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Simple Summary: Nociceptin (NC) is a small peptide implicated in the physiology of pain, learning and
memory. Here we investigated the role of NC in the induction of antioxidants in the kidney, liver, and
the brain of diabetic rats using morphological and biochemical methods. Normal and diabetic animals
were treated with NC for 5 days. Catalase (CAT) was expressed in the kidney, liver, and the neurons of the
brain. Although CAT was markedly (p < 0.05) lower in the tubules of the kidney of normal and diabetic
animals after NC treatment, NC significantly (p < 0.001) increased the presence of CAT in the liver and
brain of diabetic rats. Superoxide dismutase (SOD) was observed in kidney tubules, hepatocytes, and
neurons of the brain. Treatment with NC markedly (p < 0.001) increased the level of SOD in hepatocytes
and neurons of the brain. Glutathione reductase (GRED) was seen in the convoluted tubules of the kidney,
hepatocytes and neurons of the brain. Treatment with NC markedly increased (p < 0.001) the expression
of GRED in kidney tubules, hepatocytes and neurons of the brain. In conclusion, NC can help diabetic
patients mitigate the effects of oxidative stress by its ability to induce endogenous antioxidants.

Abstract: Nociceptin (NC) consists of 17 amino acids (aa) and takes part in the processing of learning
and memory. The role of NC in the induction of endogenous antioxidants in still unclear. We examined
the effect of NC on the expression of endogenous antioxidants in kidney, liver, cerebral cortex (CC),
and hippocampus after the onset of diabetes mellitus, using enzyme-linked immunosorbent assay and
immunohistochemistry. Exogenous NC (aa chain 1–17; 10 µg/kg body weight) was given intraperitoneally
to normal and diabetic rats for 5 days. Our results showed that catalase (CAT) is present in the proximal
(PCT) and distal (DCT) convoluted tubules of kidney, hepatocytes, and neurons of CC and hippocampus.
The expression of CAT was significantly (p < 0.05) reduced in the kidney of normal and diabetic rats
after treatment with NC. However, NC markedly (p < 0.001) increased the expression CAT in the liver
and neurons of CC of diabetic rats. Superoxide dismutase (SOD) is widely distributed in the PCT and
DCT of kidney, hepatocytes, and neurons of CC and hippocampus. NC significantly (p < 0.001) increased
the expression of SOD in hepatocytes and neurons of CC and the hippocampus but not in the kidney.
Glutathione reductase (GRED) was observed in kidney tubules, hepatocytes and neurons of the brain.
NC markedly increased (p < 0.001) the expression of GRED in PCT and DCT cells of the kidney and
hepatocytes of liver and neurons of CC. In conclusion, NC is a strong inducer of CAT, SOD, and GRED
expression in the kidney, liver and brain of diabetic rats.

Keywords: nociceptin; kidney; liver; brain; hippocampus; neuropeptides; cFOS; antioxidants im-
munohistochemistry
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1. Introduction
1.1. Oxidative Stress

Oxidative stress occurs in biological systems when the tissue pool of free radicals ex-
ceeds the capability of cellular antioxidants to neutralize them. Oxidative stress is described
as a disparity between pro-oxidants and anti-oxidants with a concomitant disturbance
in the whole redox network and a subsequent destruction of macromolecules [1]. Free
radicals, such as hydrogen peroxide (H2O2), superoxide (O2•−), hydroxyl (•OH), and
singlet oxygen (1O2) are produced during the course of cell metabolism [2,3] or other
biological processes in the body. Free radicals are released from intrinsic sources such as
mitochondria peroxisomes or during inflammation, ischemia, and exercise [4,5]. These
free radicals can also be released extrinsically during the smoking of tobacco, exposure to
pollutants of the environment, radiation, heavy metals, drugs, and many other noxious
agents [4,6].

These free radicals cause biochemical, as well as structural, defects in cells membranes
because they induce peroxidation of lipids, including those located in the plasma mem-
branes of almost all cells, in addition to the induction of breaks in DNA strands. Structural
damage to the membrane will impair the receptors and other key molecules embedded
within the plasma membrane. All of these will affect the normal function of the cell because
of malondialdehyde induced conformational changes in receptors, enzymes, and other
key transduction molecules. Indeed, it has been shown that lipid peroxidation is a catalyst
for the development of various diseases including, but not limited to, a large number of
pathological conditions, such as inflammation and neurodegeneration [7].

