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Multipartite entanglement
criterion via generalized local
uncertainty relations

Jia-Bin Zhang?, Tao Li?*?, Qing-Hua Zhang?, Shao-Ming Fei' & Zhi-Xi Wang?

We study the detection of multipartite entanglement based on the generalized local uncertainty
relations. A sufficient criterion for the entanglement of four-partite quantum systems is presented in
terms of the local uncertainty relations. Detailed examples are given to illustrate the advantages of
our criterion. The approach is generalized to general multipartite entanglement cases.

Quantum entanglement is a remarkable feature in quantum physics' and has attracted much attention in recent
years. Entangled states are recognized as the essential resources in quantum information processing, with many
experimental realizations®® and applications in such as quantum algorithms*, quantum teleportation®®, quantum
cryptography®. Recently, it was shown that quantum entanglement is tightly connected to wave-particle duality,
and it can create a wave-particle entangled state of two photons’. Detecting entanglement of multipartite systems
is a fundamental problem in the theory of quantum entanglement. Separability criteria to determine whether
a given state is separable or not are of crucial importance®. Enormous efforts have been dedicated to solve the
separability problems®~’. Nevertheless, the characterization and quantification of multipartite entanglement
are less understood than that of bipartite case, as multipartite states can be entangled in more different ways.

There have been many efficient entanglement criteria such as local uncertainty relations (LUR)'"'2, covariance
matrix criterion (CMC)", computable cross-norm or realignment criterion (CCNR)™, permutation separability
criteria’®, criterion based on Bloch representations'”'%, entanglement witnesses?!, Bell-type inequalities criteria?,
and criterion based on quantum Fisher information®. Generally, these criteria are only necessary condition for
separable states and have different advantages in detect different entanglements.

The LUR criterion, the symmetric CMC criterion and the realignment criterion are usually considered as
complementary to the the positive partial transposition criterion. The main advantage of LUR criterion is that
it allows us to detect the entanglement of quantum states without having to fully understand them, and it can
detect bound entangled states more effectively.

Recently, based on the local sum uncertainty relations, some entanglement criteria have been proposed for
both discrete and continuous variable bipartite systems and three-qubit systems®'-*. Zhang et al. proposed a
tighter form of the original LUR criterion to improve the range of entanglement detection®, Akbari-Kourbolagh
and Azhdargalam generalized the LUR criterion to the tripartite systems™.

This paper is structured as follows. We start by introducing the entanglement criterion based on LUR for
tripartite systems and generalize the entanglement criterion to four-partite quantum systems. Some detail exam-
ples are then given to illustrate the advantages of the criterion. Then, the entanglement criterion for N-partite
systems (N > 4) is discussed. Brief discussion and summary are given at last.

Results
LetH = H; ® H2 ® - - - @ Hy be an N-partite system with 7 the dj-dimensional vector space associated with
the k-th subsystem. An N-partite state o € H is said to be separable if p can be written as

_ A1 2 N
P—ZP:P,' QP ®---Qp; > (1)

1
where pf‘ are density matrices of the subsystem Hy, 0 < p; <1, p; = L

In quantum theory, the observables of a quantum system are relpresented by a set of Hermitian operators {A;}.
The uncertainty principle shows that it is impossible to predict the measurement results of all observables of the
system at the same time. The variance of A; with respect to p is the uncertainty of an observable A;, defining as
(AAi)f) = (A}, — (Ai)f), where (A;), = Tr(p A;) is the mean value. For a set of quantum observables {A;}, there
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exits a constant U such that ) ( AA)? > U. This inequality gives a universally valid limitation of the measure-

ment outcomes. Generally, itl is difficult to determine the value U. For the case of Pauli matrices oy, oy and o,
one has (on)2 + (A(r},)2 + (Aaz)2 232,

In Ref?? based on the local sum uncertainty relations, an entanglement criterion has been presented for
tripartite systems.

