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SUMMARY

Gene expression levels vary greatly within similar
cells, even within clonal cell populations [1]. These
spontaneous expression differences underlie cell
fate diversity in both differentiation and disease [2].
The mechanisms responsible for generating expres-
sion variability are poorly understood. Using single-
cell transcriptomics, we show that transcript vari-
ability emerging during Dictyostelium differentiation
is driven predominantly by repression rather than
activation. The increased variability of repressed
genes was observed over a broad range of expres-
sion levels, indicating that variability is actively
imposed and not a passive statistical effect of the
reduced numbers of molecules accompanying
repression. These findings can be explained by a
simple model of transcript production, with expres-
sion controlled by the frequency, rather than the
magnitude, of transcriptional firing events. Our study
reveals that the generation of differences between
cells can be a direct consequence of the basic mech-
anisms of transcriptional regulation.

RESULTS AND DISCUSSION

To determine the regulatory processes underlying the generation

of transcript variability, we quantified single-cell transcriptomes

at multiple stages during the early differentiation of Dictyoste-

lium. We sequenced the transcriptomes of 433 cells over three

time points: 0 (undifferentiated cells), 3, and 6 hr (at the onset

of multi-cellularity) (Figure 1A) in triplicate. Our data reproduce

the expression profiles of well-studied differentiation genes in

Dictyostelium [3] (Figure S1A).

To visualize transcript variability, the transcript variance (CV2,

the squared coefficient of variation) was plotted against the

mean expression (Figure 1B). Each gene was represented by a

dot, giving a characteristic cloud showing themean and variance

of each transcript. Genes above the median line (red) were more

variable than average, whereas genes below the line were less

variable. The dscA and csaA transcripts showed high variability.

Both genes have been shown to have highly variable protein

expression [4, 5]. In contrast, actin (act5) showed low variability.
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Previous act5 data indicate little variability, with most cells tran-

scribing the gene at high frequency [6, 7].

Global transcript variability increases during differentiation;

the whole gene cloud displayed in Figure 1B shifted vertically

(Figures 1C and 1D). This increased variability occurred before

branching of cells into different developmental lineages. To

test for branching, we used pseudotime approaches developed

for detecting bifurcations in developmental trajectories. The first

method, Monocle [8], detected no branching of the develop-

mental trajectory (Figure 1E), despite reliably ordering cells by

well-known developmental markers (Figure S1B). Alternative

pseudotime methods, SCUBA [9] and Wishbone [10], also did

not consistently identify branching (Figures S1C and S1D). In

addition, no clear segregation of cells into the primary lineages

(prestalk and prespore) could be detected in correlation heat-

maps of lineage markers (Figure S1E). Increased transcript vari-

ability before lineage branching has recently been observed in

culture models of vertebrate hematopoiesis [11, 12] and in the

early human embryo [13]. The similar behavior we have observed

in the evolutionarily distinct Dictyostelium model suggests that

this is a conserved feature of cell decision-making.

During differentiation, fewer genes were upregulated than

downregulated (Figure S2A), indicating the transcriptome

became progressively less complex, with a greater proportion

of the transcripts arising from fewer, strongly induced genes.

How do up- and downregulation contribute to overall transcript

diversity? To address this, we compared the transcript variability

(DM, the distance tomedian variance [14]) of genes that were up-

or downregulated at least 2-fold between 0 and 6 hr (Figure 2A).

Across all levels of expression, in 6-hr cells, downregulated

genes (purple) showed a greater variance (higher DM) than

upregulated genes (black). Repeating the analysis, with higher

fold-change thresholds in expression, showed an increasing

separation between up- and downregulated genes, with the

downregulated genes consistently more variable. This effect

was not dependent on bin size (Figure S2B) and was also clearly

apparent in the unprocessed CV2 values (Figure S2C). A non-

parametric test revealed that the difference was highly signifi-

cant (Mann-Whitney, p = 9.2 3 10�42).

