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Abstract
Background: Bacterial promoters, which increase the efficiency of gene expression, differ from
other promoters by several characteristics. This difference, not yet widely exploited in
bioinformatics, looks promising for the development of relevant computational tools to search for
strong promoters in bacterial genomes.

Results: We describe a new triad pattern algorithm that predicts strong promoter candidates in
annotated bacterial genomes by matching specific patterns for the group I σ70 factors of Escherichia
coli RNA polymerase. It detects promoter-specific motifs by consecutively matching three patterns,
consisting of an UP-element, required for interaction with the α subunit, and then optimally-
separated patterns of -35 and -10 boxes, required for interaction with the σ70 subunit of RNA
polymerase. Analysis of 43 bacterial genomes revealed that the frequency of candidate sequences
depends on the A+T content of the DNA under examination. The accuracy of in silico prediction
was experimentally validated for the genome of a hyperthermophilic bacterium, Thermotoga
maritima, by applying a cell-free expression assay using the predicted strong promoters. In this
organism, the strong promoters govern genes for translation, energy metabolism, transport, cell
movement, and other as-yet unidentified functions.

Conclusion: The triad pattern algorithm developed for predicting strong bacterial promoters is
well suited for analyzing bacterial genomes with an A+T content of less than 62%. This
computational tool opens new prospects for investigating global gene expression, and individual
strong promoters in bacteria of medical and/or economic significance.

Background
Efficient promoter recognition is crucial in the synthesis
of the gene-encoded products required by bacteria to
allow them to grow rapidly and to adapt to different envi-
ronmental conditions. The general architecture and pro-
tein-DNA interaction interfaces appear to be conserved in
RNA polymerases of different bacteria, to judge by a com-

parison of the resolved structures of the multi-subunit
protein or its subunits [1]. This structural information
suggests that the principles of DNA recognition by RNA
polymerases are universal, and this constitutes a basis for
in silico prediction of promoters that are recognized by
families of sigma factors. Research in bioinformatics has
developed approximate matching methods to detect con-
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served sequences in nucleic acids [2-5], including pro-
moter-specific sequences that are invaluable in helping to
elucidate the overall organization of transcriptional sig-
nals and regulatory circuits in evolutionarily distant bac-
teria [6-14]. Most promoter prediction programs so far
proposed use statistical or motif-based methods, and take
into consideration what is known about experimentally
defined promoter architectures, and extract conserved
sequences from the genomes under analysis. Attempts
have been made to improve promoter prediction by intro-
ducing statistical mechanical methods to measure the
stress-induced destabilization or bendability of the
duplex DNA region located upstream of the transcription
initiation site required for the local dissociation of strands
to start mRNA synthesis [15-17]. The steady increase in
the number of sequenced bacterial genomes of medical
and economic significance means that there is an increas-
ing need for computational tools to predict promoters,
especially those responsible for high-level gene expression
in organisms, of which there has been little experimental
investigation.

Many housekeeping genes in Escherichia coli are tran-
scribed from promoters possessing the recognition ele-
ments referred to as -35 and -10 sites (boxes), for which
the TTGACA and TATAAT consensi, respectively, have
been identified by compiling characterized RNA polymer-
ase-binding regions in the DNA [18,19]. The -35 and -10
sites, which are separated from each other by a 15–20-bp
spacer [20], are specifically recognized by Eσ70 RNA
polymerase, an RNA polymerase holoenzyme bearing the
group I σ70 factor [21]. Experimental data have shown that
high transcription rates of genes correlate with the level of
conservation of three promoter parameters, with the con-
sensus -35 and -10 hexanucleotide boxes, and with the 17
± 1-bp spacer separating them [22]. This fact has been
widely used to construct vectors for protein overexpres-
sion in bacterial cells [23].