In contrast to the noxious and deleterious effects of free radicals, free radicals have
been shown to have important and vital roles on normal cell function. For example,
macrophages and other phagocytes produce, store, and release free radicals to destroy
pathogenic microorganisms that invade the body. However, these free radicals have to
be present in optimal concentrations conducive to the normal functioning of the body
system [8]. Moreover, it is well known that nitric oxide is an important neurotransmitter in
the nervous system, at least when present in suitable non-toxic levels [9–11]. Studies from
our laboratory have also shown that NO enhances insulin release from the pancreas [12,13].
Neurons of the enteric nervous system contain nitric oxide synthase, an enzyme that
metabolizes NO [14]. NO is also a key molecule in the regulation of blood flow in the
vascular bed. This effect is initiated by vasodilation [15].

1.2. Nociceptin, Oxidative Stress and Diabetes Mellitus

Since oxidative stress is a major cause of cell, tissue, and organ dysfunction, and
eventually organ failure, attempts have been made to target bioactive molecules involved
in the neutralization of free radicals. Studies using supplements of enzymatic endogenous
antioxidants such as SOD, CAT, and glutathione peroxidase to treat diseases have been
reported [16,17]. Many studies have also been performed looking into the ability of
non-enzymatic antioxidants (vitamin C, E, tocopherol) to either prevent and/or cure a
large variety of diseases, including diabetes mellitus [18,19]. These reports showed that
vitamin C and E have beneficial effects on the outcome of diseases [18–23]. The addition
of hyperglycemia increases the degree of oxidative stress in the body because increased
glucose level is a major trigger for the release of free radicals [24]. However, it is worth
noting that clinical trials of antioxidants in human subjects have not provided definitive
curative roles of these antioxidants [25].

There is a strong search, by researchers, to find new bioactive agents to reduce and
mitigate the impact of free radicals, especially in diabetes mellitus, where oxidative stress
is a major cause of debilitating morbidity and mortality because they induce the release of
free radicals [24,26]. Proteins and peptides can act as antioxidants because they have the
capacity to prevent lipid peroxidation and neutralization of free radicals [27]. As a peptide,
nociceptin, and its analogues, have been tested for their ability to neutralize the damage
caused to neuroblastoma cells by H2O2 [28]. The outcome has been controversial and far



Biology 2021, 10, 621 3 of 16

from conclusive, and the localization of endogenous antioxidants was not attempted. The
effect of nociceptin on the antioxidant activity in the liver and the kidney has not been
reported. Increased nociceptin gene expression has been reported in neuroglia cells in
response to oxidative stress [28], indicating that nociceptin may indeed be implicated in
the regulation of oxidative stress. Other studies showed that the cerebrospinal fluid (CSF)
level of nociceptin increased significantly with a concomitant increase in the level of CSF of
superoxide [29,30]. Several studies [31,32] have also indicated that the administration of
nociceptin protect the gastric mucosa. Studies in our laboratory showed that nociceptin
is present in pancreatic beta cells [33], where they are capable of stimulating insulin
release [34]. Insulin has been reported to be a powerful antioxidant against diabetes-
induced oxidative stress [35]. Based on these reports, we hypothesized that nociceptin can
increase the tissue expression of endogenous antioxidants to exert its beneficial effects.

The aim of the study, therefore, is to determine whether exogenous administration
of nociceptin will have any acute impact on the tissue expression of selected endogenous
antioxidants (catalase, superoxide dismutase, glutathione reductase) in the kidney, liver,
and brain of rats after the onset of diabetes mellitus.

2. Materials and Methods
2.1. Experimental Animals

Wistar rats, weighing 250–300 g, were used for the experiment. Although the exper-
imental animals were bred at the Animal House Facility, College of Medicine & Health
Sciences, United Arab Emirates University, Al Ain, UAE, the stock of the Wistar rats was
acquired from Harlan Laboratories (Oxon, England, UK). The experimental rats were
maintained in groups of four rats per plastic cage at a temperature of 23 ◦C with a cycle of
12 h day and 12 h night. The animals had water and chow (Emirates Feed Factory, Abu
Dhabi, United Arab Emirates) ad libitum.