However, a more detailed analysis was required, because

downregulated genes tended to have lower read counts than up-

regulated genes, so that, based on the mean-variance trend in

the gene cloud (Figure 1B), a lower expressed gene would likely

be more variable by default. We therefore bootstrapped the data

within bins of the same expression range, to determine the
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Figure 1. Dynamics of Gene Expression

Heterogeneity during Early Dictyostelium

Differentiation

(A) Single-cell RNA-seq was carried out on 0-, 3-,

and 6-hr differentiated cells. Three replicates were

carried out at each stage.

(B) The relationship between variance (CV2) and

mean (read counts) of transcript levels in single

0-hr cells. The 7,670 genes (dots) with more than

ten mean counts per cell are shown, with a running

median in red.

(C) Global noise increases during development.

Data show the runningmedians from the three time

points, averaged over all replicates.

(D) The CV2 distribution for each time point is

shown as box-and-whiskers plots, with the white

line denoting the median.

(E) No branches in developmental trajectories were

detected by Monocle. Cells, colored by time point,

are shown in the first two components’ space

attained by independent component analysis.

The black line shows the longest identified path

through the minimal spanning tree.

See also Figure S1 and Data S1.
probability that picking randomly selected geneswould generate

the observed differences between up- and downregulated

genes by chance: the null hypothesis that the up- and downregu-

lated genes showed the same variability was rejected at all

expression levels (p < 0.01 in each bin). The higher variability of

downregulated genes was, therefore, independent of expression

level. This indicates that the passive stochastic explanation—

that repressed genes are more variable simply because of a sta-

tistical effect of lower numbers of molecules expressed—is not

sufficient to explain the data. The greater variance of downregu-

lated genes therefore requires another explanation.

What regulatory features of up- and downregulated genes

determine variability? The turnover of RNA might affect tran-

script variance: less stable transcripts could reveal the presence

of transcriptional noise, whereas more stable transcripts could

temporally average out fluctuations. Both up- and downregu-

lated genes showed a higher turnover than the genome average

(Table S2), but we observed no relationship between RNAdegra-

dation rates [7] and transcript variance (Figure 2B). This observa-

tion suggests transcriptional noise is averaged out by longer

timescales of RNA turnover. Comparing transcript variance to
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promoter features, such as the presence

of a TATA box, promoter length, and GC

content, showed no strong correlations

(Figure S3), although upregulated genes

tended to have longer promoters and

coding sequences than downregulated

genes (Table S1).

Since the generation of variability by

repression could not be explained in a

simple manner as a passive stochastic

process or by differential stability of

up- and downregulated genes, this sug-

gested a transcriptional origin for the vari-

ability. To investigate this possibility, we
simulated transcript levels and variability using the two-state

(or random telegraph) model of transcriptional bursting (Fig-

ure 3A) [15–17]. In this model, a gene fluctuates between an

OFF state, with no transcription, and an ON state, with a certain

probability of transcript production. The model allows transcrip-

tional output to be defined in terms of transcript burst frequency

(the frequency with which the ON state occurs, scaled by the

RNA lifetime) and transcript burst size (the amount of RNA pro-

duced per ON phase). Both frequency and size can be modu-

lated during normal development [7, 18].

To simulate an entire transcriptome, we specified distributions

of possible values of burst frequency and size based on in vivo

measurements [6, 7, 19, 20], such that the combined influence

of frequency and size generated the properties of the experi-

mental data in Figure 1B. We performed simulations with

different ratios of burst size variance and burst frequency vari-

ance to the total variance in the system (Figure 3B). The distribu-

tion of simulated gene points was sensitive to the relative

weights of size and frequency. The most realistic versions of

the simulation occurred with strong contributions of both size

and frequency to transcript level (Figure 3B, ii–iv). Extreme



Figure 2. Downregulated Genes Show Greater Transcript Variability than Upregulated Genes

Variability is described by DM, the deviation from the expected noise value for a given expression level [14]. See also Figures S2 and S3 and Tables S1 and S2.

