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During thematuration phase of mammalian erythroid differentiation, highly proliferative cells committed to the
erythroid lineage undergo dramatic changes in morphology and function to produce circulating, enucleated
erythrocytes. These changes are caused by equally dramatic alterations in gene expression, which in turn
are driven by changes in the abundance and binding patterns of transcription factors such as GATA1. We have
studied the dynamics of GATA1 binding by ChIP-seq and the global expression responses by RNA-seq in a
GATA1-dependent mouse cell line model for erythroid maturation, in both cases examining seven progressive
stages during differentiation. Analyses of these data should provide insights both into mechanisms of regulation
(early versus late targets) and the consequences in cell physiology (e.g., distinctive categories of genes regulated
at progressive stages of differentiation). The data are deposited in the Gene Expression Omnibus, series
GSE36029, GSE40522, GSE49847, and GSE51338.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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All data are available through ENCODE data portals:
https://www.encodeproject.org
http://www.mouseencode.org
The GATA1-ChIP-seq data sets are available in three GEO Series:

GSE51338, GSE36029, and GSE49847.
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51338
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36029
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49847
The RNA-seq data sets are available in three GEO Series: GSE40522,

GSE51338, and GSE49847.
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40522
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51338
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49847
The individual data sets and links are listed in Table 1.

Experimental design, materials, and methods

Cell lines used

G1E cells are an immortalized Gata1 null cell line derived from
embryonic stem cells [1], and the daughter cell line G1E-ER4 has been
stably rescued by transduction with a virus expressing a hybrid gene
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Genomic data sets and URLs for access.

Cell Treatment with estradiol Feature Replicates⁎ GEO accession URL

G1E Untreated Paired-end RNA-seq 2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995536
G1E-ER4 Untreated Paired-end RNA-seq 2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995532
G1E-ER4 3 h Paired-end RNA-seq 2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995538
G1E-ER4 7 h Paired-end RNA-seq 2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995531
G1E-ER4 14 h Paired-end RNA-seq 2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995527
G1E-ER4 24 h Paired-end RNA-seq 2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995539
G1E-ER4 30 h Paired-end RNA-seq 2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995541
G1E Untreated GATA1 ChIP-seq 2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM923581
G1E-ER4 Untreated GATA1 ChIP-seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995445
G1E-ER4 3 h GATA1 ChIP-seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995443
G1E-ER4 7 h GATA1 ChIP-seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995442
G1E-ER4 14 h GATA1 ChIP-seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995444
G1E-ER4 24 h GATA1 ChIP-seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM923572
G1E-ER4 30 h GATA1 ChIP-seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995448
G1E Untreated Input seq 2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM923580
G1E-ER4 Untreated Input seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995441
G1E-ER4 3 h Input seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995437
G1E-ER4 7 h Input seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995436
G1E-ER4 14 h Input seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995440
G1E-ER4 24 h Input seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995439
G1E-ER4 30 h Input seq 1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM995438

⁎ Number.
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encoding the GATA1-ER protein [2,3]. Both G1E and untreated G1E-ER4
cells proliferate and show many properties of immature erythroid pro-
genitor cells [2,4]. Upon treatment with an estrogen such as estradiol
(E2), G1E-ER4 cells mature synchronously and rapidly, recapitulating
many aspects of normal erythroid differentation in amanner dependent
on activation of GATA1-ER [2,4–6]. Among the changes during
differentation are a loss of proliferative capacity, a reduction in cell
size, condensation of the nucleus, increase and then decrease in CD44,
and an increase in TER119 [7] (Fig. 1, left).

Cell culture methods

G1E and G1E-ER4 cells were grown in IMDM media with 15% fetal
calf serum 2 U/ml erythropoietin (EpoGen from Amgen) and 50 ng/ml
stem cell factor [1,2]. To induce erythroid maturation, G1E-ER4 cells
were treated with 10−8 mol/L β-estradiol for 3, 7, 14, 24, and 30 h.
Cells were harvested by centrifugation at 500×g for 5 min at 4 °C and
washed once in 1× PBS.

