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a b s t r a c t

N4-methylcytosine (4mC) is one of the most common DNA methylation modifications found in both pro-
karyotic and eukaryotic genomes. Since the 4mC has various essential biological roles, determining its 
location helps reveal unexplored physiological and pathological pathways. In this study, we propose an 
effective computational method called i4mC-GRU using a gated recurrent unit and duplet sequence-em-
bedded features to predict potential 4mC sites in mouse (Mus musculus) genomes. To fairly assess the 
performance of the model, we compared our method with several state-of-the-art methods using two 
different benchmark datasets. Our results showed that i4mC-GRU achieved area under the receiver oper-
ating characteristic curve values of 0.97 and 0.89 and area under the precision-recall curve values of 0.98 
and 0.90 on the first and second benchmark datasets, respectively. Briefly, our method outperformed ex-
isting methods in predicting 4mC sites in mouse genomes. Also, we deployed i4mC-GRU as an online web 
server, supporting users in genomics studies.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Epigenetics studies the environmental impacts on gene’s func-
tions. Although epigenetic alterations are reversible and do not af-
fect DNA sequences, they may change how the body interprets them 
[1]. DNA methylation, one of the epigenetic events, is a group of 
reactions that play vital roles in various biological processes, in-
cluding chromatin modification, DNA stabilization, gene expression 
regulation, DNA conformation, X chromosome inactivation, cellular 
differentiation, cancer progression, imprinting, and epigenetic 
memory [2–4]. N4-methylcytosine (4mC) is one of the most common 

DNA methylation modifications discovered in both prokaryotic and 
eukaryotic genomes, besides N6-methyladenine and N5-methylcy-
tosine [5–7]. 4mC is catalyzed by the N4 cytosine-specific DNA me-
thyltransferase (DNMT) to create a new bond connecting a methyl 
group to the amino group at the C4 position of cytosine. 4mC has also 
been described as part of the restriction-modification system that 
protects its DNA sequences from restriction enzyme-mediated de-
gradation [8–10]. Several studies have demonstrated essential bio-
logical roles of 4mC in DNA replication and repair, the cell cycle, 
controlling gene expression levels, epigenetic inheritance, genome 
stabilization, recombination, and evolution [11–13]. Since the small 
region of 4mC in the eukaryote genomes prevents it from being well 
detected, the understanding of its biological functions is still lim-
ited [14].

To determine DNA 4mC sites, large-scale experimental studies 
have been performed on the whole genome using chemical and 
biomolecular assays, including single-molecule real-time (SMRT) 
sequencing [15], mass spectrometry [16], 4mC-Tet-assisted bisulfite 
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sequencing [17], and methylation-precise polymerase chain reaction 
[18]. Although these experimental approaches are usually costly and 
time-consuming, their experimentally verified results provide valu-
able sources for computational biologists to develop in silico ap-
proaches to assist experimental biologists in determining 4mC sites 
in DNA sequences. In recent years, multiple in silico methods using 
machine learning and deep learning have been proposed to address 
various biological issues [19–22,23,24]. Several computational 
methods have been released to identify 4mC sites in DNA sequences. 
iDNA4mC [25], proposed by Chen et al., was developed by using 
support vector machines (SVM) incorporated with chemical char-
acteristics and nucleotide occurrence frequency as input features. 
4mCPred [26], introduced by He et al., is a different SVM-based 
method that extracts the position-specific trinucleotide propensity 
and electron-ion interaction potentials of sequences as input fea-
tures. 4mcPred-SVM [27] by Wei et al. was another SVM-based 
model constructed using four feature coding schemes in combina-
tion with two-step feature optimizations, showing a slight im-
provement in performance compared to previous methods. Wei et al. 
also released another model, 4mcPred-IFL [28], to predict 4mC sites 
by applying an iterative feature representation method to learn 
probabilistic features from various sequential models and improve 
feature representation in a supervised and iterative manner. Most 
recently, Tang et al. developed DNA4mC-LIP [29] that linearly in-
tegrated all the aforementioned methods for the prediction of 4mC 
sites. Besides models developed using classic machine learning al-
gorithms, multiple deep learning models were developed to identify 
4mC sites [30–33,34,35]. Despite the fact that these approaches 
yielded satisfactory outcomes, there is still much room for im-
provement.

