Software

Open Access

Triad pattern algorithm for predicting strong promoter candidates in bacterial genomes

Michael Dekhtyar^{*1}, Amelie Morin² and Vehary Sakanyan^{*2,3}

Address: ¹University of Tver, 33 Jelyabova, 170000 Tver, Russia, ²Laboratoire de Biotechnologie, UMR CNRS 6204, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France and ³ProtNeteomix, 2 rue de la Houssinière, 44322 Nantes, France

Email: Michael Dekhtyar* - Michael.Dekhtyar@tversu.ru; Amelie Morin - Amelie.Morin@cancer.org.uk; Vehary Sakanyan* - Vehary.Sakanyan@univ-nantes.fr

* Corresponding authors

Published: 9 May 2008

BMC Bioinformatics 2008, 9:233 doi:10.1186/1471-2105-9-233

Accepted: 9 May 2008 This article is available from: http://www.biomedcentral.com/1471-2105/9/233

Received: 19 November 2007

© 2008 Dekhtyar et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Bacterial promoters, which increase the efficiency of gene expression, differ from other promoters by several characteristics. This difference, not yet widely exploited in bioinformatics, looks promising for the development of relevant computational tools to search for strong promoters in bacterial genomes.

Results: We describe a new triad pattern algorithm that predicts strong promoter candidates in annotated bacterial genomes by matching specific patterns for the group I σ^{70} factors of Escherichia coli RNA polymerase. It detects promoter-specific motifs by consecutively matching three patterns, consisting of an UP-element, required for interaction with the α subunit, and then optimallyseparated patterns of -35 and -10 boxes, required for interaction with the σ^{70} subunit of RNA polymerase. Analysis of 43 bacterial genomes revealed that the frequency of candidate sequences depends on the A+T content of the DNA under examination. The accuracy of in silico prediction was experimentally validated for the genome of a hyperthermophilic bacterium, Thermotoga maritima, by applying a cell-free expression assay using the predicted strong promoters. In this organism, the strong promoters govern genes for translation, energy metabolism, transport, cell movement, and other as-yet unidentified functions.

Conclusion: The triad pattern algorithm developed for predicting strong bacterial promoters is well suited for analyzing bacterial genomes with an A+T content of less than 62%. This computational tool opens new prospects for investigating global gene expression, and individual strong promoters in bacteria of medical and/or economic significance.

Background

Efficient promoter recognition is crucial in the synthesis of the gene-encoded products required by bacteria to allow them to grow rapidly and to adapt to different environmental conditions. The general architecture and protein-DNA interaction interfaces appear to be conserved in RNA polymerases of different bacteria, to judge by a com-

parison of the resolved structures of the multi-subunit protein or its subunits [1]. This structural information suggests that the principles of DNA recognition by RNA polymerases are universal, and this constitutes a basis for in silico prediction of promoters that are recognized by families of sigma factors. Research in bioinformatics has developed approximate matching methods to detect conserved sequences in nucleic acids [2-5], including promoter-specific sequences that are invaluable in helping to elucidate the overall organization of transcriptional signals and regulatory circuits in evolutionarily distant bacteria [6-14]. Most promoter prediction programs so far proposed use statistical or motif-based methods, and take into consideration what is known about experimentally defined promoter architectures, and extract conserved sequences from the genomes under analysis. Attempts have been made to improve promoter prediction by introducing statistical mechanical methods to measure the stress-induced destabilization or bendability of the duplex DNA region located upstream of the transcription initiation site required for the local dissociation of strands to start mRNA synthesis [15-17]. The steady increase in the number of sequenced bacterial genomes of medical and economic significance means that there is an increasing need for computational tools to predict promoters, especially those responsible for high-level gene expression in organisms, of which there has been little experimental investigation.

Many housekeeping genes in Escherichia coli are transcribed from promoters possessing the recognition elements referred to as -35 and -10 sites (boxes), for which the TTGACA and TATAAT consensi, respectively, have been identified by compiling characterized RNA polymerase-binding regions in the DNA [18,19]. The -35 and -10 sites, which are separated from each other by a 15–20-bp spacer [20], are specifically recognized by $E\sigma^{70}$ RNA polymerase, an RNA polymerase holoenzyme bearing the group I σ^{70} factor [21]. Experimental data have shown that high transcription rates of genes correlate with the level of conservation of three promoter parameters, with the consensus -35 and -10 hexanucleotide boxes, and with the 17 \pm 1-bp spacer separating them [22]. This fact has been widely used to construct vectors for protein overexpression in bacterial cells [23].

However, the strength of strong promoters also depends on a fourth parameter, an AT-rich UP element 17-20 bp length, which is located just upstream of the -35 site, and which is recognized by the α subunit of E σ^{70} RNA polymerase, which was first discovered for ribosomal RNA promoters [24]. The C-terminal domain of this subunit binds both to the UP element and to transcription regulation proteins, whereas the N-terminal domain makes contact with other subunits during the assembly of RNA polymerase [25]. A 17-bp consensus 5'AAAWWT-WTTTTNNNAAA (where W is A or T, and N can be any of the four bases) has been identified for the UP element by analyzing the patterns, selected by the SELEX method, which mediate increases of between 10- and 300-fold in gene expression in E. coli cells [26-28]. Two preferred subsites have been identified within the UP element. They are centered approximately at the -42 and the -52 positions respectively, and appear to be specifically recognized by one or two monomers of a dimeric α subunit in the RNA polymerase.

It is noteworthy, that a virtual analysis of patterns located upstream from the consensus -35 had since long time suggested their functional significance [3]. The sequences reminiscent of UP element have been detected in the E. coli genome by the algorithms PWM [29] and PlatPram [30]. A software-based (GCG, version 9.0) dissection of regions located upstream of the E. coli promoters had made it possible to detect putative promoters with ≤ 4 mismatches in the full UP element consensus [28]. Several UP elements have also been visually identified, and characterized by their ability to direct high level gene expression in vivo or in vitro in Bacillus subtilis [31], Geobacillus (formerly Bacillus) stearothermophilus [32] and Vibrio natrigens [33]. Recently, a comparative analysis of $E\sigma^{70}$ -specific promoter and non-promoter regions indicated that upstream regions of E. coli ribosomal and T4 phage early promoters possess electrostatic elements that could be responsible for modulating promoter activities due to ADP-ribosylation of RNA polymerase α subunit [34]. However, no specific algorithms have yet been proposed to detect strong promoters in bacterial genomes, and so this remains an important task for genomic and proteomic research in microbiology.

In this study, we have developed a triad pattern algorithm that detects strong promoter candidates composed of a UP-element, and two consensi, -35 and -10 boxes, which are optimally distanced from each other. All four parameters are required for efficient DNA recognition, and the initiation of mRNA synthesis by an $E\sigma^{70}$ -like RNA polymerase. The data presented indicate that the frequency of strong promoters is a function of the A+T content of the corresponding genomes. The proposed prediction program is flexible, and can be modified by users to modulate the search stringency criteria depending on the promoter features of the genome under analysis. The accuracy of detection has been experimentally validated for putative strong promoters predicted in a hyper-thermophilic bacterium *Thermotoga maritima*.

Implementation

Overview of the approach

The promoter activity in cells is determined by regulatory proteins (activators and repressors) that can recognize overlapping sequences specific for $E\sigma^{70}$ RNA polymerase sites, and thereby mask the true promoter strength. In addition, almost 20% of *E. coli* RNA polymerase $E\sigma^{70}$ -specific promoters possess an extended -10 sequence that might compensate for the absence of a clear -35 site [35]. Different prediction programs based on statistical and

motif-searching approaches have been developed to detect a variety of binding sites in DNA, and both position-specific weight matrices [36] and hidden Markov models [37] have been used to improve the accuracy of the prediction of promoter sequences in bacterial genomes [38-40]. These programs usually detect hexanucleotide dyad patterns of RNA polymerase-promoter binding sites, such as -35 and -10 boxes, and none of them is free of false-positives, which correspond to similar, non-promoter sequences in bacterial genomes [for a review, see [41]].

In this study, we exploited the strengths of the "triad pattern" approach to develop an algorithm able to detect strong promoters by matching three nucleotide sequences recognized by the σ^{70} and α subunits of bacterial RNA polymerase. Theoretically, the presence of a UP element may not be essential for relatively strong promoter activity if two -35 and -10 boxes are well conserved and optimally distanced. Similarly, the presence of a well conserved UP element may compensate for a poor -35 box in some promoters. However, it seems very likely that the strongest promoters probably possess all three essential sequences. The specific interaction between the UP element and the α subunit significantly amplifies the association of RNA polymerase with promoter DNA [27,28]. Therefore, to improve the filter to exclude possible false-positive due to short hexanucleotide similar sequences scattered throughout the genome, our algorithm starts by first matching the UP element, and only then identifying the -35 and -10 boxes located further downstream.