(A) Downregulated genes are more variable than upregulated genes. Plots show DM versus expression for up- and downregulated genes (black and purple,

respectively) at 6 hr development. Data are shown for different thresholds of fold change (jFCj) in expression level of each gene between 0 and 6 hr, averaged over

three replicates. Bin borders are every 500 genes within the entire dataset, starting from a mean of ten counts. Mean and SEM within each bin are shown.

Numbers of up- and downregulated genes for each threshold are shown below.

(B) No correlation between RNA stability and gene expression variance. Expression variability in 6-hr cells is plotted against RNA turnover (Pearson r = �0.009).

Each dot represents a gene colored by its mean expression level. Degradation units are the ratio of expression before to the expression after 1-hr actinomycin D

treatment [7].
versions (Figure 3B, i and v), generated almost exclusively from

variance in either size or frequency, did not resemble our data

or data from other studies [14, 21].

To what extent can this model framework explain the expres-

sion variability of up- and downregulated genes observed in our

data? Starting intuitively, transcript levels can be increased by

increasing burst size, frequency, or both, so expression in-

creases along the diagonal of a plot of frequency versus size

(Figure 3C, i). Increasing burst frequency will reduce the vari-

ance in expression (due to time-averaging of noisy events),

whereas increasing burst size will increase variance (due to

amplification of noisy events). Therefore, the variance in expres-

sion is orthogonal to the mean in this parameter space (Fig-

ure 3C, ii). It follows that, if expression changes with a constraint

on how much frequency or size can vary, this will bias the re-

sulting variance. For example, if genes are regulated predomi-

nantly by burst frequency (box in Figure 3C, iii), then this will

reduce the variance of the transcript abundance during

upregulation.

To test this reasoning, we simulated the changing level of

expression of a gene between two developmental time points,
by randomly sampling pairs of points from the simulated cloud

of genes in Figure 3B (iii). Sampling excluded pairs with less

than a 2-fold difference in expression between the points, and

it was weighted by the specified change in burst size and fre-

quency. Using these pairs of points provided high and low ver-

sions of a simulated gene, giving us the opportunity to look at

the overall variance characteristics of genes that have changed

their expression level, based on user-defined changes in burst

size, frequency, or both.

The simulations revealed differences between regulation

dominated by either burst frequency or size. If regulation was

equal between size and frequency, the simulation showed no dif-

ference in variance between high- and low-expressed genes of a

pair (Figure 3D, ii). If regulation was dominated by burst size, the

low-expressed partners showed lower variance than the high-

expressed partners (Figure 3D, i). In contrast, regulation domi-

nated by burst frequency showed that the low-expressed

partners had more variability than the high-expressed partners

(Figure 3D, iii).

We can interpret expression changes linking the simulated

gene pairs as occurring during developmental time, with the
Current Biology 27, 1811–1817, June 19, 2017 1813



Figure 3. A Simple Model of Transcriptional Dynamics Explains the Global Variance Properties of Up- and Downregulated Genes

(A) Two-state model of transcriptional bursting. The gene toggles between active and inactive states, with rates kon and koff. When active, transcript production

occurs at a rate l with transcript lifetime t. Transcript burst frequency (the frequency with which the active state occurs) is kon, although in most models kon is

scaled by t. Burst size (the amount of RNA produced per burst) is l/koff.

(B) Stochastic simulation of transcription based on the model in (A) generates different simulated clouds (i–v) from different pre-set distributions of burst size and

frequency (from i, where genes vary predominantly in burst size, to v, where genes vary predominantly in burst frequency, with equal contributions of size and

frequency in iii). In (ii)–(iv), where both size and frequency contribute more equally, simulated data more closely resemble the experimental data.

(C) Intuitive explanation of how controlling the burst parameters affects the variance of up- and downregulated genes. (i) Schematic shows mean expression is

increased by increasing either burst size or frequency. (ii) Noise increases with burst size and decreases with burst frequency. (iii) Restricting the range of possible

sizes and frequencies means the gene can only sample a limited range of values of mean and noise. In the example shown, the gene is mainly regulated via

frequency, so an increase in expression favors a decrease in noise.