In this study, we propose a more effective computational model 
called i4mC-GRU to predict potential 4mC sites in mouse genomes 
using a bidirectional gated recurrent unit (Bi-GRU) combined with 
duplet sequence-embedded features. The utilization of the Bi-GRU 
architecture on the sequence-embedded features supports the 
model to efficiently learn important information in both forward and 
reverse directions with an elevated training speed compared to 
other classic machine learning algorithms. The idea of sequence 
embedding evolved from the method of word embedding [36] in 
order to exploit the serial information of biological sequences de-
fined by the order of appearance of nucleic acids [37,38]. Our mod-
eling experiments were conducted using two independent 
benchmark datasets. The first benchmark dataset has sequence 
samples collected from the MethSMRT database [39] and carefully 
curated. The second benchmark dataset was collected from Mana-
valan et al.’s study [40]. Both benchmark datasets were confirmed to 
contain no duplications and highly similar sequences. To fairly ex-
amine the performance of i4mC-GRU, our model was compared with 
five other methods: iDNA4mC [25], 4mCpred-EL [40], 4mCPred-CNN 
[41], MSNET-4mC [35], and Deep-4mCGP [42].

2. Materials and methods

2.1. Benchmark datasets

To demonstrate the effectiveness of the proposed method, we 
conducted modeling experiments using two independent bench-
mark datasets. The pros and cons of these datasets are discussed in 
Section 3. Results and Discussion. Both benchmark datasets are de-
rived from the MethSMRT database [39].

2.1.1. Dataset A
To create the first benchmark dataset (Dataset A), we collected 

sequence samples from the MethSMRT database [39]. All collected 
sequences have their lengths fixed at 41 bp, with the Cytosine lo-
cated at the central position. The CD-HIT software [43] with a 

sequence identity cut-off of 0.8 was used to exclude similar se-
quences. The refined dataset included 7576 sequences after re-
moving sequences with high similarities. The training, validation, 
and test sets account for 70%, 15%, and 15% of the total refined se-
quences, respectively. It is worth noting that all sequences in the 
refined dataset are positive sequences, with Cytosine (C) positioned 
at the center of each sequence. To create pseudo-negative sequences 
for model development and evaluation, we applied truncation and 
padding.

The truncation process extracts pseudo-negative samples from 
the original positive sequences. The truncation’s sliding window 
searches for Cytosine, places it in the window’s center, and extends 
equidistantly to both sides. Since the extracted pseudo-negative 
sequences were shorter than the original positive sequences, the 
padding process was employed to equalize their lengths. After pas-
sing truncation and padding processes, both positive and negative 
sequences have a central C and lengths of 41 bp. Positive samples 
(sequences) are signified as ‘C*-sequences’, while negative samples 
are signified as ‘C-sequences’. One original positive sample can 
generate multiple pseudo-negative samples. The processing steps for 
extracting C*-sequence and C-sequence samples are explained in the 
next two subsections. Table 1 gives information about the original 
sequences and the processed samples.

2.1.2. Sequence truncation
This stage is to create pseudo-negative sequences from positive 

sequences. Since all the collected sequences were positive samples 
with Cytosine (C) located at the central position, we generated 
pseudo-negative sequences. A window of 41 bp was applied to these 
sequences to detect any invalid samples (not having C at the central 
position). The number of positive samples was equal to the number 
of valid sequences in each dataset. To obtain pseudo-negative se-
quences, a 35-bp window was applied to read along all the valid 
sequences. This window slides in both directions and adopts any C 
(at its center) until the window arrives at the terminal nucleic acids. 
After truncation, 35 bp-length pseudo-negative sequences were 
created. To equalize the sequence lengths between the two classes, 
the pseudo-negative sequences were padded by three nucleic acids 
at the ends of both sides. Fig. 1 describes the key steps in extracting 
pseudo-negative sequences.