However, the strength of strong promoters also depends
on a fourth parameter, an AT-rich UP element 17–20 bp
length, which is located just upstream of the -35 site, and
which is recognized by the α subunit of Eσ70 RNA
polymerase, which was first discovered for ribosomal
RNA promoters [24]. The C-terminal domain of this sub-
unit binds both to the UP element and to transcription
regulation proteins, whereas the N-terminal domain
makes contact with other subunits during the assembly of
RNA polymerase [25]. A 17-bp consensus 5'AAAWWT-
WTTTTNNNAAA (where W is A or T, and N can be any of
the four bases) has been identified for the UP element by
analyzing the patterns, selected by the SELEX method,
which mediate increases of between 10- and 300-fold in
gene expression in E. coli cells [26-28]. Two preferred sub-
sites have been identified within the UP element. They are

centered approximately at the -42 and the -52 positions
respectively, and appear to be specifically recognized by
one or two monomers of a dimeric α subunit in the RNA
polymerase.

It is noteworthy, that a virtual analysis of patterns located
upstream from the consensus -35 had since long time sug-
gested their functional significance [3]. The sequences
reminiscent of UP element have been detected in the E.
coli genome by the algorithms PWM [29] and PlatPram
[30]. A software-based (GCG, version 9.0) dissection of
regions located upstream of the E. coli promoters had
made it possible to detect putative promoters with ≤ 4
mismatches in the full UP element consensus [28]. Several
UP elements have also been visually identified, and char-
acterized by their ability to direct high level gene expres-
sion in vivo or in vitro in Bacillus subtilis [31], Geobacillus
(formerly Bacillus) stearothermophilus [32] and Vibrio natri-
gens [33]. Recently, a comparative analysis of Eσ70-specific
promoter and non-promoter regions indicated that
upstream regions of E. coli ribosomal and T4 phage early
promoters possess electrostatic elements that could be
responsible for modulating promoter activities due to
ADP-ribosylation of RNA polymerase α subunit [34].
However, no specific algorithms have yet been proposed
to detect strong promoters in bacterial genomes, and so
this remains an important task for genomic and pro-
teomic research in microbiology.

In this study, we have developed a triad pattern algorithm
that detects strong promoter candidates composed of a
UP-element, and two consensi, -35 and -10 boxes, which
are optimally distanced from each other. All four parame-
ters are required for efficient DNA recognition, and the
initiation of mRNA synthesis by an Eσ70-like RNA
polymerase. The data presented indicate that the fre-
quency of strong promoters is a function of the A+T con-
tent of the corresponding genomes. The proposed
prediction program is flexible, and can be modified by
users to modulate the search stringency criteria depending
on the promoter features of the genome under analysis.
The accuracy of detection has been experimentally vali-
dated for putative strong promoters predicted in a hyper-
thermophilic bacterium Thermotoga maritima.

Implementation
Overview of the approach
The promoter activity in cells is determined by regulatory
proteins (activators and repressors) that can recognize
overlapping sequences specific for Eσ70 RNA polymerase
sites, and thereby mask the true promoter strength. In
addition, almost 20% of E. coli RNA polymerase Eσ70-spe-
cific promoters possess an extended -10 sequence that
might compensate for the absence of a clear -35 site [35].
Different prediction programs based on statistical and
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motif-searching approaches have been developed to
detect a variety of binding sites in DNA, and both posi-
tion-specific weight matrices [36] and hidden Markov
models [37] have been used to improve the accuracy of
the prediction of promoter sequences in bacterial
genomes [38-40]. These programs usually detect hexanu-
cleotide dyad patterns of RNA polymerase-promoter
binding sites, such as -35 and -10 boxes, and none of
them is free of false-positives, which correspond to simi-
lar, non-promoter sequences in bacterial genomes [for a
review, see [41]].

In this study, we exploited the strengths of the "triad pat-
tern" approach to develop an algorithm able to detect
strong promoters by matching three nucleotide sequences
recognized by the σ70 and α subunits of bacterial RNA
polymerase. Theoretically, the presence of a UP element
may not be essential for relatively strong promoter activity
if two -35 and -10 boxes are well conserved and optimally
distanced. Similarly, the presence of a well conserved UP
element may compensate for a poor -35 box in some pro-
moters. However, it seems very likely that the strongest
promoters probably possess all three essential sequences.
The specific interaction between the UP element and the
α subunit significantly amplifies the association of RNA
polymerase with promoter DNA [27,28]. Therefore, to
improve the filter to exclude possible false-positive due to
short hexanucleotide similar sequences scattered through-
out the genome, our algorithm starts by first matching the
UP element, and only then identifying the -35 and -10
boxes located further downstream.