2.2. Diabetes Mellitus Induction

Wistar rats were made diabetic using a single dose of 60 mg/kg−1 body weight of
streptozotocin (STZ; Sigma, Poole, UK). STZ was given intraperitoneally after dissolving it
in a citrate acid buffer solution, as described in previous experiments [36]. The same volume
of the buffer solution was given intraperitoneally to normal and diabetic control rats. One
Touch II Glucometer (Life Scan Inc., Johnson and Johnson, Chesterbrook, PA, USA) was
used to determine whether the rats were diabetic. Rats with glucose level ≥ 126 mg/dL
were chosen for the study. All rats were humanely euthanized 5 days after treatment
with nociceptin. The study was performed based on the guidelines of the Declaration of
Helsinki, and approved by College of Medicine & Health Sciences Animal Research Ethics
Committee (#A5-14).

2.3. Experimental Groups

Rats (n = 24) were assigned, at random, into four different groups: I. Normal control
(n = 6): Normal male Wistar rats treated with 10 µg/kg body wt. of physiological saline.
II. Normal treated (n = 6): Normal male Wistar rats treated with 10 µg/kg body wt. of
nociceptin (amino acid chain 1–17). III. Diabetic control (n = 6): Diabetic male Wistar
rats treated with 10 µg/kg body wt. of physiological saline. IV. Diabetic treated (n = 6):
Diabetic male Wistar rats treated with 10 µg/kg body wt. of nociceptin (amino acid chain
1–17). The nociceptin dose administered in this study is similar to those used in previous
experiments [37].

2.4. In Vivo Treatment of Rats with Nociceptin

Nociceptin (abcam ab38198; aa1-17), dissolved in phosphate buffered saline was
administered intraperitoneally at 10 µg/kg daily for 5 days to control as well as diabetic
rats. Nociceptin was given at 9:00 am every day. Equal quantity of phosphate buffered
saline (vehicle) was given intraperitoneally to another set of 6 normal rats (normal control),
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diabetic rats (diabetic controls) at the same time and for the same time period. Nociceptin
was administered 2 weeks after the onset of diabetes mellitus, leaving enough time for STZ
to be completely eliminated from the body. This short duration of the treatment was meant
to examine the acute effects of nociceptin.

2.5. Tissue Collection, Fixation and Paraffin Embedding

At the end of the experiment, the rats were anaesthetized with ether, and kidney, liver,
and brain (at the level of the hippocampus) tissues were expeditiously removed, trimmed
of connective tissues, and cut into 3–4 mm3 pieces. The tissue samples were then fixed
in Zamboni’s solution for 3 days. Following tissue fixation, the samples were embedded
in paraffin wax according to a previously described technique [38]. Briefly, kidney, liver,
and brain tissue samples were dehydrated in ascending concentrations of ethanol (50% to
100%), cleared in xylene, followed by embedding in liquid paraffin wax at 55 ◦C.

2.6. Immunofluorescence Study of Endogenous Antioxidants

Six µm thick sections were made using with Shandon AS325 microtome (Kalamazoo,
MI, USA), treated in a hot bath to soften the tissue. The tissue sections were later mounted
on glass slides coated with gelatin to facilitate adhesion. The glass-mounted slides were
then kept on a hot plate for 2 h. The tissue sections were processed for double labeled
immunofluorescence, according to a previously reported procedure [38]. In brief, paraffin
was removed from the tissue sections using xylene and hydrated with a sequence of graded
ethyl alcohol before eventual treatment with citrate buffered solution. The tissue sections
were incubated for 24 h with the primary antibody followed by an overnight incubation in
the secondary antibody (Table 1). Incubation in the primary antibodies were performed
at 4 ◦C. The sections were incubated in immune conjugated TRITC after treatment with
primary antibodies. The sections were then washed in PBS and mounted with cover slides
with CITI-Fluore media (Science Services GmbH, München, Germany). The images were
captured with an AxioCam HRc digital camera using AxioVision 3.0 Software (Carl Zeiss,
Oberkochen, Germany). Images were processed using Image J 1.8.

Table 1. Details of the primary antibodies used in this study.