2.1.3. Sequence padding
This stage is to equalize the lengths of positive and pseudo-ne-

gative sequences. To perform padding, we created a lookup table 
based on the frequency of appearance of nucleic acid triplet sets (or, 
more colloquially, “triplet sets”) at both terminals of the positive 
sequences. Only positive sequences in the training set were involved 
in constructing the lookup table. Initially, the 41 bp-length positive 
samples were first assumed to be 35 bp-length sequences (yellow- 
highlighted), so-called “sequencestemp”. A sequencetemp has its out-
ermost nucleic acid duplet sets (or, shortly, “duplet sets”) located at 
positions 4–5 (blue-bounded) and positions 37–38 of the original 
sequences, while triplet sets located at positions 1–3 (blue-high-
lighted) and positions 39–41 (purple-highlighted) were assumed to 
be padding values. For a duplet set, the occurring frequencies of all 
corresponding triplet sets were computed. The lookup table was 

Table 1 
Benchmark dataset A used for model training and evaluation. 

Dataset Number of samples

Sequence Positive Pseudo-negative Total

Training set 5304 5304 5816 11120
Validation set 1136 1136 1247 2383
Test set 1136 1136 1209 2345
Total 7576 7576 8272 15848
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specified by many duplet set - triplet set pairs as ‘keys’ for querying 
and ‘values’ for padding, respectively. A single duplet key might have 
up to 64 corresponding triplet sets, but only five triplet sets with the 
greatest appearing frequencies were set as padding ‘values’. 
Consequently, each duplet ‘key’ was associated with five triplets 
‘values’. Fig. 2 describes the padding steps to rebalance the length of 
all negative sequences.

The padding process was performed using the created lookup 
table. The outermost duplet ‘keys’ of all pseudo-negative samples in 
the three datasets (training, validation, and test sets) were de-
termined. The corresponding triplet ‘values’ were selected and 
padded to both sides afterwards. We examined three padding types: 
(i) randomly padding any possible triplet combinations of A, T, G, 
and C; (ii) randomly padding one in five triplets ‘values’ with equal 
probabilities; and (iii) randomly padding one in five triplets ‘values’ 
with probabilities weighted by appearing frequencies. Empirical 
results reveal that the model trained with samples padded by pad-
ding method (i) works less effectively compared to those trained 
with samples padded by padding methods (ii) and (iii). Models 
trained by padding methods (ii) and (iii) perform almost equally. 
Therefore, we selected the padding method (iii) for model devel-
opment. After sequence padding was completed, the positive and 
pseudo-negative sequences had the same length of 41 bp.

2.1.4. Dataset B
The second benchmark dataset (Dataset B) was collected from 

Manavalan et al.’s study [40]. This dataset was used for developing 
4mCpred-EL [40], i4mC-Mouse [44], and 4mCPred-CNN [41]. This 
dataset was also constructed from sequence samples retrieved from 
the MethSMRT database [39] like benchmark dataset A. Character-
istics of original sequences used for both benchmark datasets are 
identical with lengths of 41 bp. According to the dataset description 
in Manavalan et al.’s study, they removed similar positive sequences 

using the CD-HIT software [43] with a sequence identity cut-off of 
0.7 to obtain a refined set of positive sequence samples having 4mC 
sites located in the central position. To make a balanced dataset, the 
same number of negative sequences were randomly extracted from 
non-4mC sequences. The dataset was then divided into a training set 
of 1492 samples and an independent test set of 320 samples. To 
develop deep learning models, about 15% of the refined training set 
was used as a validation set. Table 2 gives information about the 
benchmark dataset B.

2.2. Sequence-embedded features

An index table containing indices of duplet sets of consecutive 
nucleic acids was first built. A window of 2 slid along the whole 
sequence, starting at the first nucleic acid and ending when arriving 
at the final one. A 41 bp-length sequence was first converted into a 
list of 40 triplet keys. Each triplet key was then matched with the 
index table to obtain its corresponding index, and this index re-
placed the triplet key. Finally, the index vector of size 1 × 40, defined 
by a series of distinctly ordered indices, was formed. The index 
vector is the input of our model. Fig. 3 highlights the main steps of 
converting sequence samples into index vectors.