Chromatin immunoprecipitation (ChIP)

ChIP assay was performed as previously described [2]. Briefly, 75
million cells in 1× PBS were cross-linked for 10 min by adding formal-
dehyde at a final concentration of 0.4%, and glycine was added at a
final concentration of 125 mM to quench cross-linking. Cells were
then lysed (10 mM Tris–HCl, pH 8.0, 10 nM NaCl, 0.2% NP40) for
10 min on ice, washed once in 1× PBS, followed by nuclear lysis
(50mMTris–HCl 8.0, 10mMEDTA, 1% SDS) for 10min on ice. Chromatin
was then diluted furtherwith Immunoprecipitation Buffer (20mMTris–
HCl, pH 8.0, 2 mM EDTA, 150mMNaCl, 1% Triton X-100, 0.01% SDS) and
a 1× Protease Inhibitor Cocktail set V, EDTA-free (Calibiochem, La Jolla,
CA). A Misonix S-4000 sonicator was used to shear samples in 8 repeats
of 30 cycles of 1 s on, 1 s off sonication at 30% output power 30 on ice.
Fragments in the size range of 200-400 base pairs were obtained.
Sonicated chromatin was pre-cleared overnight at 4 °C with 20 μg rat
non-immune sera (IgG) on protein G agarose beads. Ten micrograms
of the rat anti-GATA1 (sc-265, Santa Cruz Biotechnology, Santa Cruz,
CA; lot number L1609) antibody were also pre-bound to protein G
agarose beads overnight at 4 °C. For binding, pre-cleared chromatin
was added to the antibody–bead complex and incubated with rotation
at 4 °C for 4 h; 200 μL of pre-cleared chromatin was saved for use as
input. After binding, the beads were washed with Wash Buffer I
(20 mM Tris–HCl, pH 8.0, 2 mM EDTA, 50 mM NaCl, 1% Triton X-100,
0.1% SDS), High-Salt Wash Buffer (20 mM Tris–HCl, pH 8.0, 2 mM
EDTA, 500 mM NaCl, 1% Triton X-100, 0.1% SDS), Wash Buffer II
(10 mM Tris–HCl, pH 8.0, 1 mM EDTA, 250 mM LiCl, 1% NP40, 1%
deoxycholate), and 1× TE. DNA:protein complexes were then eluted
from beads with Elution Buffer (1% SDS, 100 mM NaHCO3). Reverse
cross-linking of immunoprecipitated chromatin was accomplished by
the addition of NaCl to ChIP and input samples, followed by incubation
overnight at 65 °C with 1 μg RNase A. To remove proteins, each sample
was treated with 6 μg Proteinase K for 2 h at 45 °C. Immunoprecipitated
DNA was finally purified using the Qiagen PCR Purification Kit.

Illumina library preparation for ChIP-Seq

All samples including input were processed for library construction
for Illumina sequencing using Illumina's ChIP-seq Sample Preparation
Kit. In brief, DNA fragments were repaired to generate blunt ends, and
a single ‘A’ nucleotidewas added to each end. Double-stranded Illumina
adaptors were ligated to the fragments. Ligation products were ampli-
fied by 18 cycles of PCR, and the DNA between 250 and 350 base pairs
was gel purified. Completed libraries were quantified with Quant-iT
dsDNA HS Assay Kit. The DNA libraries were sequenced on the Illumina
Genome Analyzer IIx or HiSeq 2000 as indicated (Table 2) using
Illumina's kits and reagents as appropriate.

Mapping for ChIP-Seq

Raw ChIP-seq reads were first groomed using FASTQ Groomer on
Galaxy [8–10].This program verifies that each base call has a corre-
sponding quality value, and that the quality value is in the Sanger,
Phred + 33 format. Groomed reads were then mapped to mouse
mm9 genome using Bowtie [11] using the parameters –m = −1 (no
limit),−k= 1,−y, and−best, thus allowing reads to map to multiple
locations, but reporting only the single, best alignment. This option was
chosen to allow reads to map in duplicated regions.