# Antibody Source Type Cat No. Dilution Manufacturer

1 Anti-Superoxide
dismutase Rabbit Polyclonal ab13498 1:200 Cambridge, MA, USA

2 Anti-Catalase Rabbit Polyclonal ab16731 1:200 Cambridge, MA, USA

3 Anti-Glutathione
Reductase Mouse Monoclonal ab16801 1:200 Cambridge, MA, USA

4 Neural NOS Mouse Monoclonal ab610308 1:500 BD Transduction Labs
San Jose, CA, USA

5 cFOS Mouse Monoclonal sc-271243 1:100 Santa Cruz Biotechnology,
Dallas, TX, USA

6 FITC Goat Polyclonal 111-095-003 1:100
Jackson ImmunoResearch

Laboratories, Europe Ltd. (Ely,
Cambridgeshire, UK)

7 TRITC Goat Monoclonal 111-025-003 1:100
Jackson ImmunoResearch

Laboratories, Europe Ltd. (Ely,
Cambridgeshire, UK)

2.7. Immunolocalization of Neural Nitric Oxide Synthase and cFOS Protein

Staining of the C3 hippocampal region was conducted to show whether intraperitoneal
administration of nociceptin for 5 days could induce the expression of cFos protein, an
indication of increased activity of neurons.
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2.8. Primary and Secondary Antibodies

The list of the primary and secondary antibodies and their dilutions is given in
Table 1. Superoxide dismutase, Anti-Catalase, Anti-Glutathione Reductase from Abcam
(Cambridge, MA, USA), while FITC, 1:1000 and TRITC were bought from Jackson Im-
munoResearch Laboratories (Ely, Cambridgeshire, UK).

2.9. Measurements of Catalase Activity

Catalase activity was measured in normal, normal treated, diabetic untreated, and
diabetic treated with nociceptin, using the colorimetric method with commercial kits
(Cayman Chemical, Ann Arbor, MI, USA). The ethical permit to run catalase activity was
(#A5-14) issued by the College of Medicine & Health Sciences Animal Research Ethics
Committee, UAEU, Al Ain, United Arab Emirates.

2.10. Densitometric Analysis of Immunofluorescence

The density of the immunofluorescence staining of catalase (CAT), superoxide dis-
mutase (SOD), and glutathione reductase (GRED) containing structure were measured
using Image J software® (NIH, Bethesda, MA, USA). Briefly, the image was copied to the
clipboard and inserted on 8-bit slot of Image J. The image was then inverted, and the line
tool was then used to gather the total number of pixels. The pixel peaks were then analyzed
as percentages of control. The process was done for 6 different sections per group, and
the data analyzed as mean ± SEM. The control (normal) image was considered as 100%.
Images were analyzed in the kidney from the renal cortex, in the liver from the area in the
immediate vicinity of central veins, and the area between layers II and VI in the cerebral
cortex. Image analysis for the hippocampus was done at the central part of the CA3 region.

2.11. Statistical Analysis

All experimental data were calculated as mean ± standard error of the mean. Differ-
ences between the groups were calculated using One-way ANOVA. Significant differences
between mean values of the group, and two different timelines, were calculated with an
unpaired t-test. Statistical significance was set at a value of p < 0.05.

3. Results
3.1. Nociceptin and Endogenous Antioxidants in Kidney

The characteristics of the animals used in the study is provided in Table S1.
Catalase (CAT) was present in the proximal (PCT) and distal (DCT) convoluted

tubules of normal and diabetic rats. However, the intensity of CAT was significantly
reduced after nociceptin treatment in normal and diabetic rats compared to untreated
controls (Figures 1a,b and 2. The expression of superoxide dismutase (SOD), on the other
hand, was elevated in normal rats treated with nociceptin. In contrast, the expression
of SOD was markedly reduced in diabetic rats treated with nociceptin (Figure 1a,c). In
a way that was completely different from CAT and SOD, glutathione reductase (GRED)
expression in kidney tissues was significantly increased in normal, as well as diabetic, rats
treated with nociceptin (Figure 1a,d).
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Figure 1. Images (a) of immunohistochemistry showing catalase (CAT), superoxide dismutase (SOD), and glutathione
reductase (GRED) expression in the cortex of the kidney of normal (N), normal treated (NT), diabetic untreated (DM)
and diabetic treated with nociceptin (DMT). While nociceptin has variable effects on CAT and SOD expression, the tissue
expression of GRED increased significantly after nociceptin treatment in both normal and diabetic rats (b–d). Proximal
convoluted tubules (arrow); distal convoluted tubules (arrow head); n = 6; Scale bar = 25 µm; Magnification = ×400; $$
and $$$ (normal treated versus normal untreated); ## and ### (diabetic untreated versus normal untreated); *** (diabetic
untreated versus diabetic treated) $$ p < 0.05, $$$ p < 0.001; *** p < 0.001; ### p< 0.001.