2.3. Model architecture

Index vectors of size 1 × 40 are the input data of the model. The 
triplet ‘value’ for one side is independent of that for the other side. 
The Adam optimization algorithm [45] was applied to every mini-
batch of 64 samples with a learning rate of 1 × 10−4. Fig. 4 describes 
the model architecture used in our study. Before being transferred to 
the batch normalization (BatchNorm) layer, the input data are 
passed through the embedding layer with an embedding size of 64 
to generate embedding matrices of size 40 × 64. The normalized 

Fig. 1. The truncation process of the original sequences. 41-bp and 35-bp windows were used to truncate the DNA sequences. The 41-bp window fits the original positive 
sequences, with 4mC sites located at the central position. The 35-bp window slides along the positive sequences to capture other C-positions until it reaches the terminals of the 
sequences on both sides.
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matrices then enter the bidirectional gated recurrent unit (Bi-GRU) 
layer, defined with two units and a hidden dimension of 128. The Bi- 
GRU layer converts normalized matrices of size 40 × 64 into matrices 
of size 40 × 256 (40 × 128 × 2 directions). After passing through the 
second Bi-GRU layer, these matrices are then flattened and activated 
by the Leaky Rectified Linear Unit (LeakyReLU) function before 

entering the first fully connected (FC1) layer. Getting out of the FC1 
layer, vectors of size 1 × 10240 are transformed into vectors of size 
1 × 128, and eventually activated by the sigmoid function to return 
the probabilities. The loss function used is the binary cross-entropy:

= × + ×
=

Loss y y y ylog ˆ (1 ) log(1 ˆ ),
i

n
i i i i1 (1) 

where y is the true label and ŷ is the predicted probability.
Our models were implemented using PyTorch 1.3.1 and trained 

on Google Colab equipped with 25 GB of RAM and one NVIDIA Tesla 
T4 GPU over 25 epochs. It took about 4.5 s and 0.25 s to finish one 
training epoch and testing a model, respectively. The prediction 
threshold was set at the default of 0.5. The model at the epoch where 
the validation loss was minimum was selected as the optimal model. 
In our experiments, the model converged at epoch 17.

Fig. 2. The padding process of truncated sequences. Initially, the 41 bp-length positive samples were assumed to be 35 bp-length sequences (yellow-highlighted) so-called 
sequencestemp. All sequencestemp have two outermost duplet ‘key’ at both sides (blue-bounded and purple-bounded). For each duplet ‘key’, occurring frequencies of its corre-
sponding triplet ‘values’ (blue-highlighted and purple-highlighted) were computed (on positive samples of the training set only). For a single duplet ‘key’, top-5 triplets ‘values’ 
were selected for padding. The lookup table was created by 16 × 5 = 80 duplet ‘key’ - triplet ‘value’ pairs. To pad a 35 bp-length pseudo-negative sequence, the sequence’s 
outermost duplet ‘keys’ is first determined and fetched to the lookup table to retrieve the corresponding triplet ‘values’ padded to both sides of the sequence.

Table 2 
Benchmark dataset B used for model training and evaluation. 

Dataset Number of samples

Positive Negative Total

Training set 746 746 1492
Test set 160 160 320
Total 906 906 1812
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2.4. Evaluation metrics

To assess the performance of the model, several metrics, in-
cluding the balanced accuracy (BA), sensitivity (SN), specificity (SP), 

precision (PR), Matthews’s correlation coefficient (MCC), the area 
under the receiver operating characteristic (ROC) curve (AUCROC), 
and the area under the precision-recall (PR) curve (AUCPR), were 
measured. TP, FP, TN, and FN are abbreviations for True Positives, 

Fig. 3. Processing steps for converting sequence samples into index vectors. First, a duplet window slides along the sequences to extract all duplet keys (in order) to create key 
vectors. Each duplet key is assigned a specific index. From the key vectors, index vectors comprising all converted indices are created. The index vectors of size 1 × 40 are the model 
input.
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False Positives, True Negatives, and False Negatives, respectively. The 
mathematical formulas for these metrics are expressed below.