(legend continued on next page)
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Figure 4. Differentiation-Induced Genes Show Elevated Transcript Variability in Undifferentiated Cells

(A) Plots of variability versus expression level (read counts) for genes that will be up- and downregulated during differentiation (black and purple, respectively)

before differentiation onset (0 hr). Bins are defined as in Figure 2. Mean and SEM within bins are shown for different fold-change thresholds.

(B) Negative scaling of change in expression (FC) with the change in transcript variability (DDM) during differentiation. Variability falls in upregulated genes and

increases in downregulated genes.

(C) Summary. Genes induced during development are initially more variable than genes that will be repressed. Genes that are repressed become more variable

than induced genes.

See also Figure S4 and Data S2.
low-expressed partners as the genes that were downregulated

and the high-expressed partners as those that were upregu-

lated. If burst size is the predominant source of regulation (Fig-

ure 3D, i), we would expect that, in differentiated cells (6 hr),

the upregulated genes would be more variable. This was not

observed in the experimental data (Figure 2A). If burst frequency

is the dominant source of regulation (Figure 3D, iii), we would

expect that downregulated genes would be more variable. This

scenario matches the experimental data in Figure 2A, implying

that the strong contribution of downregulation in generating

expression diversity during development can be explained by

the regulation of burst frequency.

Imposing down- or upregulation during development onto

pairs is arbitrary; pairing only specifies a change in expression

governed by a probabilistic set of rules describing the burst

parameters. We could equally well interpret the simulated pairs

from another point in time, such as the starting point rather

than the end point. So we can use the model to predict the

initial gene expression variance of genes that will be upregu-
(D) Matching the experimental data in Figure 2A using the two-state model. Lower

output is determined by burst frequency rather than burst size. Shown are the simu

in expression, allowing genes to have more variability in (i) burst size and (iii) freq

simulated pairs (purple) and their high-expressed partners (black) are shown. Me
lated or downregulated by burst frequency regulation. If we

consider the low-expressed partner in Figure 3D (iii) as the

gene that will be upregulated by an increase in burst frequency

and the high-expressed versions as the genes that will be

downregulated by a decrease in burst frequency, we would

expect that, in undifferentiated cells (0 hr), the genes that will

later be upregulated would initially be more variable. In

contrast, genes that will be later downregulated would initially

be less variable. Are the experimental data consistent with

these predictions?

Analysis of the experimental data indicates that these predic-

tions are valid. Figure 4A shows the plots of transcript level and

variance for 0-hr cells, showing genes that will become up- or

downregulated during differentiation. The genes that would be

upregulated were initially more variable in their expression

than those that would be downregulated. The difference is

clearer for genes that undergo higher fold changes. For genes

changing by 3-fold or more, for the first five bins, the difference

was significant at p < 0.01 and for the next two bins at p < 0.05.
expressed members of random gene pairs are more variable, if transcriptional

lations of randomized selections of genes constrained to have >2-fold changes

uency; (ii) where frequency and size vary equally. Low-expressed genes from

an and SEM within each bin are shown.

Current Biology 27, 1811–1817, June 19, 2017 1815



This effect was apparent regardless of the bin size (Figure S4A)

and was clear in the unprocessed CV2 values (Figure S4B). This

observation might signify a knee-jerk response, of some undif-

ferentiated cells, to the slightest hint of the differentiation trigger

(starvation), and it implies that the system is geared to generate

a developmentally advanced sub-population, perhaps with the

potential to nucleate subsequent developmental events. In sup-

port of this idea, functional enrichment analysis indicates that

starvation response genes, in addition to genes from other

stress response pathways, were heterogeneously expressed

in undifferentiated cells (Data S2). In contrast, the genes that

were variably expressed at 6-hr development were strongly en-

riched for functions in several biosynthetic processes. This may

relate to observations that cell fate outcome in Dictyostelium

can be strongly influenced by the nutritional history of cells

[22]. Expression distributions of selected genes following the

global variance trends for up- and downregulation are displayed

in Figure S4C.