3.2. Nociceptin and Endogenous Antioxidants in Liver

Catalase (CAT) was discernible in hepatocytes located around the central vein of the
liver. CAT expression was markedly lower in the liver of rats treated with nociceptin when
compared to untreated controls (Figure 3a,b). In contrast, superoxide dismutase (SOD)
was strongly expressed in liver cells located in the immediate vicinity of central veins. The
expression of SOD was significantly elevated in both normal and diabetic rats treated with
nociceptin, compared to untreated rats (Figure 3a,c). Moreover, nociceptin was able to
increase the tissue level of glutathione reductase (GRED) in hepatocytes of diabetic rats
when compared to untreated controls (Figure 3a,d).
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Figure 3. Fluorescence images (a) of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GRED)
expression in the liver of normal (N), normal treated (NT), diabetic untreated (DM), and diabetic treated with nociceptin
(DMT). Note that the expression of SOD was significantly higher in normal and diabetic rats treated with nociceptin.
Nociceptin also markedly increased the tissue level of GRED after nociceptin treatment in diabetic rats (b–d). cv = central
vein; n = 6; Scale bar = 25 µm; Magnification = ×400; $ (normal treated versus normal untreated); ## and ### (diabetic
untreated versus normal untreated); ** and *** (diabetic untreated versus diabetic treated). $ p < 0.05; # p < 0.05; ## p < 0.01;
### p < 0.001; ** p < 0.05; *** p < 0.001.
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3.3. Nociceptin and Endogenous Antioxidants in the Cerebral Cortex

Neuronal cell bodies contain catalase (CAT). While nociceptin induced a lower expres-
sion of CAT in normal tissue, it caused a large, and significant, elevation in the tissue level
of CAT in the cerebral cortex of diabetic rats compared to untreated controls (Figure 4a,b).
Nociceptin did not have any effect on the expression of superoxide dismutase (SOD) in
the cerebral cortex of normal rats. However, it significantly elevated the SOD level in the
neurons of the cerebral cortex of diabetic rats. The expression of SOD was significantly
reduced in the cerebral cortex of untreated diabetic rats compared to treated and untreated
normal rats (Figure 4a,c). Nociceptin reduced the expression of glutathione reductase
(GRED) in the neurons of the cerebral cortex of normal rats but increased GRED level in the
cortex of diabetic rats when compared to untreated controls (Figure 4a,d, Figures S1–S3).
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Figure 4. Immunofluorescence images (a) of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase
(GRED) expression in the cerebral cortex of normal (N), normal treated (NT), diabetic untreated (DM) and diabetic treated
with nociceptin (DMT). Note that the expressions of CAT, SOD and GRED were significantly higher in neurons (arrows)
of cerebral cortex of diabetic rats treated with nociceptin when compared to controls (b–d). n = 6, Scale bar = 25 µm;
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*** (diabetic untreated versus diabetic treated) $ p < 0.05; ## p < 0.01; ### p < 0.001; *** p < 0.001.

3.4. Nociceptin and Endogenous Antioxidants in Cornu Ammonis 3 (CA3) Region of
Hippocampus

Immunofluorescence staining shows that endogenous antioxidants are present in
neurons of the CA3 region of the hippocampus. Nociceptin caused a reduced expression of
CAT in the CA3 region of the hippocampus in both normal and diabetic rats. In contrast
to its inability to induce CAT expression in the hippocampus of normal and diabetic
rats, nociceptin enhanced large increases in SOD expression in the hippocampus of both
normal and diabetic rats, when compared to untreated controls (Figure 5a,b). Nociceptin
also actuated an increase in the level of expression of superoxide dismutase (SOD) in the
hippocampus of both normal and diabetic rats (Figure 5a,c). In a similar trend, nociceptin
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caused a large and significant increment in the expression of glutathione reductase (GRED)
in the neurons of the hippocampus of both normal and diabetic rats (Figure 5a,d).
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Figure 5. Immunofluorescence images (a) of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GRED)
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3.5. Neuronal Nitric Oxide Synthase (nNOS) and cFOS in CA3 Region of Hippocampus

