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Objectives: Neuromuscular electrical stimulation (NMES) is a popular rehabilitative
modality to improve motor function of the extremities and trunk. In this study, we
investigated changes of hand function and the contralateral corticospinal tract (CST) with
treatment by NMES on the finger extensor muscles for 2 weeks, using serial diffusion
tensor tractography (DTT).

Methods: Thirteen right handed normal subjects were recruited. Treatment was applied
to the left hand (the NMES side), and the right hand was the control side. NMES
was applied for 30 min/day, 7 days per week, for 2 weeks. Hand motor function was
evaluated twice at pre-NMES and post-NMES training using grip strength (GS), Purdue
pegboard test (PPT) and tip pinch. The fractional anisotropy (FA), mean diffusivity (MD)
and tract volume (TV) of the CST in both hemispheres were measured using DTT.

Results: On the control side, the clinical scores did not differ significantly between
pre- and post-NMES training (p > 0.05). However, on the NMES side, PPT and tip
pinch improved significantly (p < 0.05), although GS did not. TV of the right CST
increased significantly at post-NMES training (p < 0.05) whereas FA and MD did not
differ significantly (p > 0.05). By contrast, FA, MD and TV on the left CST did not change
significantly (p > 0.05).

Conclusion: We demonstrated facilitation of the contralateral CST with improvement of
fine motor activity by 2 weeks of NMES training of peripheral muscles in normal subjects.
We think our results can be applied to the normal subjects and patients with brain injury
to improve the fine motor function of the hand and facilitate the normal CST or healing
of the injured CST.

Keywords: neuromuscular electrical stimulation, diffusion tensor tractography, corticospinal tract, hand function,
finger extensor
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INTRODUCTION

Neuromuscular electrical stimulation (NMES), a popular
rehabilitative modality, induces contraction of neuromuscular
system by applying electrical current (Rushton, 1997; Powell
et al., 1999; Chae and Yu, 2000; Daly and Ruff, 2007; Kim et al.,
2010; Doucet et al., 2012; Maddocks et al., 2013; de Oliveira Melo
et al., 2013). In the field of rehabilitation, NMES has long been
used to improve motor function of the muscles of extremities
and trunk, and the working mechanisms have been suggested
as improvement of muscle strength, decrease of spasticity of
antagonist muscles, increased range of motion, improvement of
voluntary motor control and recovery of functional movement
(Rushton, 1997; Powell et al., 1999; Chae and Yu, 2000; Daly and
Ruff, 2007; Kim et al., 2010; Doucet et al., 2012; Maddocks et al.,
2013; de Oliveira Melo et al., 2013). Furthermore, several studies
have reported that NMES facilitates healing of the corticospinal
tract (CST) directly (Han et al., 2003; Mang et al., 2010, 2011;
Wei et al., 2013; Chen et al., 2014).

The CST is the most important neural tract for motor
function in the human brain, and is associated with voluntary
movements of proximal and distal musculature, especially fine
motor activity of the hand (York, 1987; Davidoff, 1990; Jang,
2014; Jang et al., 2014b). To improve motor function, it is
important to facilitate the CST in both normal subjects and
patients with brain injury. Many studies have demonstrated
CST healing using repetitive transcranial magnetic stimulation
(rTMS), hand-arm bimanual intensive therapy or NMES (Han
et al., 2003; Kim et al., 2006; Khedr et al., 2010; Mang et al., 2010,
2011; Wei et al., 2013; Chen et al., 2014; Weinstein et al., 2015;
Chang et al., 2016). These studies evaluated their effect using
functional magnetic resonance imaging (fMRI) and diffusion
tensor imaging (DTI), although these methods have limited
precision to evaluate change of the entire CST (Han et al., 2003;
Kim et al., 2006; Khedr et al., 2010; Mang et al., 2010, 2011; Wei
et al., 2013; Chen et al., 2014; Weinstein et al., 2015; Chang et al.,
2016).