Let {Ai I8 {Ai }and {Ai } be the set of local observables associated to the subsystems H1, H2 and 3, respectively.
Uy, Up, U; are lower bound of these local observables, such that Z A(A) ) > U, Z A(A) £y2 > U, and

Z A(AL)? > Us. For any separable tripartite states, the following 1nequa11t1es hold under any permutations of
{1,2,3)%:

FPPP =" A(A] + AL + AL)2 — (Ui + Uy + Us + M}, + M) > 0, )
i

where  Mp= \/Z AAD2 — U — \/Z AAD U, . Mop=,/F? - [Yau2-us ,
i i i
F12

= Z A(A"1 + A;)2 — (U + U+ Mlzz), Al, Al and Ag are the operators acting on the first, the second and

the third subsystem with the rest subsystems as identity operators in the tripartite systems, respectively.
Generalizing the criterion (2) to four-partite systems, we consider the set of local observables {Ai ), {Al 5 {Ai }

and {A}} associated to the subsystems H1, H>, H3 and Hy, respectively. From the local sum uncertainty relations,

there must exists lower bounds U; > 0 for each nonsimultaneous observable {A]’} for j = 1,2, 3,4. That is to say,

DAUDZ UL D AU = Uy, > AMD?=Us, Y A(A)? = Ul 3)
i i i i
Then for four-partite quantum systems, we have the following conclusion.

Theorem 1 For any four-partite separable states, the following inequalities hold simultaneously under any permu-
tations of {1, 2, 3,4},

123]4 2 2 2
F, H=F— o, + Miy3 + Mipze) = 0,

4)
F)?P* = F — (M}, + M3, + M}yp3,) > 0,

where F= ZA(A’ + Al + Al +A’ Z Ui . Mgy = \ER — |3 A(AL)? —
i

Mugjze = (/F}2 — JF3%

Theorem 1 provides a necessary condition of separable four-partite states. The violations of the inequalities in (1)
sufficiently imply entanglement. For the four-qubit W state, p=|W4)(Wy| with

1
W) = 7(|1000> + [0100) + [0010) + [0001)). Let A} = A} = A} = —A} =0y, A} = A3 =A}=-A} =0,
and A3 A3 A3 —Ai = 0,, thus we get ZA(A )2 >2, Mj;=0, M3y =0, M12‘3 = f— [,

i

M3 = ‘/7 — Mf2|3 — \/; and Mi34 = /3, which give rise to F123I4 =3 M12\3 — M123‘4 <0 and

F})2|34 = 0, which provide a violation for the inequalities (4). Therefore, the criterion identifies four-qubit W state

is entangled. By taking use of Theorem 1, more generally states can be detected and we consider some detailed
examples for mixed states below.

Example 1 (Four-qubit W state mixed with white noise) We first consider p; = %I + (1 — p)|Wa)(Wyl,
0 < p < 1. For this state, we choose —A% = —A; = —A% = A}l = Oy, —A% = —A% = A% = Ai =0 and

Al = A = A=A = ozhence} A(A;)Z > 2,Mip = Mag = O,Mpys = /3 —p> — /1 — 21 —p)?,

1
—9p2
Mizzs = \/M —M%ZB - \/1 — 21 —p)? and M35 = /3 —p2 —\/2p — p*+ 1. Then, we get
Epit = 10p — 4p? — 2 — M}, 5 — M}y and Fpl ™t = 10p — 4p? — 2 — M}, 5, When p < 0.3605, Fjp ! <0,
S0 the state p; violates one of the inequalities (4). Therefore the four-partite LUR criterion identifies the prasan
entangled state, see Fig. 1. While, p; is detected based on the witness W = il — |W4) (W4|which is proposed in

Ref.?”” when p < 0.267, see Fig. 2. That is to say our result detects better the entanglement than the criterion of
Ref.?.