The hippocampus of normal, normal treated, diabetic untreated, and diabetic rats
treated with nociceptin were processed for nNOS and cFOS to determine whether noci-
ceptin has any effect on nNOS and cFOS. nNOS has been shown to play an important
role in the production of nitric oxide from L-arginine substrate and in the development
of the nervous system. It also plays a role in the maintenance of learning and memory
circuits in the hippocampus [39]. In addition, previous studies have reported that increase
in the expression of cFOS, in neuronal nuclei, is indicative of neuronal activity and a recent
depolarization [40]. Our aim in this part of the study was to determine whether nociceptin
has any role in the initiation of any of these events.

Nociceptin induced a marked reduction in the expression of nNOS in CA3 neurons
of normal rats compared to controls. In contrast, nociceptin caused a significant increase
in nNOS level in the neurons of the CA3 region of the hippocampus of diabetic rats
(Figure 6a,b).
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Figure 6. Immunofluorescence images (a) of nitric oxide synthase (nNOS) and c-FOS expression in the CA3 region of the
hippocampus of normal (N), normal treated (NT), diabetic untreated (DM), and diabetic treated with nociceptin (DMT).
Note that the expressions of nNOS is reduced after nociceptin treatment in normal but upregulated in diabetic rats treated
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normal or diabetic rats compared to controls (b,c). n = 6, Scale bar = 25 µm; Magnification = ×400; $ (normal treated versus
normal untreated); ** (diabetic untreated versus diabetic treated) $ p < 0.05; ** p < 0.01.

Regarding cFos, nociceptin failed to induce the activation of this biomarker of neuronal
activation in normal and diabetic rats (Figure 6a,c).

4. Discussion
4.1. Nociceptin and Endogenous Antioxidants in Kidney

Catalase (CAT) is ubiquitous to many cells and organs. It helps to neutralize H2O2, re-
leased during metabolic activities, into harmless oxygen and water [41]. The human variant
of CAT consists of four subunits capable of neutralizing millions of H2O2 molecules [42].
We showed that CAT is present in the proximal, as well as distal, convoluted tubules of
the kidney of normal rats. This observation agrees with that of Johkura et al. [43], who
demonstrated the presence of CAT in developing kidneys, using immunohistochemistry.
Apart from this, most study examined the plasma level of CAT rather than its tissue level
in the kidney. We hereby show that CAT is present in the proximal (PCT), as well as the
distal convoluted, tubules (DCT) of the kidney of normal and diabetic rats. The expression
of CAT was lower in an untreated diabetic kidney compared to untreated controls. The
degree of CAT expression was significantly lower in nociceptin-treated normal rat kidney
compared to untreated normal controls. Superoxide dismutase (SOD) reduces ROS in
tissues and has a strong anti-inflammatory effect [44]. Three types of SOD exist, SOD1 is
found mainly in the cytoplasm, SOD2 is in the mitochondria, and SOD3, which is located
in the extracellular space [45]. It catalyzes superoxide ions into oxygen and H2O2, and the
H2O2 is eventually neutralized by catalase [46]. The SOD used in this study contains all
of the isoforms and its expression is highly elevated in the kidney of normal rats treated
with nociceptin. In contrast, the expression of SOD was significantly lower in diabetic rat
kidneys treated with nociceptin. The reason behind this is unknown, but it may be due
to the fact that the SOD present in the kidney has been exhausted in diabetic rat kidneys.
Previous studies have shown that the structure of the kidney is grossly impaired after
the onset of diabetes [47]. The third endogenous antioxidant examined was glutathione
reductase (GRED). GRED reduces GSSG to GSH, which helps to convert H2O2 to harmless
H2O [48]. The administration of nociceptin significantly increased the expression of GRED
in kidney tissues in normal and diabetic rats. This shows that nociceptin has the capacity
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to increase the level of a subset of endogenous antioxidants in not just normal but also in
diabetic rats.