Peak calling for ChIP-seq

Themapped reads for each time point inG1E-ER4 cells anduntreated
G1E cells were then passed to MACS [12] with the matched control
(input) data set for peak calling using anmfold of 12, p-value threshold
of 1e−05 and bw (bandwidth) set to 120. We filtered ChIP-seq peaks
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Fig. 1. Illustrative changes inmorphology, cell surfacemarkers, RNA, and GATA1 occupancy during GATA1-dependent erythroidmaturation. G1E cells and G1E-ER4 cells either untreated
(0 h) or treatedwith E2 for increasing lengths of time (top to bottom) were examined by (left to right) microscopy after staining cytospinswithMay–Grunwald–Giemsa (MGG), and FACS
after fluorescent staining with antibody against CD44 and TER119. Results of RNA-seq on polyA+ RNA and ChIP-seq with antibody against GATA1 are shown on the right for the locus
encoding beta-globins and olfactory receptors, specifically a 145,400 bp region at chr7:110,928,295-111,073,694 (NCBI37/mm9 assembly of the mouse genome). In the locus map,
genes transcribed from left to right are above the line and those in opposite orientation are below the line. RNA-seq reads map to bottom (minus) strand of the assembly, and thus
the quantitation of the RNA is plotted as negative numbers. The locus control region (LCR) is a complex enhancer regulating the Hbb genes encoding beta-globins. Additional DNase
hypersensitive sites (HSs) even more distal from the Hbb genes are also shown.
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which had an overlap of at least one base pair with blacklisted regions
described in either Pimkin et al. [13] or mm9 blacklisted regions
identified by ENCODE [14].The number of peaks in each data set (after
removing the ones overlapping blacklisted regions) is given in Table 2.
The ENCODE blacklisted regions were obtained from https://sites.
google.com/site/anshulkundaje/projects/blacklists.

Quality assessment of ChIP-seq

GATA1 ChIP-seq and input samples were sequenced to a high depth,
ranging from 12 million to 138 million mapped reads (Table 2), with
mean and median sequencing depths of 48 million and 34 million
mapped reads, respectively. All ChIP-seq data sets had a very high
proportion of sequence reads mapping to the genome; all but one
were above 90% with a mean of 93%.

High-quality ChIP-seq data sets should show substantial clustering of
the mapped reads, which can be measured by cross-correlation analysis
of reads mapping to the two strands of DNA [15]. The values for these
metrics are sensitive to the method of mapping, and thus to generate
quality scores we remapped the sequencing reads and only accepted
uniquely mapped reads. We report the Relative Strand Cross-
correlation Coefficient (RSC) values (Table 2); values greater than 1 are
indicative of high quality [16]. Almost all the RSC scores for samples in
the GATA1 ChIP-seq time course are above 1, and they fit well within
the distribution of RSC scores for all ChIP-seq data sets from mouse
ENCODE [17], shown in Fig. 2. Quality score tags were derived from de-
fined ranges of RSC scores, with−2 corresponding tominimal read clus-
tering and +2 corresponding to a highly clustered library [16]. Quality
score tags were 1 or 2 for the GATA1 ChIP-seq samples in cell types con-
taining GATA1. We also performed cross-correlation analysis for GATA1
in the G1E cell line, which has no GATA1. As expected, replicate 1 for
this sample had an RSC score less than 1 and a quality score tag of 0.
However, replicate 2 actually passed the quality score thresholds, even
though no antigen was present in the cell line. The “signal” track is basi-
cally just noise (Fig. 1), and almost no peaks were called by MACS [12].
This illustrates some of the limitations in applying quality score metrics,
as discussed by Landt et al. [15] and Marinov et al. [16].

RNA extraction and cDNA synthesis

Total RNA was extracted from ~5 to 10 million cells using
Invitrogen's TRIzol reagent and the Ambion PureLink RNA Extraction
Mini Kit (Life Technologies #12183018A). Invitrogen's Dynabeads
mRNA Purification Kit (#610-06)was used isolatemRNA in two rounds

https://sites.google.com/site/anshulkundaje/projects/blacklists
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Table 2
Characteristics and quality metrics for ChIP-Seq data sets.