=
+

SN
TP

TP FN
,

(2) 

=
+

SP
TN

TN FP
,

(3) 

=
+

PR
TP

TP FP
,

(4) 

= +
BA

SN SP
2

, (5) 

= × ×
+

F
PR SN
PR SN

1 2 ,
(6) 

= × ×
+ + + +

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN( )( )( )( )
.

(7) 

3. Results and discussion

3.1. Comparative analysis

Our method was compared to five other methods, including 
iDNA4mC [25], 4mCpred-EL [40], 4mCPred-CNN [41], MSNET-4mC 
[35], and Deep-4mCGP [42]. The AUCROC and AUCPR are two deci-
sive metrics used for model assessment. iDNA4mC and 4mCpred-EL 
are machine learning-based methods while 4mCPred-CNN, MSNET- 
4mC, and Deep-4mCGP are deep learning-based methods. These 
methods were reimplemented based on their model descriptions 
and training conditions. These five methods and ours were trained, 
validated, and tested using the same training, validation, and test 
sets, respectively. Table 3 provides the evaluated model perfor-
mances of all methods on the independent test sets (of benchmark 
datasets A and B).

Comparative results indicate that i4mC-GRU obtains better per-
formance compared to other methods with AUCROC values of about 
0.97 and 0.89 and AUCPR values of about 0.98 and 0.90 on the test 
sets A and B, respectively. The performance of 4mCPred-CNN, a 
simple deep learning model, is only slightly lower than that of i4mC- 
GRU, but it still works better than these two other machine learning- 
based methods. While MSNET-4mC and Deep-4mCGP, two other 
deep learning models, work less effectively than other methods. For 
the benchmark dataset A, the balanced accuracy, precision, MCC 
value, and F1 score of i4mC-GRU are also higher than those of other 
methods, followed by 4mCPred-CNN, 4mCpred-EL, iDNA4mC, 
MSNET-4mC, and Deep-4mCGP. The sensitivities of i4mC-GRU and 
4mCPred-CNN are equivalent and both higher than those of the Fig. 4. Model architecture. 

Table 3 
The performance of i4mC-GRU and other methods on the independent test set. 

Dataset Method AUCROC AUCPR BA SN SP PR MCC Fl

A iDNA4mC 0.9151 0.9188 0.8296 0.8089 0.8504 0.807 0.659 1 0.8281
4mCpred-EL 0.9368 0.9418 0.8369 0.8147 0.8592 0.8133 0.6737 0.8356
4mCPred-CNN 0.9418 0.9507 0.8710 0.8908 0.8512 0.8799 0.7432 0.8653
MSNET-4mC 0.8115 0.8222 0.728 0.7298 0.7262 0.7147 0.4558 0.7222
Deep-4mCGP 0.7650 0.7624 0.7008 0.6250 0.7767 0.7245 0.4070 0.6711
i4mC-GRU (ours) 0.9732 0.9788 0.9289 0.8908 0.9669 0.9620 0.8619 0.9250

B iDNA4mC 0.8179 0.8164 0.7188 0.6688 0.7688 0.7431 0.4397 0.7039
4mCpred-EL 0.8578 0.8648 0.7875 0.7312 0.8438 0.8239 0.5787 0.7748
4mCPred-CNN 0.7953 0.8049 0.7188 0.6313 0.8063 0.7652 0.4444 0.6918
MSNET-4mC 0.8322 0.8339 0.7656 0.7688 0.7241 0.7640 0.5313 0.7664
Deep-4mCGP 0.7181 0.7303 0.6375 0.6125 0.6625 0.6447 0.2753 0.6282
i4mC-GRU (ours) 0.8877 0.8993 0.7812 0.7812 0.7812 0.7812 0.5625 0.7812
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other methods. Our method achieves higher specificity compared to 
the others. For the benchmark dataset B, the performances of all 
models, including ours, are decreased, our model is still dominant 
over other methods. The difference in performance between these 
two benchmark datasets may be explained by the different data 
volume. With the achieved performances on the benchmark datasets 
A and B, i4mC-GRU proves its robustness, stability, and effectiveness 
in identifying 4mC sites.