DTI has a unique advantage in identification and estimation
of subcortical white matter by virtue of their ability to
visualize water diffusion characteristics. However, it is
difficult to get objective results because the results could
be subjective depending on the location of the region of
interest (ROI) which is applied by a data analyzer. By contrast,
diffusion tensor tractography (DTT) for reconstruction of
the neural tracts usually employs a combined ROI method
that reconstructs only neural fibers passing more than two
ROI areas. The ROI areas and reconstruction conditions
for the neural tracts are well-defined for each neural tract
(Mori et al., 1999; Wakana et al., 2007; Malykhin et al.,
2008; Wang et al., 2012; Lee and Jang, 2015; Brandstack
et al., 2016; Jang, 2016). High repeatability and reliability of
DTT method for the neural tracts have been demonstrated
in many studies (Mori et al., 1999; Wakana et al., 2007;
Malykhin et al., 2008; Danielian et al., 2010; Wang et al.,
2012; Seo and Jang, 2014; Lee and Jang, 2015; Brandstack
et al., 2016; Jang, 2016). Therefore, experienced analyzers
can reconstruct the neural tracts without significant

inter- and intra-analyzer variation. The main advantage
of DTT over DTI is that the entire neural tract can be
evaluated in terms of DTT parameters, including fractional
anisotropy (FA), mean diffusivity (MD) and tract volume
(TV) and configurational analysis. DTT enables three-
dimensional reconstruction and estimation of the CST in
the human brain (Mori et al., 1999; Yamada et al., 2003;
Puig et al., 2010). Therefore, we think that DTT would be
more appropriate than fMRI or DTI to detect change of
the entire CST. We hypothesized that application of the
NMES on the finger extensor muscles could facilitate the
contralateral CST that can be evaluated precisely with serial
DTTs.

In the current study, we investigated changes of hand function
and the contralateral CST with application NMES on the finger
extensor muscles for 2 weeks, using serial DTTs.

MATERIALS AND METHODS

Subjects
Thirteen right-handed healthy subjects (five males, eight females;
23.23 ± 3.59, range 21–33) were recruited according to
the following criteria: (1) no previous history of psychiatric,
neurological, or physical illness; (2) no brain lesion on
conventional MRI, confirmed by a neuroradiologist; and (3) right
handed, confirmed by the Edinburgh Handedness Inventory
(Oldfield, 1971). Treatment was applied to the left hand (the
NMES side), and the right hand was the control side. All subjects
provided written informed consent prior to the start of the study,
and the study protocol was approved by the Institutional Review
Board of a Yeungnam University hospital.

Neuromuscular Electrical Stimulation
(NMES) Training
NMES was applied through a two-channel electrical simulator
(EMGFES 1,000, Cyber Medic, South Korea). Monophasic
square wave pulses were used at the rate of 30 Hz with
a pulse width of 200 µs, pulsed 3 s on and 2 s off.
Square surface stimulation electrodes were used to activate
finger extensor muscles of the left hand (fixed to the skin
with adhesive gel). The electrodes were positioned with a
cathode over the left extensor digitorum communis and an
anode on the left forearm near the wrist. The stimulation
intensity was adjusted to produce the maximum extension
of the finger within the limit that the subject did not feel
any discomfort (range of stimulation intensity: 8 ∼ 13 mA;
Shin et al., 2008; Jang et al., 2014a). The subjects were given
NMES training as follows: 30 min/day, 7 days per week for
2 weeks.

Clinical Evaluation
Grip strength (GS), Purdue pegboard test (PPT) and tip pinch
were used evaluate hand function at pre- and post-NMES
training. There are several clinical evaluation tools for these
parameters. For GS, the subjects were asked to sit on a chair
with their hip joint flexed at 90◦, and shoulder joint in a
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neutral position, elbow fixed at 90◦ flexion, forearm in a neutral
position, and wrist at 0◦ to 15◦ radial deviation. The Jamar
dynamometer (Jamar Hydraulic Hand Dynamometer, model-
5030J1) was used to evaluate GS. For PPT (Lafayette instruments,
model 32020), the subjects were required to place as many
pegs as possible in 30-s periods using the right hand and
left hand. For tip pinch, the subjects push the tip of index
finger and hold the pinch gauge with thumb. A hydraulic
pinch gauge measured the force between index finger and
thumb, parameters indicate the strength of the two fingers
(Tiffin and Asher, 1948; Smith and Benge, 1985; Reddon et al.,
1988; Kim et al., 1994; Kong et al., 2014). All of the clinical
evaluations were performed three times and average value was
calculated.