RSCc

0.72

1.05

1.33

1.18

1.57

1.30

1.03

1.04

Qual. tag

0

1

1

1

2

1

1

1

Peaksd

168

83

8,748

22,469

15,498

13,078

9,354

7,430

Cell line

G1E

G1E

G1E-ER4

G1E-ER4

G1E-ER4

G1E-ER4

G1E-ER4

G1E-ER4

G1E

G1E

G1E-ER4

G1E-ER4

G1E-ER4

G1E-ER4

G1E-ER4

G1E-ER4

E2

0

0

0

3h

7h

14h

24h

30h

0

0

0

3h

7h

14h

24h

30h

ChIP-seq

GATA1

GATA1

GATA1

GATA1

GATA1

GATA1

GATA1

GATA1

Input

Input

Input

Input

Input

Input

Input

Input

Repa

1

2

1

1

1

1

1

1

1

2

1

1

1

1

1

1

Platform

GAIIx

HS2000

GAIIx

GAIIx

GAIIx

HS2000

HS2000

HS2000

GAIIx

HS2000

HS2000

HS2000

HS2000

HS2000

HS2000

HS2000

Total reads

36,627,078

125,843,327

38,492,124

34,476,181

34,012,672

61,082,012

120,431,030

65,746,565

16,009,205

140,399,478

30,130,843

30,647,575

13,097,569

29,246,335

37,758,677

32,543,759

mapped readsb

35,388,113

107,467,165

36,039,444

32,242,923

32,847,095

55,959,297

108,359,122

59,362,933

15,613,522

131,227,457

27,376,761

26,977,374

12,063,426

27,494,721

35,483,560

30,573,122

Proportion mapped

0.97

0.85

0.94

0.94

0.97

0.92

0.90

0.90

0.98

0.93

0.91

0.88

0.92

0.94

0.94

0.94

aNumber of the replicate sample. Most samples have one determination.
bIncludes reads that mapped at multiple locations.
cDetermined from uniquely mapping reads.
dNumber of peaks after removing those overlapping blacklisted regions.
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of selection. Isolated mRNAwas subjected to fragmentation at 94 °C for
2 min 30 s in a high-salt 1× fragmentation buffer (200 mM Tris acetate
pH 8.2, 500 mM potassium acetate, and 150 mM magnesium acetate)
[18], and fragmentation ions were removed using a Sephadex G-50
column (USA Scientific). First-strand cDNA was synthesized from
100 ng mRNA primed with 3 μg random hexamers [18] and the four
conventional dNTPs (dATP, dTTP, dGTP, dCTP) using Invitrogen's
ThermoScript RT-PCR System (#11146-024). ActinomycinD was added
to prevent leaky second-strand synthesis. Second-strand cDNA was
synthesized at 16 °C for 2.5 h in 11× SSB (500 mM Tris–HCl pH 7.5,
100 mMMgCl2 and 10 mM DTT) with all the four dNTPs, except using
Fig. 2. Distribution of RSC scores formouse ENCODE ChIP-seq data sets. The RSC scores were
computed by the mouseENCODE consortium [17] on the uniformly processed alignments of
the GATA1 ChIP-seq data sets. The results are available from (https://docs.google.com/
spreadsheet/ccc?key=0Ao3-Or4FCMJEdFpPY2lwWnlZTV92MUNLOHYxbEl4Vnc&usp=
drive_web#gid=0). The QC tags are discrete categories based on RSC values as described in
Marinov et.al [16].
dUTP in place of dTTP to label the second-strand cDNA [19]. Uracil-
labeled second-strand cDNAwas then further processed for sequencing
library preparation using the Illumina ChIP-seq DNA Sample Prep
Kit, including end repair, A-tailing, and adaptor ligation. Prior to PCR
amplification, the dUTP-labeled second strand was selectively digested
so as to amplify only first-strand cDNA. The adaptor-ligated double-
stranded cDNA library was treated with 1 μL Uracil N-glycosylase
(Applied Biosystems GeneAmp AmpErase #11146-024) for 15 min at
37 °C, followed by high heat (95 °C for 5 min) to remove uracil from
nucleotides and to promote abasic scission of the second strand. For
PCR, betaine was added to the PCR buffer at a final concentration of
1.8 M to improve amplification of GC-rich sequences [20]. Strand-
specific libraries were sequenced on the Illumina HiSeq 2000 to obtain
2 × 99 nt paired-end reads. All samples were determined as biological
replicates.