Design of the triad pattern algorithm

We designed an algorithm able to detect the triad nucleotide patterns in bacterial genomes. The core of the algorithm is the FIND_TRIAD procedure, which given an input nucleotide string, s_i , returns the substring s' of s_i which is the best approximation of a given triad pattern of (pat(1),L1)-(l1,l2)-(pat(2),L2)-(d1,d2)the form (pat(3),L3), where each pat(i), i = 1,2,3, is a nucleotide string, Li is its length, l1 and l2 are the minimum and maximum distances respectively between the first and the second patterns, and d1 and d2 are the minimum and maximum distances respectively between the second and the third patterns. To avoid making a "bad" approximation, three scores Sc1, Sc2 and Sc3 are used as input parameters for the procedure. The resulting substring, s', can then be represented as (spat(1),Ls1)-ls1-(spat(2),Ls2)ls2- (spat(3),Ls3), where each spat(i), i = 1,2,3, is a substring of s aligned to pat(i), Lsi is its length, ls1 is the distance between spat(1) and spat(2), and ls2 is the distance between spat(2) and spat(3). This result for s' satisfies the following conditions:

(1) for each *i* = 1,2,3 the similarity score (weight) *Wi* of the match or alignment of *pat(i)* and *spat(i)* is not less than *Sci* (or the number of "mismatches" does not exceed (*Li* - *Sci*));

(2) $(l1 \le ls1 \le l2)$ and $(d1 \le ls2 \le d2)$.

For each of the three patterns, one can either forbid insertions/deletions or allow them. In the former case, Lsi = Liand the weight = Wi are computed as the sum of matching pairwise symbols, whereas in the latter case, the difference |Lsi - Li| between spat(i) and pat(i) is bounded by a value Ri for the permissible deletions/insertions (gaps), an optimum alignment, and its weight, Wi, are computed by the standard dynamic programming method for global string alignment [42]. In both cases, a symbol scoring matrix Mi(x,j) is used to define the weight of the symbol x in the position j, $1 \le j \le Lsi$, of spat(i). If symbol x occurs in position j of pat(i), then Mi(x,j) = 1, otherwise $Mi(x,j) \le 1$. To choose the best approximation of the triad pattern from substrings satisfying conditions (i) and (ii), FIND_TRIAD uses a total score function with the form:

 $tot_sc = C1*nsc1(L1,W1)+D12*nsc_dist12(11,l2,ls1) + C2*nsc2(L2,W2) + D23*nsc_dist23(d1,d2,ls2) + C3*nsc3(L3,W3),$ (1)

where nsci(Li,Wi), i = 1,2,3, are normalized scores of matching (alignments) of pat(i) and spat(i), $0 \le nsci(Li,Wi) \le 1$, and $nsc_dist12(11,l2,ls1)$ and $nsc_dist23(d1,d2,ls2)$ are the normalized scores of the distances between the first and the second, and the second and the third patterns, respectively, and $0 \le nsc_dist12(11,l2,ls1)$, $nsc_dist23(d1d2,ls2) \le 1$. The linear coefficients C1, C2, C3, D12, and D13 are chosen so that their sum is equal to 1. They indicate the relative importance of the corresponding sub-patterns of the triads; and the distances between them. So, the best value of tot_sc is 1.

Application of the algorithm to searching for strong promoter candidates

Here we describe the main parameters of the FIND_TRIAD procedure used to detect strong promoter candidates in bacterial genomes. In this study, a bacterial promoter is assumed to be a nucleotide sequence, located upstream from genes encoding proteins, tRNAs or rRNAs that could be recognized by an RNA polymerase holoen-zyme containing a major σ factor (using *E. coli* E σ^{70} RNAP as the reference). The triad patterns defined for strong promoter candidates include three specific nucleotide subregions: (i), a UP element, which is a 17-nt prefix of the strong promoter, and has the following consensus pattern: $pat(1) = P_{UP} = aaaWWtWttttNNNaaa;$ (ii) the -35 site, which is located downstream of the UP element, and has

the pattern $pat(2) = P_{35} = tc \underline{ttgacat}$ (underlining indicates a commonly used consensus for group I σ^{70} factors; however, the σ_4 domain of these factors appears to be in contact with 9 nucleotides in the region extending from -30 to -38 [43,44]); (iii) the -10 site, which is located downstream of the -35 site, and has the pattern $pat(3) = P_{10} =$ tataat (this site is highly conserved). We used the following boundaries for the distances between the sub-regions: 11 = 0, 12 = 5 (these boundaries were extracted from the examples of UP-elements in [25-27], d1 = 14, d2 = 20(these boundaries are standard for the distance between the -35 site and the -10 site). To search for the first pattern *pat(1)* of the UP-element, the simple matching algorithm was chosen with an a and t mismatch score of 0.5. The reason is that in the full UP-element consensus and the consensuses of two of its subsides - distal and proximal - in some places do not distinguish between a and t. We assumed that the consensus for the -35 site of length 9 is less conserved than that of the -10 site, and so in order to detect the second pattern pat(2) of the -35 site we used a dynamic programming algorithm to search for optimal alignment, with boundaries for the number of permissible deletions/insertions of R2 = 2. For the most of -35 sites, which were detected by algorithm, no insertions/ deletions were applied. However, this scoring system allowed us to identify some stronger promoter candidates. Thus, the insertion of C between two AA in the sequence TCITGAAT of TM1016, increases the score of a putative promoter (see below). The -10 site is better conserved, and so we used the straightforward matching algorithm to detect this site.

To define the total score function, *tot_sc* (formula 1), we chose the following normalized scores for the three patterns and for the distance between the -35 site and -10 site (no information was available about the best values for the distance between the UP element and the -35 site):

 $nsc1(17,W1) = nsc_up = 1 - (17 - W1)/20,$ (2)

$$nsc2(9,W2) = nsc_{35} = 1 - (9 - W2)/10,$$
 (3)

$$nsc3(6,W3) = nsc_10 = 1 - (6 - W3)^2/10,$$
 (4)

and the values of the normalized distance score, *nsc_dist23(14,20,ls2) = nsc_dist*, are defined as follows:

<i>ls</i> 2 : distance between the -35 and -10 sites, nt	17	16,18	15,19	14,20
nsc_dist	1	0.95	0.85	0.7

We also chose linear coefficients C1 = 0.3, C2 = C3 = 0.25, D12 = 0, and D23 = 0.2. These coefficients indicate the relative importance of corresponding sub-regions for evaluating the total score of a candidate sequence. They were chosen empirically, after preliminary tests with several

annotated genomes, assuming a higher significance of the UP element, equal significance of the -10 and -35 boxes, and lower significance of the distance between them. In this application, the value D12 = 0 means that we ignore the variations of the distance between a putative UP element and -35 box because *a priory* it is not known what value is the best in the interval 0–5 nt.

Formulas 2, 3 and 4 reflect the lack of exact matching for the different sub-regions. If the -10 box is highly conserved and is essential for initiation of transcription [22], then the penalty for its mismatches is higher than for those of the other parameters. For example, for 2 mismatches, the penalty is $(6 - 4)^2/10 = 0.4$ for the -10 site, whereas it is (9 - 7)/10 = 0.2 for the -35 site, and (17 - 15)/10 = 0.220 = 0.1 for the UP element. The choice of the normalized score functions in equations 2, 3 and 4 is based on empirical observations, and on common sense, and may seem to be arbitrary. We want to stress that, in fact, the total score function tot_sc also has a further role: it does not significantly change the set of the best candidates identified by the algorithm. This set is defined by the three score bounds Sc1 = scup for UP element, Sc2 = sc35 for -35 site, and Sc3 = sc10 for -10 site. The total score affects only the ordering of these candidates amongst themselves.

The general scheme of the algorithm is as follows. It has the following input: (i) the name of a genome file in Gen-Bank format; (ii) three parameters of scores: *scup*, *sc35* and *sc10*, determining the minimum acceptable similarity between candidate sequences of the UP element, the -35 box, and the -10 box, respectively, and the *E. coli* consensus patterns. For each gene in the genome input file that is not inside an operon, the algorithm runs in two steps:

(i) it extracts a 300-bp DNA region, *s*, upstream of the annotated coding sequences for tRNA, rRNA or proteins (we limited the search to 300 bp, since most *E. coli* promoters fall within this length inter-gene space [41,45]);

(ii) then it uses the FIND_TRIAD procedure to identify the best strong promoter candidate within *s* that satisfies conditions (1) and (2) above. If such a candidate is found, it is added to the output list of strong promoters.

