the retrospective
and four in the prospective subgroup were of mixed compo-
sition (visually 20–80% UA in the DE-CT application) and
were removed from the analysis. Although a recent phantom
study showed promising results in demonstrating the main
stone component, using a machine learning algorithm on
spectral detector DE-CT [29], no previous study has shown
that DE-CT can reliably classify mixed stones in vivo. A valid
reference standard was consequently not available. Most stud-
ies on DE-CT classification of UA vs. non-UA stones have
been performed on pure or nearly pure (80–90%) stones [13,

Table 5 Sensitivity, specificity, and accuracy for the prediction of UA-stones by three single-energy CTmethods (a) prospectively included stones, (b)
only one included UA-stone per patient. Dual-energy CT as a reference standard

Sensitivity, 95% CI Specificity, 95% CI Accuracy, 95% CI

a. Prospectively included stones
(24 UA, 106 non-UA).

kNN-ppLapl-maxHU 100% (24/24) 86–100% 97% (103/106) 92–99% 98% (127/130) 93–100%

ppLapl-maxHU 92% (22/24) 73–99% 98% (104/106) 93–100% 97% (126/130) 92–99%

maxHU 88% (21/24) 68–97% 94% (100/106) 88–98% 93% (121/130) 87–97%

b. Only one included UA-stone
per patient
(18 UA, 106 non-UA).

kNN-ppLapl-maxHU 100% (18/18) 82–100% 97% (103/106) 92–99% 98% (121/124) 93–100%

ppLapl-maxHU 94% (17/18) 73–100% 98% (104/106) 93–100% 98% (121/124) 93–100%

maxHU 89% (16/18) 65–99% 94% (100/106) 88–98% 94% (116/124) 88–97%

UA, uric acid; Non-UA, non-uric acid; 95% CI = 95% confidence intervals; ppLapl-maxHU = peak point Laplacian-maximum attenuation, single-
energy CTmethod using the highest attenuation voxel in the stone and the weightedmean of the surrounding voxels to classify a urinary stone into UA or
non-UA; kNN-ppLapl-maxHU, machine learning modification of the ppLapl-maxHU method using the nine nearest neighbors for classification;
maxHU, single-energy CT method using the single voxel with the highest attenuation in a stone as cutoff (< 745 ➔ UA stone)
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Fig. 5 Scatter plots of the three different single-energy CT (SE-CT)
methods for classification of uric acid (UA) and non-UA stones. Red
dots: UA stones defined by dual-energy CT (DE-CT). Blue dots: Non-

UA stones defined byDE-CT. a ppLapl-maxHUmethod. b kNN-ppLapl-
maxHU method. c maxHU method
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19, 21, 30–33]. Consequently, the index tests are not designed
for classification beyond UA/non-UA stones.

Thirteen UA stones in eight patients were included retro-
spectively to achieve a sufficient number of UA stones. The
index tests are purely quantitative and the radiologist
performing them was blinded to the results of the reference
standard. The risk for bias by retrospectively including eight
participants with confirmed UA stone was considered low. In
addition, the sensitivity and specificity were virtually un-
changed when only the prospectively included stones were
analyzed; merely the CIs became broader. Because of the
known low prevalence of UA stones in our population, all
UA stones in a patient meeting the inclusion criteria were in-
cluded, similar to previous studies [10, 12, 13, 20, 28, 33–36]
which may lower the heterogeneity in the UA group. In non-
UA stones, the sample size could be reached with independent
stones from different patients. The different inclusion strategies
may thereby introduce a lower heterogeneity between UA
stones, but the risk of introducing a systemic bias is considered
low. When only the UA stone with the most caudal position
per patient was analyzed, the sensitivity and specificity
remained virtually unchanged, but with broader CIs.

The validation is made for the current settings in the CT
scanner family used in this study. Validation tests on scanners
from various CT providers need to be performed before the
method can be generalized to other CT manufacturers [37].
This is an important limitation, but there is good reason to believe
that similar results can be achieved after optimization, regardless
of CT manufacturer, since the ppLapl-maxHU radiomics are
based on the physical properties of the different stone types.
Furthermore, the need for optimization of the present method
depending on CT manufacturer is no different from the need
for optimization depending on scanner type, of other methods,
for example, a DE-CT stone type classification method.

In conclusion, this study demonstrates that a purely quan-
titative single-energy CT method can classify uric acid (UA)
and non-UA stones in a previously unseen dataset, with accu-
racy comparable to dual-energy CT, enabling immediate stone
classification when a urinary stone is detected. Considering
the lower cost, better availability, and lower radiation exposi-
tion, this is a promising alternative to dual-energy CT for
in vivo characterization of urinary stones.
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