Scientific Reports |

(2021) 11:9640 | https://doi.org/10.1038/s41598-021-89067-w nature portfolio



www.nature.com/scientificreports/

Figure 1. For the four-partite W state mixed with the white noise p;. The the blue line stands for F /1,123|4 and

the red dash line stands for F },?‘34 in Theorem 1. We can see that when p < 0.3605, state p; violates one of the
inequalities (4), hence p; is entangled for p < 0.3605.

Tr(eW)

Figure 2. For the four-partite W state mixed with the white noise p;. The the black line represents Tr(p; W) in
Ref.?”. We can see that p; is detected by the witness %I — |Wy)(Wy, thus p; is entangled for p < 0.267.

Example 2 (Four-qubit Dicke state mixed with white noise) Now, we take p; = %I + —p)(ID%)(D%D,
0 <p < 1, where |D‘2*) = ﬁ(HlOO) 4+ 11010) + |1001) + |[0110) + |0101) + |0011)). For this state, we choose
—Al = —A)=A} = A} =0, A} = A3 = A} = —A] =0,,—A} = —A3 = —A3 = —A] = 0. By direct cal-

culations, we get M2 =0, M3y =0, Mipp=+4—-2p—1, Mpss= 33—5 - %p —Mf23 —1 and

M = VE—2p— y2p, which yield FP4=2p-1+2£/2p—2+3/4-2p and

F};?m =8p—8+44/ #. When p < 0.437, F})ﬁ'“ <0, and F,1,§3|4 < 0 for p < 0.543. It can be seen, from

Fig. 3, that the p, violate inequalities (4) for p < 0.543. Furthermore, comparing with the result in Ref.?” which
show that p; is entangled for p < 0.356 (see Fig. 4), the Theorem 1 also detects more entanglement.

For a more general case, we consider the set of local observable {Af}, {A}},- - -, {Af\,} associated to the subsys-
tems Hi, Ha, - - -, HN, respectively. Every local observable has a lower bound U; (j=1,2,...,N) satisfies

Z:(A]‘:)2 > Uj. In order to simplify calculation, let iy represent {AfN} and the bi-partition index
(zl'lig -« -iglig41 - - - in) is denoted as ki |k, where k; = iyiy - - - ig and ko = ig41ik+42 - - - IN» f%] <K < Nand
1 <i <ip <---<ig < N.Forinstance, if N = 4, hence K = 2, and k;|ko = {12|34, 13|24, 14|23}, which rep-
resents three classes of bi-partition index of local observable set in N-body quantum system. Similar to the deri-
vation of the Theorem 1, we obtain the following lemma and theorem.

Lemma 2 For multipartite separable states, the following inequalities must hold:
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Figure 3. For the four-partite Dicke state D} mixed with the white noise p,. The the blue line stands for F,IJZB‘4

and the red dash line stands for F },f 31" and the red dash line stands for F, },f *in Theorem 1. When p < 0.3605,

we can see that the state p, violates one of the inequalities (4), whence our criterion detects the entanglement of
p2for0 < p < 0.543.

Tr(eW)

0.6
0.4

0.2

Figure 4. For the four-partite Dicke state D mixed with the white noise p. The the black line stands for
Tr(pWV) in Ref.?. By using the witness W, we can see that p; is entangled for p < 0.356.

VERNTL 3T A@? — U+ Y (Al + -+ A @ AY) — (Al + -+ Al AR Z 0, (5

and

\/FT?’ b j:Z[((Ai+~"+A§<)®(A§<+1+”-+A§v)>—(A§+"'+A§<)(A§<+1+"'+A5\7)} >0,
i
y (6)
where F})Z“'N71 =3 A(A3+A12+“'+A}v—1)2_(z U]~+Mf2+M122|3+...+M122..AN,2‘N71) >
j=1

. . . K .
Fﬁ“ =3 AAL AL -+ AL — (Z:l Uj + M2, + Mf2|3 +- 1+ MIZZA..K,”K))FI;I =2 AAky oot
J=

A N
AR)? - ¢ %:H U4+ Mg g+ + Mg ko No N
J:

Theorem 2 For any multipartite separable states, the following inequalities hold under any permutations of the
subsystems,

kilko — 1 _ (a2 2 2 2 2 2
Fy/™0 = F = (M, + Mijiyi, + o Miiy i + Mig iy o Mi iy + Migipeiy) 2 05
where
Scientific Reports|  (2021) 11:9640 | https://doi.org/10.1038/s41598-021-89067-w nature portfolio



www.nature.com/scientificreports/

N N
F:ZA(A;+A'2+-~+A;,)§—ZU,-, )
i=1 j=1

and

Mk, = \/F};”k" - \/Z A(AL )2 — Uy, forK =N — 1,
i (8)

Mk = \/FTSI— FR, forK < N — 1.

Afl is an operator acting on the ii-th subsystem H;, with the rest subsystems as identity operators in N-partite
quantum systems.
Let us consider five-partite quantum systems to illustrate the theorem. In the case of N = 5, we can have

{ ki € {123,124,125,134, 135, 145,234, 235,245,345} and ko € {45, 35, 34, 25,24, 23,15, 14,13,12} K=3;

ki € {1234, 1235, 1245, 1345,2345) and ko € {5,4,3,2,1} K=4.
Hence we have
F,¢l7234|5 =F— (M}, + M122|3 + M1223\4(M122|34) + M12234\5)>
F})BSH =F— (M}, + M122|3 + M1223\5(M122|35) + M%235|4)»
F;1>345|2 =F— (M + M123\4 + M1234|5(M123|45) + M12345|2),
F5345|1 =F— (Mj; + M223\4 + M2234|5(M223|45) + M22345|1)>
FPPPP = F — (M7, + My + My s(Miy)45) + Miysps)s

)
234 2 2 2 2 24|53 2 2 2 2
F,1> W= F— M3, + Miy3 + M5 + Mis5)s F}; P =F— M}, + Miys + Mss 4+ Mipys3)
12534 2 2 2 2 13452 2 2 2 2
F, P =F— M}, + Miy5 + M3y + Mips34)s Fp P2 = F — (M} + M54 + Mz, + Misys,),
F}>35|24 =F— (M5 + M123|5 + M, + M1235|24): F,1)45|23 =F— (Mj, + M124|5 + M;; + M1245|23)’
234 2 2 2 2 235]41 2 2 2 2
F; Pl =F — (M; + May + M5y + Mysy51), Fj M= F — (M35 + M35 + My + Mssi41)
245/13 2 2 2 2 345(12 2 2 2 2
F, B =F— 3, + Myys + Miz + Miys3), F, 12 =F— M3, + M35 + M1, + Miys),)s
5
) . ) i -
where F:Zi:A(Atl+A12+"'+Aé)%>_J;U' , Mi234)5 = F/lj 1 _ Zi:A(AIS)Z—Us
Miz3jas = F}:m — \/F5®- Mazas)1, Misas|o, Mi2as|3, M123sja, Miajss, Mi2s|3a, Misajso, M13s|2a, Muas)os, Masajsi,

M335)41, M245)13, M345)12 have similar representations.

1
As asimple example, consider the five-qubit state p = |W5) (W5 |, with|W5) = E(HOOOO) 4+ 101000) + |00100)
+(00010) 4 [00001)). Let —A] =A}=-Al=—-A]=Al=0,, —A}=-A3=-Ai=A}=Al=0,
A= —A3=—-A}=A3=Ad =0, WehaveU, = Uy = Us = Uy = Us = 2, M, = M34 = 0, M123 = 0.216],
M123|4 = 1.218 5 M12‘34 =0 5 M1234‘5 =0.2797 and M123‘45 = 0.8536 5 which give rise to

F,1)234‘5 =3-My; — Mk, — Mf234|5 < 0and F,l,23|45 < 0, namely, the state is entangled.