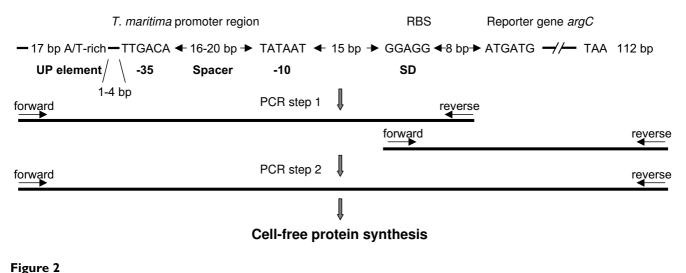
We recommend to read attentively the "ReadMe" information [see Additional file 1] before to start proceeding the "strong_promoters.doc" software [see Additional file 2]. The algorithm is implemented by a program that produces the results in two forms: (i) a Text-format table which lists all strong promoter candidates in a genome, and provides additional information about the operon organization of genes located downstream (for example, see Fig. 1); (ii) a Word-format table which lists strong promoter candidate sequences. A 20-nt sequence preceding a

```
LOCUS
         AE000512
                          1860725 bp
                                            circular BCT 28-DEC-2005
                                     DNA
DEFINITION Thermotoga maritima MSB8, complete genome.
Total number of genes on the 'direct' strand: 1056
Total number of genes on the 'complement' strand: 870
    UP-ELEMENTS for genes on the 'direct' strand
_____
                47182..47646 /locus tag="TM 0050"
    gene
        /product="iron(II) transport protein A"
up element: 47081 total score: 0,8675
Scores: up-element -35 pos.
                                  -10 pos.
                       <----> 17 ---->
       14
                   5,5
                                       5
GACAATATATTAGAAATgtataTATTGAAAGcatccatgtgatgatgaTACAAT
<---- 30 bp ---->aaaaagggggcagagccGTG
 ------
                              ------
                47615..49624 /locus tag="TM 0051"
    gene
        /product="iron(II) transport protein B"
                49621..49953 /locus_tag="TM_0052"
    gene
        /product="hypothetical protein"
                49950..51044 /locus_tag="TM_0053"
    gene
        /product="esterase, putative"
                51041..51631 /locus_tag="TM_0054"
   aene
        /product="hypothetical protein"
```

Figure I

Text-format presentation of strong promoter candidates.

possible initiation codon of each ORF is also included in the annotation, as this could be useful for the visual examination of the translation signals of the corresponding genes. Lastly, the user can select a convenient score for each sequence-specific motif taking into consideration the promoter features of the annotated genome if they differ from the *E. coli*-specific patterns used to create the algorithm (for example, a weakly conserved -35 or -10 box).


Methods

Construction of recombinant linear DNAs

Putative promoter regions in the *T. maritima* genome, identified by the algorithm described above, were amplified by PCR using appropriate oligonucleotide primers connected to the previously-described *G. stearothermophilus argC* gene [46]. This reporter gene encodes *N*-acetyl glutamylphosphate reductase, a thermostable and soluble protein that is easily detectable after exposing *E. coli* cleared lysates to 65°C. In order to increase protein yield, the ribosome-binding site of *G. stearothermophilus*

argC was modified to the sequence <u>GGAGG</u>GGGAACAT-<u>ATG</u> (the modified Shine-Dalgarno site and the initiation codon are underlined), and the distance between the -10 promoter site and the Shine-Dalgarno site was shortened to 15 bp (Fig. 2). The DNA fragment carrying the *argC* gene was connected to *T. maritima* or control promoters by two consecutive PCR steps, as described previously [47]. The quantity and quality of the amplified DNAs were determined with a 2100 Bioanalyzer (Agilent Technologies).

Two well-characterized strong promoters, *Ptac* and *PargC*, were used as references to compare the strength of the putative promoters of *T. maritima*. The strong promoter *Ptac* contains an AT-rich nucleotide sequence upstream of a -35 site [48], which has no defined UP element; it was obtained from the vector pBTac2 (purchased from Boehringer Mannheim). *PargC*, a strong promoter of *G. stearo-thermophilus*, contains the UP element, as demonstrated

Diagram of the fusion DNA constructs used to express the G. stearothermophilus argC-reporter gene from putative strong promoters of T. maritima in a cell-free system. The *argC* gene was amplified with forward 5'-GGAG-GGGGAACATATGATGAA and reverse 5'-GGACCACCGCGCTACTGCCG primers from pHAV2 [32] by conserving a 112bp downstream region carrying transcriptional terminators of the vector DNA.

both *in vivo* and *in vitro*, and was amplified from the plasmid pHAV2 [32].

Cell-free protein synthesis

PCR-generated linear DNA fragments carrying a promoter region fused to the argC reporter gene were used to evaluate the promoter strength in a coupled transcriptiontranslation system, as described previously [49]. The cellfree extracts were prepared from the E. coli strain BL21 (DE3) Star recBCD (our laboratory construction) as described by Pratt [50]. Protein synthesis was carried in the presence of pyruvate oxidase to generate ATP [51]. Typically, 50 ng of PCR-amplified DNA was added to a pre-mix containing all necessary compounds and 10 µCi of $[\alpha^{35}S]$ -L-methionine (specific activity 1000 Ci/mmol, 37 TBq/mmol, Amersham-Pharmacia Biotech), and E. coli S30 cell-free extracts. The reaction mixture was incubated at 37°C for 90 min, and heated to 65°C for 10 min. After centrifuging, the supernatant was precipitated with acetone, and then protein samples were separated by SDS-PAGE and bound to 3 MM paper. The ArgC protein synthesized in vitro was quantified by counting the radioactivity of the corresponding band with a PhosphorImager 445 SI (Molecular Dynamics).

The bacterial genome sequences were extracted from available data banks. The logo of *T. maritima* promoter consensus sequences was generated at the WebLogo site as described in [52,53].

Results

The number of strong promoters reflects the A+T content of bacterial genomes

In our algorithm, 26 of the 32 symbols used to evaluate matches in the three promoter-specific patterns, namely in the UP element and the -35 and -10 boxes, are a and t. One could expect the number of genes transcribed from potential strong promoters to depend on the A+T content of a given genome. To find out whether this is indeed the case, we compared the frequency of candidates in 300-bp regions located upstream of genes of annotated bacterial genomes and in random sequences of the same regions generated by computing. First, we calculated the (A+T)% in all 300-bp regions preceding each gene or operon in the annotated genomes (Table 1). The A+T content in these DNA regions was found to be slightly higher than that of the entire genomes of almost all bacteria that have been analyzed. Next, we generated 10.000 random sequences with the same A+T content for all the 300-bp regions of each genome. The algorithm was applied to detect strong promoter candidates in the 300-bp real genomic and random-generated regions of 43 bacterial genomes.

We tested different matching stringencies and empirically found that the score parameters sUP = 13, s35 = 5.5 and s10 = 4.5 satisfied the criteria required for scaled comparative analysis without grossly exaggerating the number of candidate sequences identified in the various genomes. This analysis revealed that the real genomes with an A+T content of less than 50% contained many more potential strong promoters than their simulated counterparts (see

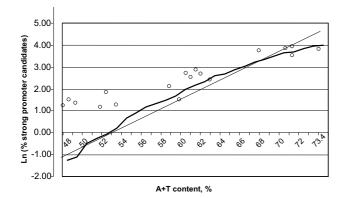

		(A	+T)% of	% of candidates in		
N°	Genome	Bacterial genomes*	300-bp genomic regions	300-bp genomic regions	300-bp random sequences	
I	Deinococcus radiodurans RI (AE000513)	32.99	34.19	0.19	0	
2	Caulobacter crescentus (AE005673)	32.77	34.40	0.05	0	
3	Ralstonia solanacearum GMI1000 (AL646052)	34.51	34.50	0.20	0	
4	Pseudomonas aeruginosa PAOI (AE00409I)	33.44	35.38	0.27	0	
5	Xanthomonas campestris pv. campestris (AE008922)	34.93	35.64	0.05	0	
6	Mycobacterium tuberculosis (AL123456)	34.39	35.69	0.18	0	
7	Xanthomonas axonopodis pv. citri 306 (AE008923)	35.23	36.02	0.05	0	
8	Mesorhizobium loti (NC002678)	37.25	39.09	0.13	0	
9	Sinorhizobium meliloti 1021 (AL591688)	37.27	39.66	0.24	0	
10	Mycobacterium leprae TN (AL450380)	42.20	43.14	0.29	0	
П	Agrobacterium tumefaciens C58 (AE007869)	45.64	43.20	0.74	0	
12	Brucella melitensis 16 M chromosome 1 (AE008917)	42.84	45.73	1.02	0	
13	Treponema pallidum (AE000520)	47.22	47.01	0.37	0.3	
14	Chlorobium tepidum TLS (AE006470)	43.47	47.50	1.50	0.31	
15	Salmonella typhimurium LT2 (AE006468)	47.78	51.08	3.54	0.7	
16	Neisseria meningitidis serogroup B MC58 (AE002098)	48.47	52.20	5.03	0.93	
17	Escherichia coli O157:H7 (AE005174)**	49.50	52.54	4.80	1.1	
18	Methanobacterium thermoautotrophicum △H (AE000666)	50.46	53.11	4.26	1.23	
19	Synechocystis PCC6803 (AB001339)	52.28	53.71	2.89	1.7	
20	Thermotoga maritima (AE000512)	53.75	54.66	3.27	2.15	
21	Vibrio cholerae chromosome l (AE003852)	52.30	54.94	3.22	2.4	
22	Yersinia pestis CO92 (AL590842)	52.36	55.77	6.78	3.0	
23	Aquifex aeolicus (AE000657)	57.73	57.70	4.72	4.15	
24	Bacillus halodurans C-125 (BA000004)	56.31	58.65	8.70	5.1	
25	Bacillus subtilis (AL009126)	56.48	59.30	10.28	5.8	
26	Mycoplasma pneumoniae M129 (U00089)	59.99	61.71	5.25	9.7	
27	Chlamydia muridarum (AE002160)	59.69	61.73	9.01	9.7	
28	Pasteurella multocida PM70 (AE004439)	59.60	62.31	11.42	10.9	
29	Chlamydophila pneumoniae J138 (BA000008)	59.42	62.80	14.77	12.5	
30	Streptococcus pneumoniae (AE005672)	60.30	62.88	15.83	13.0	
31	Streptococcus pyogenes SF370 serotype MI (AE004092)	61.49	63.99	16.87	14.3	
32	Thermoanaerobacter tengcongensis MB4T (AE008691)	62.43	64.11	17.74	14.8	
33	Listeria innocua Clip I 1262 (AL592022)	62.56	64.30	12.07	15.5	
34	Haemophilus influenzae Rd (L42023)	61.85	64.45	15.61	16.0	
35	Mycoplasma genitalium G37 (L43967)	68.31	69.50	15.99	35.0	
36	Staphylococcus aureus N315 (BA000018)	67.16	69.71	35.25	36.1	
37	Campylobacter jejuni (ALIIII68)	69.45	71.36	32.07	41.8	
38	Clostridium acetobutylicum (AE001437)	69.07	71.83	45.08	44.2	
39	Borrelia burgdorferi.(AE000783)	71.40	73.18	40.00	54.1	
40	Rickettsia prowazekii Madrid E (A)235269)	71.00	73.26	50.06	55.2	
41	Clostridium perfringens 13 (BA000016)	71.43	74.74	53.94	58.1	
42	Ureaplasma urealyticum (AF222894)	74.50	76.05	50.85	65.35	