Fiber Tracking
Using a six-channel head coil with single-shot echo planar
imaging on 1.5 T (Philips Ltd., Best, Netherlands), DTI was
acquired at pre- and post-NMES training (2 weeks after pre-
NMES-training). For each of the 32 non-collinear diffusion
sensitizing gradients, 70 contiguous slices (number of excitations:
1, imaging reduction factor (sensitivity encoding (SENSE)
factor): 2, field of view: 240 × 240 mm2, reconstructed to matrix:
192 × 192, acquisition matrix: 96 × 96, parallel echo planar
imaging factor: 59, TE: 72 ms, TR: 10, 398 ms, b: 1,000 s/mm2,
and a slice thickness of 2.5 mm) were acquired. To analyze
the CST, the single-tensor model was used within the DTI
task card software (Philips Extended MR Workspace 2.6.3).
Each DTI replication was intra-registered to the baseline ‘‘b0’’
images to correct for residual eddy-current image distortions
and head motion effect, using a diffusion registration package
(Philips Medical Systems). DTI-Studio software (CMRM, Johns
Hopkins Medical Institute, Baltimore, MD, USA) was used
for reconstruction of the CST. DTI-Studio is one of the most
popular and commonly used the program for analysis of DTI
data. Furthermore, it has an advantage of applying to the
various sources of data and the efficient fiber tracking. In
detail, for the fiber tracking, two thresholds (FA and tract
turning-angle) was used and tracking is performed from all
pixels, in which FA values and turning-angle are higher and
lower than thresholds. Fiber tracking was based on the fiber
assignment continuous tracking algorithm and a multiple ROIs
approach. For reconstruction of the CST, ROI was placed
on the upper pons (portion of anterior blue color) on the
color map with an axial image. The second ROI was placed
on the mid pons (portion of anterior blue color) on the
color map with an axial image. The termination criteria used
default value FA <0.2, angle <60◦ (Kunimatsu et al., 2004).

Statistical Analysis
SPSS software (SPSS Inc. Released 2006. SPSS for Windows,
Version 15.0. Chicago) was used for data analysis. The paired
t-test was used for determination of differences in values of
clinical scores and DTT parameters of the subjects between the
NMES and control sides. Pearson correlation coefficients were
calculated to assess the strength of association between clinical
scores (GS, PPT and tip pinch) and DTT parameters of the CST.

TABLE 1 | Clinical scores at pre- and post-neuromuscular electrical stimulation
training.

Pre-NMES Post-NMES p-value
training training

GS Control 32.1 ± 8.8 32.2 ± 7.6 0.127
NMES 33.2 ± 9.1 33.2 ± 9.7 0.387

PPT Control 14.8 ± 1.7 14.7 ± 1.9 0.144
NMES 16.3 ± 1.9 16.8 ± 1.7 0.018∗

Tip pinch Control 3.2 ± 1.5 3.2 ± 1.8 0.377
NMES 3.5 ± 1.3 3.8 ± 1.4 0.003∗

NMES, neuromuscular electrical stimulation; GS, grip strength; PPT, Purdue
pegboard test. Values mean ± standard deviation. ∗Significant differences
between pre- and post-NMES trainings, p < 0.05.

Null hypotheses of no difference were rejected if p-values were
less than 0.05.

RESULTS

Table 1 shows average scores of GS, PPT and tip pinch between
the NMES and control sides in pre- and post-NMES training.
On the control side, no clinical scores (GS, PPT and tip pinch)
differed significantly between pre- and post-NMES training
(p > 0.05). On the NMES side, PPT and tip pinch improved
significantly (p < 0.05) with the NMES training, although GS
did not.