Conclusion

We have generalized the LUR criterion for three qubit quantum systems to multiqubit quantum systems, and
obtained new entanglement criteria for four-partite quantum systems as well as for general multipartite systems.
By detailed examples we have shown that our criteria can detect better the entanglement than some existing
criteria. It is further known that in certain situations they can provide a nonlinear refinement of linear entangle-
ment witnesses®, and it can be measured in experimental settings similar to those of entanglement witnesses.
The effectiveness of the LUR criteria relies heavily on certain notions of information content of quantum states
and choice of observables.

Quantum entanglement is fundamentally connected to the quantum steering, local uncertainty relations
(LURs) are a common tool for entanglement detection, and the underlying idea can be directly generalized to
steering detection®.

The considered system here is closed systems with no decoherence effects taken into account. Also, it would
be interesting to find criteria for open quantum systems, since realistic quantum systems inevitably interact
with the environment. It would be also interesting if our approach may highlight further investigations on the
k-separability®’ of multipartite systems and genuine multipartite entanglement detection.
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Methods

Proof of the Theorem 1 By straightforward computation, we have

D TAMY + AL+ AL+ A2 =A@+ AL+ AN+ A@D?
i i i
+27 (Al + 4%+ 4h) @ 4 — (4] + 4]+ Ady(ap)].

1

Taking into account that for any tripartite separable states p € H; ® Hay ® H3>,
VR[S a@h? - U £ 3 [(a] + 4h) @ 4)) — (4] + alyad)] 2o, 10)
i i

where F}JZ = Z A(A’A1 -|-A£)2 — (U + U + Mfz), we obtain
1
Z AA] + Ay + AL+ ADS = Ui 4 Uz + Us + Us + M7, + Miy3 4+ Mipyy,
i

namely, F,£23|4 > 0. By relabeling the sub-indices, we have F;MB >0, F,£34‘2 > 0and F§34“ > 0, similarly. Con-

12034
cerning F,, 34 we have

DTAM + AL+ AL+ AD2 =D AU+ A+ D AL+ A)?
i i i

1

+2 37 [(A] + 4D ® (4] + D) — (4] + Afad + 4.

1

Since for any bipartite separable states p € H1 ® Ho, the following inequality holds*,

¢Z A(AD)? — Uy ¢2 A2 - Uy £ )7 (4] © 43 — (4] 4h)] = 0, 1)

we get
DAL+ AL+ AL+ AD? = Ur+ Uy + Us + Us + M7, + M3, + My,
i
namely, F,l,z‘34 > 0. Similarly one can show that F53I41 > 0and F}f’I42 > 0. O

Proof of the Theorem 2 'We denote the length of kg as |ko|. From above, one has |ko| + |k;| = N.
When K = N — 1, one has |ky| = 1, by straightforward computation, we have

DSOAA A A A ANL =D AM AL+ A )T+ Y AR
i i i

1

T2 ) [(AL+ A5+ + AL @AY — (A + 45+ + AL (AR

1

By Lemma 2, for any multipartite separable statesp € H1 @ H2 ® - - - @ Hn,

VERNTL Y T AAR)? - Uy
i (12)

£ (A +Ah+ -+ AL ) @A) — (4] +A)+ -+ AL A 20,
i

via calculation, we obtain

N
Z A(All +A12 + - +A}\7)f) = Z U} + M122 + M122|3 +---+ M122..AN,1|N>
i j=1
namely, F5* N7 > 0. By relabeling the sub-indices, we have Fﬁ‘lko > 0.

When K < N — 1, one has||kg| > 2,
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DOAUI A+ AN =D AU+ AR D AR+ AR
i i i

i

#2357 [(AT 4+ Al ® (g -+ AW) = (AT + -+ Al Ay + -+ AR
i

By using Lemma 2, we get

N
P A i 2 2 2 2 ) 2 2
STA@A AL+ AN 2D U (MY My o+ My g+ ME g o+ My + MY ),
i j=1
namely, > KIKHIKF2-N > o By relabeling the sub-indices, one can show that F],;O‘kl > 0. O
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