Table 1: A+T content of bacterial genomes and 300-bp regions located upstream of genes and the percentage of strong promoter candidates predicted in 300-bp real genomic and random-generated regions of the same content.

* A+T content of bacterial genomes was calculated from corresponding genomic DNA sequences available in gene banks. ** Similar values were found for the *E. coli* K12 genome.

Table 1). The percentage of candidate sequences was very low in the bacterial genomes with an A+T content of between 33% and 47%, and these sequences were completely absent in the corresponding 300-bp, random-generated sequences. When the A+T content increased from 47% to 78%, the percentage of strong promoter candidates increased dramatically, whereas the difference between the real and random sequences decreased, and virtually disappeared when the A+T content exceeded 62%. There were two exceptions where the genomes analyzed did not display this pattern at an A+T content of less than 62%. One was M. pneumoniae, the genome of which had an A+T content of about 60%, and in which the promoters had no -35 consensus [54]. The other example is the hyperthermophilic species A. aeolicus (~58% AT-rich genome). This species is very close to the Archaea, and occupies a unique position in the bacterial kingdom [55].

Our data show that the number N(A+T) of strong promoter candidates in 300-bp random-generated sequences corresponding to upstream regions of bacterial genes satisfies the "exponential low" of the form N(A+T) = exp [c_1 (A+T) + c_2]. The distribution of strong promoter candidates in real genomes indicates that the critical point of the A+T content is close to 62% (Fig. 3). Above this level, the number of random sequences reminiscent of strong promoter patterns increases markedly.

Figure 3

The number of strong promoter candidate sequences is a function of the A+T content of bacterial genomes. For the score parameters sUp = 13, s35 = 5.5, s10 = 4.5 and constants $c_1 = 0.22$ and $c_2 = -11.7$, the picture displays a linear graph of the "exponential low" (thin line), which approximates fairly closely to the curve ln [N(A+T)], shown as a thick line. The logarithm of the percentage of strong promoter candidates in real genomes is shown by ().

Strong promoter candidate sequences are located upstream of gene-coding regions

Another important aspect of the quality of detection is the location of candidate sequences with regard to coding regions in the genome analyzed. We compared the frequencies of strong promoter-like patterns identified upstream and downstream of the initiation codon in all the genomes. The frequency of candidate sequences was clearly greater in the upstream region of ORFs in most of the genomes with an A+T content of less than 62% (Table 2). No difference was detected in *T. pallidum* (~47% ATrich genome), which belongs to a distinct phylum of Spirochetes that appear to use different DNA patterns for the promotion and regulation of transcription [56].

The fact that more candidate sequences were identified upstream of ORFs highlights the fact that they are not randomly distributed in bacterial genomes, which suggests that the detection of strong promoter candidates in genomes with an A+T content of less than 62% is fairly reliable.

Experimental validation of virtual prediction: analysis of putative strong promoters of T. maritima

Taking our cue from the results of the virtual prediction, we sought to find out whether, and if so, to what extent the putative promoters are functional in a biological context. To do this we used reporter-gene technology, which relies on the fusion of an assayable sequence with a promoter being investigated, and the subsequent evaluation of promoter strength in a cell-free system (see Fig. 2). The genome of the hyperthermophilic bacterium *T. maritima* [57] was used to evaluate the feasibility of the algorithm experimentally.

63 candidate sequences were detected in the T. maritima genome using the matching scores described above. We increased the penalty for mismatching of -35 and -10 boxes by raising the scores of s35 and s10 to 6 and 5, respectively. This reduced the number of candidate sequences to 34 (Table 3). In this shorter list, 28 T. maritima strong promoter candidates possessed a total score higher than the 0.8475 calculated for the reference strong promoter, Ptac, that does not have a typical UP element [48]. 15 of these candidates had a total score higher than 0.8775, as estimated for PargC, another reference strong promoter that has a well defined UP element [32,49]. It is worth mentioning that 6 candidate DNA regions in T. maritima had a total score higher than 0.91, a value estimated for E. coli promoters that govern the transcription of 16S ribosomal RNA, and which were used as models for studying the stimulating effect of the UP element on gene expression [58].

N°	Genome	Length, bp	Number of genes	Upstream region	Downstream region
I	Deinococcus radiodurans RI (AE000513)	2648638	2681	5	I
2	Caulobacter crescentus (AE005673)	4016947	3787	2	0
3	Ralstonia solanacearum GMI1000 (AL646052)	3716413	3477	7	0
4	Pseudomonas aeruginosa PA01 (AE004091)	6264403	5570	15	2
5	Xanthomonas campestris pv. campestris (AE008922)	5076188	4197	2	0
6	Mycobacterium tuberculosis (AL123456)	4411529	3922	7	0
7	Xanthomonas axonopodis pv. citri 306 (AE008923)	5175554	4344	2	0
8	Mesorhizobium loti (NC 002678)	7036074	6693	9	0
9	Sinorhizobium meliloti 1021 (AL591688)	3654135	3375	8	0
10	Mycobacterium leprae TN (AL450380)	3268203	2770	8	l I
П	Agrobacterium tumefaciens C58 (AE007869)	2841581	2701	20	I
12	Brucella melitensis 16 M chromosome I (AE008917)	2117144	2059	21	4
13	Treponema pallidum (AE000520)	1138011	1083	4	3
14	Chlorobium tepidum TLS (AE006470)	2154946	2329	35	13
15	Salmonella typhimurium LT2 (AE006468)	4857432	4608	163	61
16	Neisseria meningitidis serogroup B MC58 (AE002098)	2272351	2226	112	45
17	Escherichia coli O157:H7 (AE005174)	5528445	5478	263	79
18	Methanobacterium thermoautotrophicum delta H (AE000666)	1751377	1900	81	24
19	Synechocystis PCC6803 (AB001339)	3573470	1074	31	6
20	Thermotoga maritima (AE000512)	1860725	1926	63	10
21	Vibrio cholerae chromosome I (AE003852)	2961149	2887	93	37
22	Yersinia pestis CO92 (AL590842)	4653728	4042	274	61
23	Aquifex aeolicus (AE000657)	1551335	1503	71	37
24	Bacillus halodurans C-125 (BA000004)	4202353	4125	359	87
25	Bacillus subtilis (AL009126)	4214814	4182	430	111
26	Mycoplasma pneumoniae M129 (U00089)	816394	705	37	14
27	Chlamydia muridarum (AE002160)	1069411	954	86	31
28	Pasteurella multocida PM70 (AE004439)	2257487	1996	228	64
29	Chlamydophila pneumoniae 38 (BA000008)	1226565	1097	162	51
30	Streptococcus pneumoniae (AE005672)	2160837	2306	365	156
31	Streptococcus pyogenes SF370 serotype MI (AE004092)	1852441	1731	292	115
32	Thermoanaerobacter tengcongensis MB4T (AE008691)	2689445	2632	467	248
33	Listeria innocua Clip I 1262 (AL592022)	3011208	3529	426	229
34	Haemophilus influenzae Rd (L42023)	1830138	1775	277	94
35	Mycoplasma genitalium G37 (L43967)	580074	519	83	63
36	Staphylococcus aureus N315 (BA000018)	2814816	2638	930	418
37	Campylobacter jejuni (ALIIII68)	1641481	1684	540	353
38	Clostridium acetobutylicum (AE001473)	3940880	3738	1685	916
39	Borrelia burgdorferi (AE000783)	910724	875	350	292
40	Rickettsia prowazekii Madrid E (AJ235269)	1111523	885	443	252
41	Clostridium perfringens 13 (BA000016)	3031430	2779	1499	772
42	Ureaplasma urealyticum (AF222894)	751719	645	328	236
43	Buchnera aphidicola Sg (AE013218)	641454	584	339	225

Table 2: Number of sequences reminiscent of strong promoters in regions located upstream and downstream of the initiation codon of genes in bacterial genomes.