A summary of comparison of the DTT parameters between
the right and left CSTs is shown Table 2. Regarding the
configuration, the TV of the right CST shows more thicker
at post-NMES training compared with pre-NMES training
(Figure 1); and TV of the right CST increased significantly
at post-NMES training compared with pre-NMES training
(p < 0.05) whereas FA and MD did not change significantly
(p > 0.05; Figure 2). In contrast, FA, MD and TV did not change
in the left CST between pre-NMES and post-NMES trainings
(p > 0.05).

Correlation coefficients did not differ significantly between
clinical scores (GS, PPT and tip pinch) and DTT parameters (FA
(GS: r = 0.263, p > 0.05; PPT: r = 0.325, p > 0.05; tip pinch:
r = 0.442, p > 0.05), MD (GS: r = 0.342, p > 0.05; PPT: r = 0.441,
p > 0.05 ; tip pinch: r = 0.612, p > 0.05) and TV (GS: r = 0.658,
p > 0.05; PPT: r = 0.335, p > 0.05; tip pinch: r = 0.741, p > 0.05))
in the NMES and control sides (p > 0.05).

TABLE 2 | Diffusion tensor tractography (DTT) parameters at pre- and post-
neuromuscular electrical stimulation training.

Pre-NMES Post-NMES p-value
training training

FA NMES 0.47 ± 0.13 0.51 ± 0.02 0.374

Control 0.51 ± 0.02 0.51 ± 0.03 0.391

MD NMES 0.84 ± 0.05 0.84 ± 0.05 0.635

Control 0.83 ± 0.05 0.83 ± 0.05 0.528

TV NMES 1696.85 ± 559.88 2017.23 ± 490.48 0.001∗

Control 1857.23 ± 712.22 1986.62 ± 657.27 0.399

NMES, neuromuscular electrical stimulation; FA, fractional anisotropy; MD, mean
diffusivity; TV, tract volume. Values: mean ± standard deviation *Significant
differences between pre- and post-NMES trainings, p < 0.05.
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FIGURE 1 | Diffusion tensor tractography (DTT) for the right corticospinal tract
(CST) in a representative subject (21-year old female). The right CST on
post-neuromuscular electrical stimulation (NMES) training become thicker
compared with pre-NMES training in this subject.

DISCUSSION

In the current study, using DTT, we investigated change of the
CST between pre- and post-NMES training with application of
NMES on the finger extensor muscles for 2 weeks. Our results
can be summarized as follows. First, PPT and tip pinch improved
on the NMES (left hand) side without change of GS. Second, TV
of the right CST that innervates the left finger extensor muscles,
increased after NMES training without change of FA and MD
value.

In neuro-rehabilitaion, NMES is commonly applied to the
finger extensor muscles of the affected hand because the affected
hand usually shows flexor spasticity in hemiparetic patients with
brain injury (Nakip ğlu Yuzer et al., 2017; Pundik et al., 2018).
Therefore, NMES was applied to the finger extensor muscles
in this study. NMES training produced improvements in PPT
and tip pinch, although not in GS. PPT and tip pinch represent
finer motor function of hand than GS. This suggests that NMES
treatment of the finger extensor muscles might be more effective
in improving finer motor activity than gross muscle power.
This appears consistent with studies showing that the CST is
important in fine motor activity and strength (Kim et al., 2006;
Khedr et al., 2010; Mang et al., 2010, 2011; Weinstein et al.,
2015; Chang et al., 2016). In addition, NMES training which was
applied to extend the finger extensors maximally appeared to
facilitate the function of the finger extensors which are needed
to perform finer motor function of the hand.

Among DTT parameters, FA, MD and TV have most
commonly been used to evaluate the state of a neural tract
(Assaf and Pasternak, 2008; Neil, 2008; Pagani et al., 2008). FA
value indicates the degree of directionality of water diffusion
and the white matter organization; in detail, the degree of
directionality and integrity of white matter microstructures such
as axon, myelin, and microtubule (Assaf and Pasternak, 2008;
Neil, 2008; Pagani et al., 2008). The MD value indicates the
magnitude of water diffusion in tissue, and TV is determined
by the number of voxels included in a neural tract, thereby
suggesting the total number of fibers of a neural tract (Pagani
et al., 2008). Therefore, increased values of TV in the CST
indicate increment in fiber number of the CST compared with
post-NMES training (Pagani et al., 2008; Jang et al., 2013).
This result agrees with studies that report association between
improvement of motor function and increment of TV of the
CST (Schaechter et al., 2009; Jang et al., 2014b; Seo and Jang,
2015).