Overall, our data reveal relationships between gene activation

and repression and the variability in transcript levels during a

developmental transition (Figures 4B and 4C). Transcript levels

from genes that will be upregulated are initially more variable

than those that will be downregulated. At the end of the develop-

mental transition, transcript levels from genes that were downre-

gulated are more variable than those from genes that were upre-

gulated. The dynamic variability of transcripts can be explained

by a simple model, in which genes are regulated by the fre-

quency rather than the magnitude of transcriptional bursts.

This view is supported by observations in multiple systems

that cell signaling can regulate the frequency rather than the

duration of transcriptional responses [18, 23–25]. The model

cannot be expected to do justice to the full complexity of tran-

scriptional dynamics within a burst [6], and any effects of cell-

cell variation in RNA turnover will also need to be superimposed.

However, the analysis represents a good first approximation,

which can be compared and adapted to specific molecular ef-

fects of activation and repression during cell decision-making.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Cell separation- C1 Integrated Fluidic Circuit chips Fluidigm 100/5759, 100/5760

cDNA synthesis- Advantage 2 PCR Kit and SMARTer PCR cDNA Synthesis Kit Clontech 200062

Library preparation- Nextera XT DNA Sample Preparation Kit Illumina FC-131-1096

Library preparation- Nextera Index Kit Illumina FC-131-1002

Experimental Models: Organisms/Strains

Dictyostelium AX3 cells with the rps30 gene engineered to express H2B-Cherry

as a nuclear marker

[6, 25] N/A

Software and Algorithms

MATLAB R2016a MathWorks N/A

Mathematica 10 Wolfram N/A

R 0.99.486 Open source N/A

Python 3.5 Open source N/A

Panther 11 [26] N/A

Scuba v1.0 [9] N/A

Wishbone [10] N/A

Monocle 1.4.0 [8] N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jonathan

Chubb (j.chubb@ucl.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used Dictyostelium AX3 cells (mating type I). The cells had been previously engineered to express a red fluorescent nuclear

marker [25]. This marker facilitated validation of single-cell capture for scRNAseq. Cells were cultured in HL5 medium attached to

tissue culture dishes [6] as previously described. For development assays, cells were detached from the plastic by pipetting, washed

in KK2 phosphate buffer (KPO4, pH 6.2) and plated on KK2/1.5% agar at a density of 3 3 106 cells per 35mm dish. At the indicated

times, cells were detached from the agar by gentle pipetting, and transferred in ice-cold KK2 buffer for cell capture and downstream

scRNAseq processing.

METHOD DETAILS

Single-cell RNAseq
For single-cell RNAseq, three replicates of the developmental time series were captured. For each time point, cells were loaded onto

Integrated Fluidic Circuit chips (IFC; Fluidigm). We identified capture of multiple cells and empty wells using brightfield illumination,

with validation of single-cell capture initially carried out using a genetically encoded red fluorescent nuclear marker. Cell lysis, reverse

transcription and cDNA pre-amplification were performed in the C1 Single-Cell Auto Prep IFC using the SMARTer PCR cDNA Syn-

thesis Kit (Clontech) and the Advantage 2 PCR Kit, as specified by the manufacturer (protocol 100-7168 A2). ERCC RNA spike-in

control mix (92 transcripts; ThermoFisher) was added to the chambers at a 1:1000 ratio. cDNA was harvested and the libraries

were prepared using the Nextera XT DNA Sample Preparation Kit and the Nextera Index Kit (Illumina), according to the manufac-

turer’s recommendations (protocol 100-7168 A2). Libraries from one chip were pooled, and paired-end 75bp (first two replicates)

or 25bp (third replicates) sequencing was performed on 4 lanes of an Illumina NextSeq500.