4.2. Nociceptin and Endogenous Antioxidants in Liver

The expression of catalase (CAT) was significantly lower in the liver of untreated dia-
betic rats when compared to that of normal untreated rat. This observation was confirmed
by enzyme-linked immunosorbent assay (ELISA). Previous reports have indeed shown
decreased level of CAT after the onset of diabetes mellitus [35]. The level of CAT expression
increased after treatment with nociceptin. ELISA technique showed that the blood level
of CAT rose, but not significantly, after treatment of diabetic rats with nociceptin. The
authors are not aware of any other study that reported the effect of nociceptin on catalase
expression in the liver.

Here we showed that superoxide dismutase (SOD) is widely distributed in the
parenchyma of liver of normal and diabetic rats. However, the expression of SOD is
significantly enhanced in both normal and diabetic rats after nociceptin administration.
The expression of SOD was mostly localized to hepatocytes located in the vicinity of and
around the central veins. The reason for this pattern of expression is not clear. It is possible
that the SOD, located in this area of the liver, may be destined to neutralize free radicals
resident in the blood around this part of the liver. To the best of our knowledge, this is the
first report on the ability of nociceptin to significantly stimulate the expression of SOD in
the liver.

The results of this study showed that glutathione reductase (GRED) was widely
observed in liver cells around the central veins. The expression of GRED was significantly
enhanced in hepatocytes around the central veins after nociceptin treatment, especially in
diabetic rats. This observation shows that most of the endogenous antioxidants, including
SOD, may indeed be concentrated within hepatocytes located around the central veins,
where they are most probably needed.

4.3. Nociceptin and Endogenous Antioxidants in the Cerebral Cortex

The cerebral cortex contain billions of neurons, which contain NOS, an enzyme capable
of generating NO. It is not a surprise, therefore, to find endogenous antioxidant such as
catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GRED) in the
brain that may be needed to neutralize excess NO and other free radicals. The expression
of these enzymes has been shown to be particularly high in the developing brain [49,50]. In
fact, it has been reported that these antioxidants may be working in tandem to neutralize
H2O2 in brain culture cells [51].

Here we demonstrated that nociceptin treatment induced a large and significant
increase in the expression of CAT in neurons of the cerebral cortex in nociceptin treated
rats compared to untreated diabetic controls. This is in contrast to the reduction in the level
of expression of CAT in normal rats treated with nociceptin. The reason for this difference
is not clear. However, the reason why there is upregulation of CAT in the cerebral cortex
of diabetic rats may be due to the fact that the level of CAT in diabetic rat brain is very
low compared to that of normal control. Therefore, we might be seeing an upregulation in
nociceptin-treated diabetic rats versus a negative feedback in nociceptin-treated normal
rats. Indeed, a recent study showed that the use of a herbal plant significantly increased
the level of CAT in the cerebral cortex of diabetic mice [52].

The neurons of the cerebral cortex contain SOD, indicating that this enzyme is required
for the neutralization of noxious free radicals produced during neuronal metabolism. The
expression of SOD was significantly reduced after the onset of diabetes mellitus. However,
treatment with nociceptin significantly increased the expression of this endogenous antiox-
idant in the neurons of the cerebral cortex, especially in diabetic rats, when compared to
untreated diabetic rats.

The expression pattern of glutathione reductase (GRED) is similar to that of SOD.
Diabetes mellitus caused a significant reduction in the expression of GRED in the neurons



Biology 2021, 10, 621 12 of 16

of the cerebral cortex compared to normal controls. The administration of nociceptin was
associated with a decrease in the expression of GRED in the neurons of the cerebral cortex
of normal treated rats and a large, and significant, increase in the cerebral cortex neurons
of diabetic rats when compared to their respective controls. A recent study showed that
melatonin can increase the level of GRED in the cerebral cortex of diabetic rats [53]. All of
these show that GRED is an essential component of the neurons of the cerebral control and
could be crucial in protecting neurons from both intrinsic and extrinsic release of reactive
oxygen species.

4.4. Nociceptin and Endogenous Antioxidants in the CA3 Region of the Hippocampus

The cornu ammonis 3 (CA3) region of the hippocampus, which is located in the dorsal
part of the hippocampus, plays an important role in the solidification of memory, be it more
recent or those that have happened in the far past [54]. We examined the expression of
endogenous antioxidants in this crucial part of the brain to determine whether nociceptin
can alter the expression of endogenous antioxidants in this region of the temporal lobe.
Nociceptin has been reported to play an important role in several physiological activities
processed by the hippocampus, including learning and memory [55]. Since increases
in oxidative stress have been reported in many neurological diseases [56], the ability to
increase the level of endogenous antioxidants that will neutralize the ROS, generated by
oxidative stress, may be key to treating these neurological conditions.