The combination of an effective architecture design, suitable 
featurization, and a well-designed modeling strategy may partially 
explain the efficiency of the proposed method. iDNA4mC and 
4mCpred-EL models were developed using conventional machine 
learning methods. While iDNA4mC was simply designed with 
Support Vector Machines, 4mCpred-EL was developed using an en-
semble learning strategy with multiple learning algorithms and 
feature sets. Based on their design, 4mCpred-EL requires more effort 
in featurization, hyperparameter tuning, training, and evaluation 
compared to iDNA4mC. Both methods, however, become computa-
tionally demanding once the data volume expands. The 4mCPred- 
CNN model was constructed with a convolutional neural network 
(CNN), one of the most frequently used deep learning architectures 
to address many problems. The results suggest that the CNN-based 
deep learning model is also highly competitive. Nevertheless, the 
CNN-based models work more effectively in processing image-like 
data by extracting features with a focus on regional significance 
rather than serial data characterized by orders of occurrence. 
MSNET-4mC is a more advanced CNN-based model adapting with 
multi-scale receptive fields to capture more information but the data 
volume is a concern issue. The application of deeper layers with 
multiple receptive fields on the small set of data ineffectively le-
verages the power of those receptive fields. Deep-4mCGP is a hybrid 
deep learning model consisting of long short-term memory (LSTM), 
a recurrent neural network, and CNN. The LSTM layer is responsible 
for dealing with ordered biological sequences and the CNN layer is 
organized to extract the sequence’s features. Our model architecture 
is designed with a gate recurrent unit (GRU) network, a lightweight 
recurrent neural network, to capture serial features of biological 
sequences Figs. 5, 6.

3.2. Limitations and future work

Not only is it challenge for our work, but also for other studies, to 
develop a quality negative set. There are a variety of techniques for 
generating decoy sequences in computational genomics research 
(i.e., pseudo-negative samples), for example, randomized matching 
generation [46], machine learning-aided selection [47], background 
sequence selection [48], and sequence recombination [48,49]. Each 
technique has its own characteristics, and the optimal strategy will 
depend on the specifics of the prediction task and the research ob-
jectives. In order to determine the most effective method for a 
particular situation, researchers may need to experiment with a 
variety of approaches. In the future, additional decoy generation 
techniques can be utilized to improve the prediction accuracy under 
a variety of conditions.

In our study, we used two benchmark datasets. The first bench-
mark dataset was specified with positive samples (which were col-
lected and refined from the database) and pseudo-negative samples 
(which were created based on positive samples). The model devel-
oped on a dataset with the pseudo-negative samples may need to 
manage the false positive rate. While the second benchmark dataset 
contains positive samples (which were collected from the same 
sources as the first benchmark dataset) and negative samples (which 
were collected from other sources of verified non-4mC sequences). 
Since the verified non-4mC sequences are far different from 4mC 
sequences, the model developed on a dataset with highly distinct 
negative samples are not forced to learn important feature to dis-
tinguish between 4mC and non-4mC sites.

3.3. Software availability

To support researchers in determining 4mC sites, a web server 
implementing i4mC-GRU was developed, and it can be accessed at 
https://github.com/mldlproject/2022-i4mC-GRU. The web server 
was designed with a user-friendly interface. i4mC-GRU assists users 
in locating potential 4mC sites in mouse genomes without the need 
for manual computation. Users can easily start their prediction tasks 
with i4mC-GRU by following the guidelines on the web server.

Fig. 5. ROC and PR curves of i4mC-GRU and other methods on benchmark dataset A. 
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4. Conclusions

In this study, we proposed i4mC-GRU, an efficient computational 
model using gated recurrent unit networks in combination with 
duplet sequence-embedded features, for predicting possible 4mC 
sites in mouse genomes. Our method achieved high AUCROC and 
AUCPR values in both benchmark datasets. Furthermore, i4mC-GRU 
was demonstrated to work better than other state-of-the-art 
methods based on a fair evaluation of the same independent test 
sets. Users can easily use our online web server to predict 4mC sites 
in mouse genomes.
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