The quality of the reads was assessed using fastqc; a quality control tool for high throughput sequence data (www.bioinformatics.

babraham.ac.uk/projects/fastqc/). Paired-end reads were mapped to the Dictyostelium genome (version obtained from Gareth

Bloomfield, masking the duplication on chromosome 2) using Tophat version 2.0.9 (a spliced read mapper for RNA-seq; built on

the mapping program Bowtie). Subsequently, we counted reads for each gene with htseq-count.
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Stochastic simulation of transcriptional bursting
The transcription was simulated by a simple two-state model of transcriptional bursting [6], where a gene is either in the OFF state,

where no transcription occurs, or in the ON state, where there is a certain probability of polymerase initiation event. The switching

between the two states occurs at the rates of kon and koff, with koff being much greater than kon in order for transcription to display

a bursting behavior. For these simple purposes, we assume that polymerases are processive, so the rate of RNA production is equal

to transcription initiation rate, l. Once the initiation occurs, the RNA is produced with the offset of dwell time (the time needed for RNA

to leave the transcription site - comprised of elongation time and termination time, and set to the physiological value of 120 s [6]). The

degradation time, t, is defined as the lifetime of RNA once it has left the transcription site.

To obtain an amount of RNAs for an individual gene in an individual cell at a certain moment in time, we performed stochastic

numerical simulations, in MATLAB, of transcriptional bursting using the Gillespie algorithm [27]. The burst size, or a number of tran-

scripts produced per burst, is defined as l/koff, and the burst frequency, number of bursts per lifetime of cytoplasmic RNA, is defined

as kon 3 t. To mimic the distributions of burst size and burst frequency, t and koff were set to constant values of 1800 s and 0.01 s-1,

respectively, while l and kon were sampled from a (log2)-normal distribution with the mean values of 0.2 s-1 and 0.0013 s-1, respec-

tively. Parameters set in this way result in average values of 2.34 bursts per cytoplasmic RNA lifetime and 20RNAs synthesized during

each burst. The RNA lifetime was approximated from RNA decay measurements for around 20 genes, from Northern blot data on

actinomycin D treated cells [7]. The value of lwas amedium range estimate of the initiation rate from [6]. The value of koffwas approx-

imated from live cell measurements of transcription for a panel of housekeeping and developmental genes, for which themajority had

transcription pulses lasting less than 5min [7]. Our estimate of konwas based upon a compromise between several measurements of

transcription pulse interval for different genes [7, 19, 20].

The variance of kon and l are defined through their levels of contribution to a total variance in the system, as s2(l) = csize3 s2tot and

s2(kon) = cfreq3 s2tot, with the total variance being s2tot = s2(l) + s2(kon). Here, csize and cfreq are the user-specified coefficients defining

the fraction of the variance contributed by burst size and frequency, respectively. To create different scenarios of how the frequency

and size of transcriptional bursts vary across the genome, we set csize and cfreq to the following ratios: 1:0, 0.75:0.25, 0.5: 0.5,

0.25:0.75 and 0:1. For each of these scenarios, the simulation generates 200 cells described by 12,000 randomly selected genes.

For each gene, we calculated the average number of transcripts, m, coefficient of variance, CV2, and the relative noise value, DM.

To simulate the process of transcriptional activation or repression, we performed a Gibbs sampling on the aforementioned simu-

lated datasets, in order to retrieve random pairs of genes, which represent one gene either side of the developmental transition. For

this purpose, we specified the probability distribution in l/kon parameter space, reflecting the user-defined probability by which the

burst size and the burst frequency can change between genes in a pair. Each gene pair was selected in the following manner:

1. Randomly select the first gene gUP.

2. Repeat the following steps 1000 times:
a. Before selecting a second gene, reject any that do not fit the two-fold expression change requirement.

b. Assign the probability to every remaining point based on its distance from the chosen gene gUP in l/kon parameter space.

c. Randomly choose one of the points from the previous step, weighted by its probability, as a gene gDOWN.

d. Find another gUP partner by the same process described in a. to c.