Mapping and estimation of transcript abundance

Mapping and estimation of transcript abundancewere performed as
previously described in [21], with a fewmodifications. Aswith ChIP-seq,
RNA-seq reads were first groomed using the FASTQ Groomer tool on
Galaxy. Groomed reads were mapped to the mm9 genome using the
splice-junction mapper TopHat [11,22] in reference-assisted mode (−G,
using a custom gene model annotation file, other options—library-type
fr—first strand, −j using a custom junctions file). The custom junctions
file was obtained by combining splice junctions from TopHat output
across all transcriptomes for a comprehensive splice junction annotation.
The custom gene model annotation file was generated so as to represent
each gene by a single canonical transcript. Starting with an Illumina
iGenomes RefSeq mm9 GTF, we obtained canonical transcripts for each
gene from the “knownCanonical” table using the UCSC Table Browser to
represent that gene. For genes without any record of a canonical tran-
script, we chose the representative transcript based on transcript length
(longest), CDS length (longest) and number of exons (greater). We
excluded genes positioned on chrN_random or chrUn_random. Genes
encoding small RNAs (snoRNAs matching the pattern "Snora") were
excluded because estimation of their expression levels is not reliable.

https://docs.google.com/spreadsheet/ccc?key=0Ao3-Or4FCMJEdFpPY2lwWnlZTV92MUNLOHYxbEl4Vnc&amp;usp=drive_web#gid=0
https://docs.google.com/spreadsheet/ccc?key=0Ao3-Or4FCMJEdFpPY2lwWnlZTV92MUNLOHYxbEl4Vnc&amp;usp=drive_web#gid=0
https://docs.google.com/spreadsheet/ccc?key=0Ao3-Or4FCMJEdFpPY2lwWnlZTV92MUNLOHYxbEl4Vnc&amp;usp=drive_web#gid=0


Table 3
Raw reads and mapped alignment statistics for RNA-Seq.

Cell line Treatment Raw reads Rep1 Raw reads Rep2 No. Alignments Rep1 No. Alignments Rep2

G1E untreated 2 x 136,192,858 2 x 123,009,356 151,366,580 181,528,211
G1E-ER4 untreated 2 x 137,017,614 2 x 120,209,833 167,089,002 127,431,78
G1E-ER4 3 h E2 2 x 95,549,285 2 x 125,119,593 81,973,316 143,130,692
G1E-ER4 7 h E2 2 x 116,159,379 2 x 122,712,837 142,846,469 115,629,100
G1E-ER4 14 h E2 2 x 112,218,860 2 x 121,004,971 102,138,513 146,590,846
G1E-ER4 24 h E2 2 x 139,565,377 2 x 106,547,243 169,441,332 46,871,607
G1E-ER4 30 h E2 2 x 157,853,165 2 x 118,793,140 187,803,929 137,994,877
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This resulted in 22,977 genes, each with a single transcript. We used
Cufflinks and Cuffdiff [22–25] to obtain expression levels for individual
replicates and pooled samples, respectively, using this custom GTF.
However, regions on mouse chr11 and chr7 containing alpha and beta
globin transcripts were masked from both tools, using option −M
(see section on "Globin expression estimation" below). Other Cuffdiff
options used include dispersion-method = per-condition, library-
type = fr-first strand, max-bundle-frags = 20000000, min-reps-for-
js-test = 2, and −b for bias correction. Transcript abundance levels
pooled across replicates were expressed in terms of log2-transformed
fragments per kilobase of exon model (FPKMs) per million mapped
fragments, after addition of a value of 1.1 as noise. Noise addition was
done to avoid log-transforms of zero values and divide-by-zero issues.
Thus, genes with FPKM of 0 are log2-transformed to an expression
level of 0.1375.

Globin expression estimation

Globins are expressed in enormous amounts in erythroid cells.
Despite the availability of high-performance compute clusters, estimating
abundances for globins and performing differential expression tests
at these loci is time and memory-intensive (programs often do not
complete running), depending upon the number of reads. To avoid
these issues, we (bioinformatically) masked the alpha and beta globin
loci on chr11 and chr7, while estimating expression levels. The option
−M/− maskfile was used with a custom GTF covering the globin loci
to achieve this. As a result, all alpha and beta globin genes, including
Fig. 3. Scatterplots showing reproducibility ofmeasurements of gene expression in replicates of R
level in replicate 2 (Rep2). Red dotted lines indicate the lowess fit between themeasurements in
replicates are given in the graphs.
fetal globins had an FPKM of 0. To obtain some measure of expression
for globins, we extrapolated the expected FPKM of globins from their
read counts, by comparing read counts and FPKMs of the top 20 highly
expressed genes. Themedian ratio between the read counts and FPKMs
for these genes, 2, was used to obtain expression levels for globin genes.