We selected 13 candidate promoter sequences for further analysis by evaluation of the ArgC thermostable protein production in a coupled transcription-translation system. These sequences all exhibited a total score \geq 0.8475, apart from TM1490 (see Table 3). The amplified DNA regions were connected to the reporter gene *argC*, and used directly to assess promoter activity *in vitro* (see Fig. 2). All putative promoters of *T. maritima* were found to be active; the protein yield ranged from 0.3 to 2.7-times that of the reference *Ptac* promoter (Fig. 4). The gene expression from the promoter *PTM1272* was similar to that of *Ptac*, whereas *PTM0032* was reduced almost threefold. However, higher expression was detected from the other 11 promoters; the greatest expression level was observed for *PTM0477*, *PTM1016*, *PTM1429* and *PTMt45*. Reporter gene expression was also higher for the strong promoter *PargC*, which carries the UP element.

We next aligned experimentally analyzed promoters of *T. maritima* (Fig. 5). The most conserved sequence was the - 10 box, which was identical to the *E. coli* consensus. The - 35 box was also highly conserved, except that cytosine

Table 3: Strong promoter candidates identified in T. maritima MSB8*.

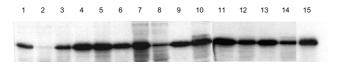
Downstream located gene(s)**	Strong promoter candidate sequence***	Total score****
TM_0013	ACAATTTTTATCTGATATTTTTTCACAttcaccatagtcgatTATAAC	0,8475
conserved hypothetical protein	< 97 bp>aatctggaggtgacaatATG	-,
Operon: 2 genes		
TM 0110	ACCTTGATTTTAAATTATTTCCTGCATataattaatgggaaCATAAT	0,805
transcriptional regulator, XylR-related	< 10 bp>aaaaggaggaatcgaagTTG	0,005
Operon: 6 genes	10 pp audubbabbaucebaug 1 1 C	
TM_0280	GCAATATTTGTCCAGAAATATACTTGATTtaacaaaaatggacaatgTAGAAT	0,88
hypothetical protein	< 37 bp>aaggaggaatatcgtttATG	0,00
Operon: 6 genes	37 bp>aaggaggaatatcgtttA1G	
1 0		0.0075
TM_0339	AGAAAAATTTTTTGGAGACTTGACAaaatatttggtaatattcTAAAAT	0,8975
hypothetical protein	< 5 bp>gcaggaggtgacaaaatATG	
Operon: 3 genes		
TM_0373	TTTTACAAATTCTCATACGACCCCTTGACAtcccattctgtgcctcacTATAAT	0,94
dnaK protein	< 21 bp>tctaaggaggtgacacaATG	
Operon: 2 genes		
TM_0657	TAATGTAACTATTCAAAATCATTACAgtttataattatgtggTAAAAT	0,8125
rubrerythrin	< 22 bp>atagggaggtgcagggtATG	
Operon: 3 genes		
TM_0682	GAATACTCTGTCAGAAAGATTCGTGATCAtcttttcacctcgtgtagTATAAT	0,915
hypothetical protein	< 7 bp>gagtattcttctacacaATG	-, -
Operon: 3 genes	0 ⁻⁰	
TM_1016	TAAAAATTTCATGAAAAATTTCTTGAATtctgtgaccaaaagggTTTAAT	0,9175
		0,7175
hypothetical protein	< 5 bp>gccggaggtgatgtgagATG	0.075
TM_1167	GAAAAGTTACAGAAAAAGTACCCTTGTTAtctgaaggtgaaaaatggTAAAAT	0,865
hypothetical protein	< 61 bp>tacagggagggggggggggATG	
TM_t27	TCATTCATTTTACCATCGAGTCCACTTGAAAttcaggaaggtatgtagTACAAT	0,8675
tRNA-Asn	< 0 bp>tatccgtggaggttcc	
TM_1205	GTTTTTTATCTCTACTAATTAGGTTGACAttattgattcagaagagTAAAAT	0,88
conserved hypothetical protein	< 40 bp>ccgaggaggtgtgatgaGTG	
Operon: 13 genes		
TM_1318	AGAAACAATTTTGGAATTTGATCCATGGACAttattacctttaatgGATAAT	0,8325
Operon: 2 genes	< 0 bp>tttaacggaggATG	
TM_t34	AGAAAAATTTCCGATGAGGGTACTTGAAAagggtgaaaacctgtgcTATTAT	0,855
tRNA-Leu	< 0 bp>atatgtcggagttgcc	0,000
TM_1429	GCATTGTGATTTTGTAACTATATTGACAtaaaacaaaaggtttgtTATAAT	0,9175
glycerol uptake facilitator protein	Control of the second second and the second additional additactataadditional additional addition	0,7175
Operon: 3 genes	Come to be and caaggaggallegggaad to	
		0.0705
TM_t39		0,8725
RNA-Ala	< 50 bp>taatataaagacgaggtggg	
Operon: 3 genes		
TM_1667	AAGTATATCCTAAAAAAATATTTGAAAtgataccccaagattttaTATAAT	0,905
kylose isomerase	< I6 bp>tttagggaggtgtttacATG	
Operon: 2 genes		
TM_1780	GAAAATAACAGTGAAAAAACACTTCATAtaaatcatttcaaataatccTATAAT	0,875
argininosuccinate synthase	< 15 bp>aaagaggagggttcatcATG	
Operon: 6 genes		
TM_0150 (complem.)	AAAAATGTAAAAGAAGAGAAACTTGAATctttgaaaaacatcaTATACT	0,855
ribosomal protein L32	< 210 bp>acgaggaggtataaaagATG	-,
Operon: 5 genes	TIO OF actutesternantes 110	
TM 0477 (complem.)	٨ <u>٣</u> ٨٨٨٨٨٨٨	0.9425
= (1)		0,9425
outer membrane protein alpha	< 28 bp>gaagggaggtttgtcccATG	0.005
TM_0625 (complem.)	ATATTCGTTCTGAATGAAGGTTTTACATttcatccaaattattttggtTATAGT	0,805
nypothetical protein	< I52 bp>attggaggcaaatagaaATG	
ГМ_0656 (complem.)	AACTTAAGTAACACAAAATTAACCTTGACAacgaaagggggggggggggTATAAT	0,8925
conserved hypothetical protein	< 42 bp>aaggggttgggaactttGTG	
Operon: 2 genes		
TM_0755 (complem.)	AGAAATTCTTTGAAAACTATCTAGAATtcaaacgtcgcttttccagTATACT	0,85
conserved hypothetical protein	< 101 bp>aatggaggtgtctctgtATG	
Operon: 2 genes		
TM_0971 (complem.)	AAATATAAATCTGAATTTACTAAATTCACAtttagcaaatcatcattTATAAT	0,895
hypothetical protein		0,075
TM_1015 (complem.)	< 10 bp>aggaatctcaagggggaATG ATAATTTTTGCAATTTTATCTCTATACAtctcacatcacctccggctaTATATT	0.055
		0,855
glutamate dehydrogenase	< 104 bp>ttcgagggggaaatgtATG	

Table 3: Strong promoter candidates identified in T. maritima MSB8*. (Continued)