Many studies have tried to facilitate healing of the CST using
rehabilitative interventions including rTMS, hand-arm bimanual
intensive therapy, and NMES (Han et al., 2003; Kim et al., 2006;
Khedr et al., 2010; Mang et al., 2010, 2011; Wei et al., 2013;
Chen et al., 2014; Weinstein et al., 2015; Chang et al., 2016).
Several studies demonstrated an activating or facilitating effect
of NMES on the CST (Kim et al., 2006; Khedr et al., 2010;
Mang et al., 2010, 2011; Weinstein et al., 2015; Chang et al.,
2016). In 2003, Han et al. reported activation of the primary
motor cortex by application of NMES on the wrist extensor
muscles in eight normal subjects using fMRI (Han et al., 2003).
In 2010, Mang et al. demonstrated that applying 100 Hz on the
common peroneal nerve is the most appropriate frequency of
NMES to facilitate the CST in eight normal subjects using motor-
evoked potential (MEP) on transcranial magnetic stimulation
(TMS; Mang et al., 2010). The next year, Mang et al. (2011)
studied the effect of NMES on target muscle for 40 min in
14 normal subjects and found the facilitation of the CST using
MEP on TMS. Using DTI, two studies reported the facilitation
of the CST using NMES (Wei et al., 2013; Chen et al., 2014).
In 2013, Wei et al. investigated the effect of NMES on the
wrist extensor muscles for 20 days in 12 stroke patients at
the subacute stage and demonstrated that hand function was
improved, and FA value of the CST in the posterior limb of the
internal capsule was increased (Wei et al., 2013). Subsequently,

FIGURE 2 | Comparison of group analysis of DTT parameters for the right CST of pre- and post-NMES training (∗p < 0.05).
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Chen et al. (2014) investigated the effect of NMES for 3 weeks
in 48 stroke patients at the early stage, and they found that
NMES improved motor function and increment of FA value of
the CST around the lesion area. Although results of the above
two DTI studies appeared to demonstrate an effect of NMES
on the CST using DTI, these studies investigated the effects
only in a specific area of the CST pathway. Therefore, to the
best of our knowledge, this is the first study to demonstrate
an effect of NMES for the entire CST by NMES training
on the finger extensor muscles, evaluated by DTT in normal
subjects.

However, the limitations of this study should be considered.
First, DTT can produce false negative results throughout
the white matter of the brain because of crossing fiber or
partial volume effect (Parker and Alexander, 2005). Second, we
investigated the effect of the NMES training for 2 weeks and
could not evaluate the long-term effect of NMES training. Third,
there might be a ceiling effect in the evaluation of clinical data
of the right hand in the right-handed subjects. As a result,
alternative assign of the right hand or the left hand as a training
side could have ruled out the possibility of a ceiling effect.
Fourth, this study included a small number of subjects. Fifth,
we did not rule out the possibility by the sensory stimulation
which was applied by electrical current during NMES training in
improvement of the hand function. Last, we used the opposite
side of the NMES application as the control side instead of
recruiting a control group. Two times scanning of DTI was not
easy in terms of cost and the compliance of the subjects. In
addition, sham stimulation for the control side was not applicable

because NMES training is not passive stimulation, but active
stimulation. The fact that sham stimulation was not applied for
the control side might induce placebo effect. However, we think
that the placebo effect could be ruled out to a certain degree
because the CST on DTT has anatomical characteristics instead
of functional characteristics.

In conclusion, we demonstrated the facilitation of the
contralateral CST with improvement of fine motor activity by
2 weeks of NMES training on peripheral muscles in normal
subjects. We think our results can be applied to the sports
training for normal subjects including athletes and the patients
with brain injury to improve the fine motor function of the hand
and facilitate the normal subjects or healing of the injured CST.
Further long-term follow up studies involving larger numbers
of normal subjects and patients with brain injury should be
encouraged.
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