Catalase (CAT) expression was significantly downregulated in diabetic rats com-
pared to controls. This observation corroborates those reported for other regions of the
brain [55,56]. Paradoxically, CAT expression was significantly reduced after the adminis-
tration of nociceptin to either normal or diabetic rats. The reason why the expression level
of CAT in the hippocampus was not increased after nociceptin treatment is not clear.

In contrast, superoxide dismutase (SOD) expression was significantly increased in
both normal and diabetic rats after nociceptin treatment. This observation shows that
SOD may be crucial to the normal functioning of the neurons in this part of the brain. The
expression of glutathione reductase (GRED), in this part of the hippocampus, follows the
trend of SOD, with an initial decrease after the onset of diabetes. Treatment with nociceptin
caused a large increase in the expression of GRED in hippocampal neurons. This indicates
that GRED is probably an important tool for the suppression of ROS released by CA3
neurons, and that nociceptin can, indeed, enhance its expression.

4.5. Neuronal Nitric Oxide Synthase (nNOS) and cFOS in CA3 Region of Hippocampus

We examined the expression of neuronal nitric oxide synthase (nNOS), first as a
marker of neurons, and secondly, whether the expression of this enzyme will decrease after
treatment with nociceptin. nNOS is responsible for the production of nitric oxide, a signal-
ing molecule and a maintainer and enhancer of neural plasticity in the nervous system [57].
The administration of nociceptin reduced the expression of nNOS in the hippocampus of
normal rats. However, the expression of hippocampal nNOS was significantly enhanced
after treatment of diabetic rats with nociceptin. The ability of nociceptin to increase the
expression of nNOS in normal rats has been previously reported, a process necessary
for the regulation of neuropathic pain in mammals [58]. This shows that nociceptin can,
indeed, significantly increase the expression of nNOS, albeit in diabetic rats, in our case.
Our observation on the effects of nociceptin on nNOS level in normal rat hippocampus
did not corroborate that of Xu et al. [58]. NC treatment has also been shown to mitigate
drug-induced disturbances in learning and memory [59].

Since it has been shown that the hippocampus is implicated in the process of learning
and memory, we examine the expression of cFOS to determine whether its expression will
be altered after the administration of nociceptin. Our results showed that the expression of
cFOS was not altered after the administration of nociceptin. The reason for this is not clear.
It was expected that, if this region is involved in many neurological processes, then the
activation of cFOS in the nuclei of neurons in the part of the brain should be discernible.
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5. Conclusions

In conclusion, catalase (CAT), superoxide dismutase (SOD), and glutathione reduc-
tase (GRED) are widely expressed in the proximal and convoluted tubules of the kidney,
hepatocytes and neurons of the cerebral cortex and hippocampus. The administration of
nociceptin significantly increased the expression of SOD and GRED in the kidney, hep-
atocytes of the liver, and neurons of the cerebral cortex and hippocampus, especially in
diabetic rats. Nociceptin may be exerting its physiological and neuroprotective actions
via increasing the expression of endogenous antioxidants in stressful conditions, such as
diabetes mellitus.

Relevance of the Study and Future Prospectives

This study shows that nociceptin, a neuropeptide involved in many physiological
processes, including pain, learning, acquisition of memory, and the release of cytokines
and many others, can increase the expression of endogenous antioxidants in many cells,
including neurons of the brain. This shows that neurons may be able to defend themselves
from free radicals with needed support from neuroglia cells. The pathway by which
nociceptin induces the expression of endogenous antioxidant is a topic for future research.
The observations of this study may have significant implications in the uses of nociceptin
as an enhancer of endogenous antioxidants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10070621/s1, Table S1: Characteristics of the animals; Figure S1: Catalase-immunoreactive
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with nociceptin. Mag. ×400; Figure S2: Superoxidase-immunoreactive neurons in the cerebral cortex
(thick arrow) and varicose nerves (thin arrow) of normal rats treated with nociceptin. Mag. ×400;
Figure S3: Glutathione reductase-immunoreactive neurons in the cerebral cortex (thick arrow) and
varicose nerves (thin arrow) of normal rats treated with nociceptin. Mag. ×400.
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