•••		
TM_1067 (complem.)	GGATTATTTATACTGAAAGCCCTTGACCttgttgtatgtttgttgaTATTAT	0,92
oligopeptide ABC transporter,	< 45 bp>ataacgcagggggggggtggtATG	
periplasmic		
TM_1271 (complem.)	GGGTGATATTTCAACATTAAAATCTTGACAttctaccatgtcaaggtgTATAAT	0,9525
type IV pilin-related protein	< 35 bp>cccgggaggtggattttATG	
TM_I286 (complem.)	GTTTATGCAAATTTTCCTTCTGTTAACCAtgttacacacaacatgtggTATCAT	0,8625
5-	< 19 bp>aatggaggtgaaaagggTTG	
methyltetrahydropteroyltriglutamate		
TM_t31 (complem.)	AAGTTTTGATTTTTGTAAGGTTGAAAtaatctttctgacgatgtggTATAAT	0,86
tRNA-Leu	< 0 bp>aaaaaaaggagcc	
TM_I4I2 (complem.)	ATATGGAAGTTCAAAAAACATCTTGCTTtcagagtgtgtttgtggTATAAA	0,865
hypothetical protein	< 24 bp>aataattccttagaggtATG	
TM_1419 (complem.)	AGAAAACTATTGGTAAAGCACTTGAAAtatatgactgtaaaaacgtgaTATAAT	0,87
myo-inositol-I-phosphate synthase	< 61 bp>ctaaggaggtgaaacatATG	
Operon: 3 genes		
TM_I439 (complem.)	TAGTATTCTACCCTAAACTCTTTCAttctggattcgataatTGTAAT	0,835
hypothetical protein	< 222 bp>tgagagtgaaaaaggccATG	
Operon: 3 genes		
TM_t45 (complem.)	AAAAGAAGGAAGAAAAATGAAAACTTGAACaaggaaacgattgagtgTATAAT	0,865
tRNA-Ser	< bp>tttttctggtgtggagagga	
TM_I786 (complem.)	GTATTATTCATTCTAAAAACTTGAAActgaccaaataaagtatTAGAAT	0,855
hypothetical protein	< 44 bp>cacaagggggggtgttttcATG	
TM_1850 (complem.)	AAACGATTCTTCTAAAATGTGTTCTTGATTtgtatcactgttatgtTATAAA	0,855
hypothetical protein	< 43 bp>aaaaaggaggtgaaactATG	
TM_tII	GAAAAGGGTTATCAGGAAATATCTTGAATagaaaaggttcgtgtgtTAAAAT	0,8825
tRNA-Thr	< 0 bp>aaccacagaggcgagca	
Operon: 2 genes		
TM_1272	TTTCACATTTTGCATTATACACCTTGACAtggtagaatgtcaagatTTTAAT	0,8975
glutamyl tRNA-Gln amidotransferase	< 99 bp>ataatccacgagaggagGTG	
Operon: 3 genes		
TM_0032 (complem.)	AATATTAGAATTTGAACTATAATTCGAAAtaattcctgttattcactCATAAT	0,86
transcriptional regulator, XyIR-related	< 79 bp>agcaggaggaatatggaGTG	
Operon: I genes		
TM_I490 (complem.)	GGTGAAAATATGCCCAGGAAACGTTTGACTggaatagttgtgagcgaTAAAAT	0,845
ribosomal protein LI4	< 259 bp>aagggagggttgaatcATG	
Operon: 22 genes		

* The genome annotation of *T. maritima* AE000512 used for analysis was dated 28th December 2005.

** The gene order for the first 34 candidate sequences is shown on both strands as described in the annotated genome [49]. The complementary strand is noted as (complem).


*** The spacer between -35 and -10 sites and the region located downstream of the -10 site are shown in lowercase; the initiation codons of the ORFs are shown in capital letters at the end of the corresponding sequences.

**** The first 34 candidate sequences were detected with the score parameters sUP = 13, s35 = 6, s10 = 5; TMt11, TM1272, TM0032 and TM1490 were detected with sUP = 12, s35 = 6, s10 = 5 and used for analysis in a cell-free system (see Fig. 3).

preceded the -35 site in 9 promoters, and no significant preference was detected for the nucleotides at the 5th and 6th positions. An 18-bp spacer appeared to be more representative than a 17-bp distance between the -35 and -10 boxes. Although all candidates possessed an AT-rich region upstream of the -35 site, some of them had only one A-rich tract, suggesting that they harbor only a single sub-site of a putative UP element. In any case, the high score attributed to 11 identified promoters was corroborated by elevated activity *in vitro*. Taken together, the alignment data and the expression data from the cell-free system, suggest that *E. coli* RNA polymerase efficiently recognizes putative strong promoters of *T. maritima*, and that the presence of an UP-like element might contribute to the strength of the promoter. Two regions, (2.4 and 4.2) of the four domains of σ^{70} are involved in the recognition of the -10 and -35 boxes of *E. coli* promoters, respectively [59]. Several amino acids involved in contact with DNA have been also identified in the α subunit [60]. These DNA-binding regions in both σ^{70} and α subunits of *E. coli* and *T. maritima* RNA polymerases share high similarity (data not shown), which highlights the fact that -35 and -10 boxes and UPlike element all contribute to the high promoter activity in the thermophilic host.

Discussion

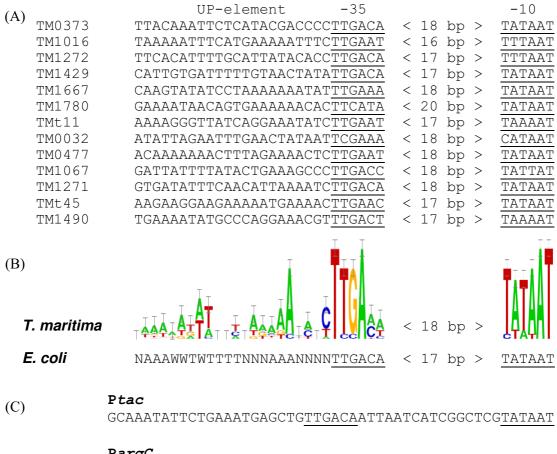

Bacterial promoters can be arbitrarily classified as weak, moderate and strong promoters, depending on the level of expression of mRNAs or of the corresponding proteins. We have developed an algorithm that can predict strong promoters in bacterial genomes by matching the triad pat-

Figure 4

Assessment of the strength of T. maritima strong promoter candidates in a cell-free system. Lanes 1 – Ptac (reference); 2 – PTM0032; 3 – PTM0373; 4 – PTM0477; 5 – PTM1016; 6 – PTM1067; 7 – PTM1271; 8 – PTM1272; 9 – PTM1429; 10 – PTM1490; 11 – PTM1667; 12 – PTM1780; 13 – PTMt45; 14 – PTMt11; 15 – PargC. Similar results were obtained in 3 experiments. tern specific for the group I σ^{70} factor of *E. coli* RNA polymerase. The first step in the proposed triad pattern approach involves matching the UP element located 300 bp upstream of a gene-coding sequence, and then matching two optimally separated -35 and -10 boxes.

The accuracy of the computational prediction of bacterial promoters depends on the A+T content of the genomes, which means that the matrix has to be adjusted to account for this factor in the DNA under analysis [29]. The data presented highlight the fact that the detection accuracy is lower in genomes with a high A+T content. The number of potential strong promoters identified in 43 bacterial genomes, is a direct function of their A+T content; this implies that the accuracy of the prediction is lower for genomes with A+T content higher than 62%.

PargC

TCGAAAATTATTAAATATACAT<u>TTGATT</u>TTATTTTTATACAGTAT<u>TATAAT</u>

Figure 5

Organization of strong bacterial promoters. (A), Alignment of 13 promoter candidates of *T. maritima*; (B) consensus sequences of *T. maritima* and *E. coli* strong promoters; consensus of the *E. coli* UP element is described in [26, 27]; (C) the strong promoters Ptac and PargC were used as references in this study.

The choice of the matching score is yet another difficulty in identifying DNA-binding sites including promoters, as the highest score may not be the one most biologically relevant for genome-scale predictions [61,62]. It is therefore helpful to use additional criteria to eliminate false-positives. It looks as if the total score of 0.8475, calculated for the reference promoter Ptac, can be used as an reasonable criterion for identifying real strong promoters recognized by an $E\sigma^{70}$ -like RNA polymerase. In particular, using the scores applied to genomes analysis (see Tables 1 and 2), the algorithm detects 7 potential strong promoters in M. tuberculosis (~34% AT-rich genome) that encodes a variety of σ factors, including σ^A that recognizes the promoters possessing typical -10 and -35 boxes [63]. However, none of the predicted strong promoters had a total score in excess of 0.8475, and visual inspection indicated that none of these promoters possesses an UP-like sequence, suggesting that this gene expression-stimulating element is absent in M. tuberculosis.

The possibility of applying linear PCR-generated molecules for cell-free protein synthesis, without needing to perform DNA cloning in bacteria, is a prerequisite for assessing gene expression on a genome-wide scale. As a first step in this direction, we tested reporter-gene fusions to evaluate the strength of the promoters identified in the genome of T. maritima. Though this approach does not exclude possible masking effects of E. coli repressors or activators in the extracts, it is relatively simple, timesaving and informative, all of which are major advantages for evaluating computational predictions. Using the two well-characterized strong promoters (Ptac and PargC) as references, high activity has been demonstrated for 11 out of 13 candidate sequences of T. maritima. This is quite a low proportion; however, it suggests that the detection accuracy by the triad pattern algorithm might be close to 85%. The limitations of the algorithm in terms of specificity and sensitivity of the virtual prediction of putative strong promoters might be further experimentally evaluated by analysis of bacterial genomes with high-throughput methods.