Quality assessment of RNA-seq data

Table 3 provides a summary of raw and mapped alignments for
the fourteen RNA-seq data sets. As expected for high-quality RNA-seq
data, the two replicates for each cell line and time point were highly
correlated (Fig. 3), with a Spearman's correlation coefficient ranging
from 0.90 to 0.96 across samples. The Spearman's correlation coefficient
was chosen since it is less affected by extreme values than the Pearson's
correlation coefficient. The lowess line (red) closely follows the 45°
diagonal, also indicating that the two replicates agree with each other
quite well.

Recapitulation of prior literature

High-quality data sets should also recapitulate observationsmade in
the earlier literature. Examination of the distribution of expression
levels confirmed that most genes are not expressed in either G1E cells
or G1E-ER4 cells treated with E2 (Fig. 4). Importantly, non-erythroid
genes such as Vwf and Pf4 [26] were among those measured as silent
in the RNA-seq data from both cell types, whereas well-known
erythroid genes are expressed. Transcripts from late erythroid marker
NA-seq. Each dot is the expression level of a gene in replicate 1 (Rep1) versus the expression
replicates, and grey dotted lines indicate the 45° diagonal. Spearman correlations between



Fig. 4. Distribution of gene expression levels before and after GATA1-induced erythroid maturation. The number of genes in each bin of expression level is plotted for the erythroid
progenitormodel G1E cells (left) and themodel for maturing erythroblasts, G1E-ER4 cells treatedwith E2 for 30 h (right). Specific examples of genes expressed at low levels are indicated
by gene names in blue, and examples of more highly expressed genes are indicated by names in red. Colored tickmarks corresponding to these genes on the top x-axis indicate expression
levels on the bottom x-axis.
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genes such as Alas2 and Epb4.9 were hardly detectable in G1E cells
but were expressed at high levels in maturing G1E-ER4 treated with
E2 for 30 h. Conversely, genes known to be downregulated during
erythroid differentiation, such as Kit [27] and Myb [28], were strongly
expressed in G1E cells, but they were repressed in maturing G1E-ER4
cells.

The quality of the GATA1 ChIP-seq data sets was also evaluated
by examining a locus at which the dynamics of GATA1 occupancy has
been studied, theHbb locus encoding beta-like globins. As reported pre-
viously [2,29], we found that the locus control region (LCR) upstream of
the globin locus was occupied by GATA1 at the earliest time points,
whereas GATA1 bound to the Hbb-b1 promoter at later times (starting
at 7 h), before accumulation of transcripts from Hbb-b1 transcripts at
14 h (Fig. 1, right). Moreover, several sites appear to lose GATA1 occu-
pancy during maturation; this is an example of a phenomenon worthy
of further analysis with these data sets.

Thus, both the RNA-seq and the ChIP-Seq data sets agree well with
published literature, and we infer that they are high quality.

Discussion

The dynamics of GATA1 binding and effects on transcription have
been studied at individual genetic loci [2,29]. The data sets reported
here provide genome-wide information on these relationships. Further
investigation should revealmany new insights, especially by combining
the analysis of binding with the expression of candidate target genes.
We expect that many of the sites bound later in the time course could
be directing activation of erythroid-specific genes, but some of the late
binding could also implicated in repression. GATA1 binding only at
early stages of the examined course of differentiation was unexpected;
it has not been examined extensively in prior studies. It is important
to investigate whether specific categories of genes are enriched as
candidate targets of early-bound GATA1, and if so, determine whether
they represent genes characteristic of alternative cell fates.

While these data sets are valuable, users should be aware that they
are generated on material from an immortalized mouse cell line that
recapitulates many but not all aspects of erythroid maturation during
differentiation. The cells donot fullymature, andenucleated reticulocytes
and erythrocytes are not produced. Furthermore, the genetic knockout
of Gata1 in G1E cells and the rescue with a hormone-activatable form
of GATA1-ER in G1E-ER4 cells generates a large and immediate shift
in the concentrations of GATA2 and GATA1, whereas in normal erythro-
poietic maturation, the concentration of GATA2 decreases and that of
GATA1 increases gradually [1,2]. These caveats should be kept in mind
while mining these important new data sets.
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