3. Accept the final pair of gUP and gDOWN.

Three different mechanisms of transcriptional regulation were simulated: regulation dominated by changing mostly burst fre-

quency, regulation by changingmostly burst size or regulation by changing both properties equally. In other words, we set the values

of s2(l) and s2(kon) to satisfy one of the following conditions: s2(l) << s2(kon), s
2(l) >> s2(kon) and s2(l) = s2(kon). A total of 2000 gene

pairs were selected in this manner. Each pair contains genes with mean values at least 2 fold different. In brief, we estimated the total

variance (in log2 space) of the experimental data as 7.3. Generating the simulated gene clouds in Figure 3B divided this variance

between s2(l) and s2(kon) in the aforementioned ratios- for example, for the 50:50 split, the SDs for both l and kon were 1.91, and

1.912 = 3.65 = 7.3/2 (half the total variance). Using the data from the 50:50 simulation, we then set either l or kon as limiting

(SD = 0.3) and the other as non-limiting (SD = 5) for setting the distributions used in the Gibbs pairing.

A key feature of the model is that genes are constrained to lie in a bounded region of burst parameter space, such that there are

upper and lower limits to the burst size and frequency. This is biologically reasonable; the transcription machinery must operate

within finite physical limits. This featuremeans that genes of the samemean expression are distributed differently in parameter space

(and will have a different variance) depending on whether they are up- or downregulated.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of read data
An average of 3 million reads were generated from each single-cell library. Raw read counts for each gene in each cell at each time

point are tabulated in Data S1. We excluded cells with fewer than 500 000 and higher than 7 million reads, to exclude poor or over-

loaded single-cell libraries. We obtained a total of 433 cells (131 cells at 0h development, 157 cells at 3h and 145 cells at 6h). These

cells also satisfied all other cell quality criteria (high number of genes detected in each cell, low percentage ofmitochondrial reads and

low percentage of low alignment quality reads). Reads from rRNA contaminants were excluded. Read counts of cells within each
Current Biology 27, 1811–1817.e1–e3, June 19, 2017 e2



replica were normalized using the size factor from the DESeq package [28]. Tominimize the impact of technical noise in our analyses,

we excluded genes with a mean normalized read count < 10. For comparing the variability of up- and downregulated genes, we

considered genes in bins of the same expression range, which further allows us to control for technical noise. As measures of vari-

ance we used either squared coefficient of variance ðCV2 = s2=m2Þ or DM (distance to median CV2 value) [14], which accounts for the

confounding effects of gene length and mean expression level on the CV2. Sequences and positional information of upstream inter-

genic regions were obtained from dictyBase [29]. TATA-containing genes were defined in [30]. RNA degradation rates were obtained

from [7]. Data processing was carried out inMathematica. For pseudotime analyses, Scubawas implemented inMATLAB,Wishbone

in Python and Monocle in R. Gene Ontology enrichment analysis was performed with PANTHER Classification System version 11

[26]. GO terms enriched in both heterogeneous and homogeneous gene sets at a specific time point are excluded. Apart from the

bootstrapping analysis (below), tests of significance used the non-parametric Mann-Whitney test, in Mathematica. Statistical details

are provided in the relevant figure legends and manuscript text.

Bootstrapping
To estimate the variabilities of the calculated mean DM values of up- and downregulated genes in each bin, we performed bootstrap

sampling as described [31] in Mathematica. For each bin we repeated the following procedure 10 000 times:

1. Separately resample, with replacement, upregulated and downregulated genes.

2. In each resampled set, normalize each observation’s value ðDMxÞ to the same mean:
gDMx˛up =DMx � DMup + DMupWdown

or

gDMx˛down =DMx � DMdown + DMupWdown;

depending on whether the observation belongs to the up- or downregulated resampled set. In this way, we transform each sample to

have a mean equal to the overall mean of the population and so generate the H0 hypothesis.

3. Perform the Student’s t test between the distributions of gDMup and gDMdown to get a t-value, ti.

After collecting the n = 10 000 ti values, we calculate the probability of DM values of up- and downregulated genes to be signifi-

cantly different by chance as:

pðH0Þ= 1 +
Pn

i = 1ðti > tÞ
1+ n

;

with t being the original sample t-value.

DATA AND SOFTWARE AVAILABILITY

Raw read count data from the single-cell RNAseq is provided as Data S1. The MATLAB code used for the simulations is available at

http://www.ucl.ac.uk/lmcb/sites/default/files/Simulation_2017.zip.
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