This study offers the first insight into the organization and distribution of strong promoters in hyperthermophilic organisms, which probably constitute the longest lineage in the microbial world [64]. Overall, strong promoters of hyperthermophiles are similar to those of mesophilic origin. We have recently shown that the *T. maritima* RNA polymerase α subunit binds to the *PargG* promoter described here under *PTM1780* [65]. It has been found that the substitution of arginine in the hyperthermophilic α subunit, corresponding to the position Arg265 in the *E. coli* subunit and crucial for DNA recognition [60,66], or the deletion of an AT-rich sequence located upstream of the -35 site, decreases the binding affinity for DNA [65].

The PargG promoter harbors a UP-like element, and is able to direct high gene expression in vitro. Moreover, this element appears to compensate for a poor -35 box or nonoptimal 20-bp spacer of this promoter (see Table 3 and Fig. 5). Hence, these observations, along with the data obtained using other T. maritima promoters, allow us to assume that the presence of a UP-like element with less than 5 mismatches out of 17 nucleotides is essential for the strength of most strong promoters. This is consistent with the conservation of DNA interaction amino acids in the α subunit of the hyperthermoiphilic RNA polymerase. However, sequence-independent upstream DNA interactions within the C-terminal domain of the α subunit could often be required to initiate transcription in E. coli cells [67]. Therefore, the functional significance of the UPlike element in gene expression remains to be proven experimentally in hyperthermophilic organisms.

The strong promoters of *T. maritima* direct the transcription of genes involved in tRNA, ribosome synthesis, energy metabolism, transport, and cell movement (see Table 3). However, to our surprise, we found that 15 of the 38 best candidates promote the transcription of hypothetical proteins. The previously uncharacterized hypothetical protein TM1016 (total score 0.9175) turns out to share 28% identity with a biopolymer transport protein of *Vibrio vulnificus* [68]. In this context, recent studies of the *T. maritima* transcriptome have indicated that ABC transporters could play a major role in its ecology [69]. Further characterization of highly expressed hypothetical genes identified in our study might help to elucidate their role in the biology of this hyperthermophilic organism.

The strong promoter candidates prediction could contribute to the wide-scale genome expression analysis of evolutionarily distant bacteria, especially of those that possess an A+T DNA content lower than 62%. As a complement to DNA microarrays, it could help to elucidate the overall response of bacterial genomes to various environmental stresses. Moreover, the triad pattern algorithm can be used to extract the DNA region that carries translational signals; this is useful for investigating ORFs located downstream from the corresponding strong promoters (see Table 3). Thus, almost half of the T. maritima ORFs transcribed from putative strong promoters are preceded by a highly conserved Shine-Dalgarno site located 7-9 nucleotides from the ATG initiation codon, which is a characteristic feature of elevated protein synthesis in gram-negative and gram-positive bacteria [70]. This information will be useful for comparing highly synthesized mRNAs with the production of the corresponding proteins using highthroughput transcriptomic and proteomic methods, which is an important challenge in the fields of basic and applied microbiology [71]. Furthermore, the characterization of proteins whose expression is governed by strong promoters looks like a promising approach to selecting candidate vaccines against microbial diseases and/or to identifying potential new antibacterial targets in the fight against nosocomial infections.

Further quantitative assessment of a dynamic and complicated mechanism of protein-DNA and protein-protein interactions involved in transcription might help to develop a more advantageous multi-pattern tool using both DNA and protein parameters to provide a comprehensive prediction of the strength of promoter activity in bacterial cells.

Conclusion

The triad pattern algorithm developed predicts strong promoter candidates by matching UP-like elements and identifying the presence of -35 and -10 boxes optimally distanced from each other in the annotated bacterial genomes. The presence of strong promoters is a function of the A+T content of the bacterial genome, and the number of false-positives is greater for genomes that have an A+T content higher than 62%. The prediction algorithm has been validated by cell-free experimental dissection of putative T. maritima promoters. The data indicate that strong promoters govern the transcription of genes coding vital functions, and of genes coding as-yet unknown functions in this hyperthermophilic bacterium. This algorithm is simple to use and flexible, and it could be further adapted to meet the requirements of a genome of interest if its promoter-specific motifs differ from consensi recognized by $E\sigma^{70}$ -like RNA polymerase.

Availability and requirements

The algorithm is freely accessible for non-commercial use at the web-site <u>http://www.protneteomix.com</u>. It takes several seconds to analyze the annotated genome sequence available from databases.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MD developed the algorithm and performed the computational analysis; AM conducted cell-free experiments; VS designed the project, contributed to the development of the algorithm and data analysis, and wrote the manuscript.

Additional material

Additional file 1

ReadMe. Contains information to use the algorithm. Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2105-9-233-S1.pdf]

Additional file 2

Software "strong_promoters.doc". The Text-format provides the list of putative strong promoter sequences with total and individual scores obtained for each consensus. The Word-format provides the tabulated list of putative strong promoters and their total score. Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2105-9-233-S2.doc]

Acknowledgements

At the time of the study AM was a research fellow supported by Pays de la Loire. MD acknowledges support from the Conseil Régional des Pays de la Loire and ProtNeteomix for his visit to Nantes University. We should like to thank anonymous reviewers whose suggestions allowed us to improve the manuscript. This study was supported by the "Post-Génome programme des Pays de la Loire", by the EU project EUR-INTAFAR (n°LSHM-CT-2004-512138), and by the R&D program of ProtNeteomix.

References

- 1. Darst SA: Bacterial RNA polymerase. Curr Opin Struct Biol 2001, 11:155-162.
- 2. Queen C, Wegman MN, Korn LJ: Improvements to a program for DNA analysis: a procedure to find homologies among many sequences. Nucleic Acids Res 1982, 10:449-456.
- 3. Galas DJ, Eggert M, Waterman MS: **Rigorous pattern-recognition** methods for DNA sequences. J Mol Biol 1985, 186:117-128.
- 4. Staden R: Methods for discovering novel motifs in nucleic acid sequences. Comput Appl Biosci 1989, 5:293-298.
- Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994, 2:28-36.
- Alexandrov N, Mironov A: Application of a new method of pattern recognition in DNA sequence analysis: a study of E. coli promoters. Nucleic Acids Res 1990, 18:1847-1852.
- 7. Demeler B, Zhou G: Neural network optimization for E. coli promoter prediction. Nucleic Acids Res 1991, 19:1593-1599.
- Cardon LR, Stormo GD: Expectation maximization algorithm for identifying protein-binding sites with variable lengths from unaligned DNA fragments. J Mol Biol 1992, 223:159-170.
- Horton PB, Kanehisa M: An assessment of neural network and statistical approaches for prediction of *E. coli* promoter sites. *Nucleic Acids Res* 1992, 20:4331-4338.
- Thieffry D, Salgado H, Huerta AM, Collado-Vides J: Prediction of transcriptional regulatory sites in the complete genome sequence of Escherichia coli K-12. Bioinformatics 1998, 14:391-400.
- Vanet A, Marsan L, Labigne A, Sagot M-F: Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori σ⁸⁰ family of promoter signals. J Mol Biol 2000, 297:335-353.
- Leung SW, Melish C, Robertson D: Basic gene grammars and DNA-chartparser for language processing of Escherichia coli promoter DNA sequence. *Bioinformatics* 2001, 17:226-236.
 Gordon L, Chervonenkis AY, Gammerman AJ, Shahmuradov IA,
- Gordon L, Chervonenkis AY, Gammerman AJ, Shahmuradov IA, Solovyev VV: Sequence alignment kernel for recognition of promoter regions. *Bioinformatics* 2003, 19:1964-1971.
- Jacques P-E, Rodrigue S, Gaudreau L, Goulet J, Brzezinski R: Detection of prokaryotic promoters from the genomic distribution of hexanucleotide pairs. BMC Bioinformatics 2006, 7:423. (doi:10.1186/1471-2105-7-423)
- Benham CJ: Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory loci. Proc Natl Acad Sci USA 1993, 90:2999-3003.
- Kanhere A, Bansal M: A novel method for prokaryotic promoter prediction based on DNA stability. BMC Bioinformatics 2005, 6:1-10.
- 17. Wang H, Benham CJ: Promoter prediction and annotation of microbial genomes based on DNA sequence and structural

responses to superhelical stress. BMC Bioinformatics 2006, 7:248. (doi:10.1186/1471-2105-7-248)


- Hawley D, McClure WR: Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 1983, 11:2237-2255.
- 19. Harley C, Reynolds R: Analysis of E. coli promoter sequences. Nucleic Acids Res 1987, 15:2343-2361.
- O'Neil M, Chiafari F: Escherichia coli promoters. II. A spacingclass dependent promoter search protocol. J Biol Chem 1989, 264:5531-5534.
- Helmann JD: The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 2002, 46:47-110.
- 22. deHaseth PL, Zupancic ML, Record MT Jr: RNA-polymerase-promoter interactions: the comings and goings of RNA polymerase. | Bacteriol 1998, 180:3019-3025.
- 23. Makrides SC: Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 1996, 60:512-538.
- Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K, Gourse RL: A third recognition element in bacterial promoters: DNA binding by the α subunit of RNA polymerase. Science 1993, 262:1407-1413.
- Ross W, Ernst A, Gourse RL: Fine structure of E. coli RNA polymerase-promoter interactions: α subunit binding to the UP element minor groove. Genes & Dev 2001, 15:491-506.
- Estrem ST, Gaal T, Ross W, Gourse RL: Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci USA 1998, 95:9761-9766.
- 27. Aiyar SE, Gourse RL, Ross W: Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase alpha subunit. Proc Natl Acad Sci USA 1998, 95:14652-14657.
- Estrem ST, Ross W, Gaal T, Chen ZWS, Niu W, Ebright RH, Gourse RL: Bacterial promoter architecture: sub-site structure of UP elements and interactions with the C-terminal domain of the RNA polymerase α subunit. Genes & Dev 1999, 13:2134-2147.
- 29. Hertz GZ, Stormo GD: Escherichia coli promoter sequences: analysis and prediction. Methods Enzymol 1996, 273:30-42.
- Tutukina MN, Shakunov KS, Masulis IS, Ozoline ON: Intragenic promoter-like sites in the genome of Escherichia coli discovery and functional implication. J Bioinform Comput Biol 2007, 5:549-560.
- Fredrick K, Caramori T, Chen Y, Galizzi A, Helmann JD: Promoter architecture in the flagellar regulon of Bacillus subtilis: highlevel expression of flagellin by the ΣD RNA polymerase requires an upstream promoter element. Proc Natl Acad Sci U S A 1995, 92:2582-2586.
- Savchenko A, Weigel P, Dimova D, Lecocq M, Sakanyan V: The Bacillus stearothermophilus argCJBD operon harbours a strong promoter as evaluated in Escherichia coli cells. Gene 1998, 212:167-177.
- Aiyar SE, Gaal T, Gourse RL: rRNA promoter activity in the fastgrowing bacterium Vibrio natrigens. J Bacteriol 2002, 184:1349-1358.
- Sorokin AA, Osypov AA, Dzhelyadin TR, Beskaravainy PM, Kamzolova SG: Electrostatic properties of promoter recognized by E. coli RNA polymerase Esigma70. J Bioinform Comput Biol 2006, 4:455-467.
- Mitchell JE, Zheng D, Busby SJ, Minchin SD: Identification and analysis of "extended" promoters in Escherichia coli. Nucleic Acids Res 2003, 31:4689-4695.
- 36. Stormo GD, Schneider TD, Gold L, Ehrenfeucht A: Use of the "Perception" algorithm to distunguish translational initiation sites in *E. coli.* Nucleic Acids Res 1982, 10:2997-3011.
- Baldi P, Chauvin Y, Hunkapiller T, McClure MA: Hidden Markov models of biological primary sequence information. Proc Natl Acad Sci USA 1994, 91:1059-1063.
- Jarmer H, Larsen TS, Krpgh A, Saxild HH, Brunak S, Knudsen S: Sigma A recognition sites in the Bacillus subtilis genome. Microbiology 2001, 147:2417-2424.
- Petersen L, Larsen TS, Ussery DW, On SL, Krogh A: RpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a -35 box. J Mol Biol 2003, 326:1361-1372.
- 40. Munch R, Hiller K, Grote A, Scheer M, Klein J, Schobert M, Jahn D: Virtual Footprint and PRODORIC: an integrative frame-

work for regulon prediction in prokaryotes. *Bioinformatics* 2005, 21:4187-4189.

- Vanet A, Marsan L, Sagot M-F: Promoter sequences and algorithmical methods for identifying them. Res Microbiol 1999, 150:779-799.
- 42. Waterman MS: Sequence alignments in the neighborhood of the optimum with general application to dynamic programming. *Proc Natl Acad Sci USA* 1983, 80:3123-3124.
- Campbell EA, Muzzin O, Chlenov M, Sun JL, Olson CA, Weinman O, Trester-Zediltz ML, Darst SA: Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell 2002, 9:527-539.
- Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN, Borukhov S, Yokoyama S: Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A° resolution. Nature 2002, 417:712-719.
- Salgado H, Santos-Zavalets A, Gama-Castro S, Millán-Zárate D, Díaz-Peredo E, Sánchez-Solano F, Pérez-Rueda E, Bonavides-Martínez C, Collado-Vides J: RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12. Nucleic Acids Res 2001, 29:72-74.
- 46. Sakanyan V, Charlier D, Legrain C, Kochikyan A, Mett I, Piérard A, Glansdorff N: Primary structure, partial purification and regulation of key enzymes of the acetyl cycle of arginine biosynthesis in Bacillus stearothermophilus: dual function of ornithine acetyltransferase. J Gen Microbiol 1993, 139:393-402.
- Karaivanova IM, Weigel P, Takahashi M, Fort C, Versavaud A, Van Duyne G, Charlier D, Hallet JN, Glansdorff N, Sakanyan V: Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties. J Mol Biol 1999, 291:843-855.
- De Boer HA, Comstock LJ, Vasser M: The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci USA 1983, 80:21-25.
- Snapyan M, Lecocq M, Guevel L, Arnaud MC, Ghochikyan A, Sakanyan V: Dissecting DNA-protein and protein-protein interactions involved in bacterial transcriptional regulation by a sensitive protein array method combining a near-infrared fluorescence detection. *Proteomics* 2003, 3:647-657.
- Pratt JM: Coupled transcription-translation in prokaryotic cell-free systems. In *Transcription and translation: a practical approach* Edited by: Hames BD, Higgins SJ. New York: IRL Press; 1984:179-209.
- 51. Kim DM, Swartz JR: Prolonging cell-free protein synthesis with a novel ATP regeneration system. Biotechnol Prog 2000, 16:385-390.
- Schneider TD, Stephens RM: Sequence Logos: a new way to display consensus sequences. Nucleic Acids Res 1990, 18:6097-6100.
- Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: A sequence logo generator. Genome Res 2004, 14:1188-1190 [http:/ /www.bio.cam.ac.uk/seqlogo/logo.cgi].
- <u>/www.bio.cam.ac.uk/seqlogo/logo.cgi</u>].
 54. Weiner J III, Herrmann R, Browning GF: Transcription in Mycoplasma pneumoniae. Nucleic Acids Res 2000, 28:4488-4496.
- Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV: The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 1998, 392:353-358.
- Giacani L, Hevner K, Centurion-Lara A: Gene organization and transcriptional analysis of the trpJ, trpI, trpG, and trpF loci in Treponema pallidum strains Nichols and Sea 81-4. J Bacteriol 2005, 187:6084-6093.
- Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM: Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 1999, 399(6734):323-329.
 Paul BJ, Ross W, Gaal T, Gourse RL: rRNA transcription in
- Paul BJ, Ross W, Gaal T, Gourse RL: rRNA transcription in Escherichia coli. Annu Rev Genet 2004, 38:749-770.
- Dove SL, Darst SA, Hochschild A: Region 4 of sigma as a target for transcription regulation. Mol Microbiol 2003, 48:863-874.
- 60. Murakami K, Fujita N, Ishihama A: Transcription factor recognition surface on the RNA polymerase alpha subunit is

involved in contact with the DNA enhancer element. EMBO J 1996, 15(16):4358-4367.

- Eskin E, Keich U, Gelfand MS, Pevzner PA: Genome-wide analysis of bacterial promoter regions. Pac Symp Biocomput 2003:29-40.
- Huerta AM, Collado-Vides J: Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J Mol Biol 2003, 333:261-278.
- Manganelli R, Proveddi R, Rodrigue S, Beaucher J, Gaudreau L, Smith I: σ factors and global regulation in Mycobacterium tuberculosis. J Bacteriol 2004, 186:895-902.
- Woese CR, Kandler O, Wheelies ML: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990, 87:4576-4579.
- 65. Braun F, Marhuenda FB, Morin A, Guevel L, Fleury F, Takahashi M, Sakanyan V: Similarity and divergence between the RNA polymerase alpha subunits from hyperthermophilic Thermotoga maritima and mesophilic Escherichia coli bacteria. Gene 2006, 380:120-126.
- Gaal T, Ross W, Blatter EE, Tang H, Jia X, Krishnan VV, Assa-Munt N, Ebright RH, Gourse RL: DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture. Genes & Dev 1996, 10:16-26.
- Ross W, Gourse RL: Sequence-independent upstream DNAαCTD interactions strongly stimulate Escherichia coli RNA polymerase-lacUV5 promoter association. Proc Natl Acad Sci USA 2005, 102:291-296.
- Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Shin DH, Chung SS, Choy HE, Progulske-Fox A, Hillman JD, Handfield M, Rhee JH: Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 2003, 71:5461-5471.
- Johnson MR, Conners SB, Montero CI, Chou CJ, Shockley KR, Kelly RM: The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture. Appl Environ Microbiol 2006, 72:811-818.
- Vellanoweth RL, Rabinowitz JC: The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 1992, 6:1105-1114.
- 71. Boyce JD, Cullen PA, Adler B: Genomic-scale analysis of bacterial genes and protein expression in the host. *Emerg Infect Dis* 2004, 10:1357-1362.