Design of the triad pattern algorithm
We designed an algorithm able to detect the triad nucle-
otide patterns in bacterial genomes. The core of the algo-
rithm is the FIND_TRIAD procedure, which given an
input nucleotide string, s, returns the substring s' of s,
which is the best approximation of a given triad pattern of
the form (pat(1),L1)-(l1,l2)-(pat(2),L2)-(d1,d2)-
(pat(3),L3), where each pat(i), i = 1,2,3, is a nucleotide
string, Li is its length, l1 and l2 are the minimum and max-
imum distances respectively between the first and the sec-
ond patterns, and d1 and d2 are the minimum and
maximum distances respectively between the second and
the third patterns. To avoid making a "bad" approxima-
tion, three scores Sc1, Sc2 and Sc3 are used as input
parameters for the procedure. The resulting substring, s',
can then be represented as (spat(1),Ls1)-ls1-(spat(2),Ls2)-
ls2- (spat(3),Ls3), where each spat(i), i = 1,2,3, is a sub-
string of s aligned to pat(i), Lsi is its length, ls1 is the dis-
tance between spat(1) and spat(2), and ls2 is the distance
between spat(2) and spat(3). This result for s' satisfies the
following conditions:

(1) for each i = 1,2,3 the similarity score (weight) Wi of
the match or alignment of pat(i) and spat(i) is not less
than Sci (or the number of "mismatches" does not exceed
(Li - Sci));

(2) (l1 ≤ ls1 ≤ l2) and (d1 ≤ ls2 ≤ d2).

For each of the three patterns, one can either forbid inser-
tions/deletions or allow them. In the former case, Lsi = Li
and the weight = Wi are computed as the sum of matching
pairwise symbols, whereas in the latter case, the difference
|Lsi - Li| between spat(i) and pat(i) is bounded by a value
Ri for the permissible deletions/insertions (gaps), an opti-
mum alignment, and its weight, Wi, are computed by the
standard dynamic programming method for global string
alignment [42]. In both cases, a symbol scoring matrix
Mi(x,j) is used to define the weight of the symbol x in the
position j, 1 ≤ j ≤ Lsi, of spat(i). If symbol x occurs in posi-
tion j of pat(i), then Mi(x,j) = 1, otherwise Mi(x,j) ≤ 1. To
choose the best approximation of the triad pattern from
substrings satisfying conditions (i) and (ii), FIND_TRIAD
uses a total score function with the form:

tot_sc = C1*nsc1(L1,W1)+D12*nsc_dist12(11,l2,ls1) + 
C2*nsc2(L2,W2) + D23*nsc_dist23(d1,d2,ls2) + 
C3*nsc3(L3,W3), (1)

where nsci(Li,Wi), i = 1,2,3, are normalized scores of
matching (alignments) of pat(i) and spat(i), 0 ≤
nsci(Li,Wi) ≤ 1, and nsc_dist12(11,l2,ls1) and
nsc_dist23(d1,d2,ls2) are the normalized scores of the dis-
tances between the first and the second, and the second
and the third patterns, respectively, and 0 ≤
nsc_dist12(11,l2,ls1), nsc_dist23(d1d2,ls2) ≤ 1. The linear
coefficients C1, C2, C3, D12, and D13 are chosen so that
their sum is equal to 1. They indicate the relative impor-
tance of the corresponding sub-patterns of the triads; and
the distances between them. So, the best value of tot_sc is
1.

Application of the algorithm to searching for strong 
promoter candidates
Here we describe the main parameters of the
FIND_TRIAD procedure used to detect strong promoter
candidates in bacterial genomes. In this study, a bacterial
promoter is assumed to be a nucleotide sequence, located
upstream from genes encoding proteins, tRNAs or rRNAs
that could be recognized by an RNA polymerase holoen-
zyme containing a major σ factor (using E. coli Eσ70 RNAP
as the reference). The triad patterns defined for strong pro-
moter candidates include three specific nucleotide sub-
regions: (i), a UP element, which is a 17-nt prefix of the
strong promoter, and has the following consensus pat-
tern: pat(1) = PUP = aaaWWtWttttNNNaaa; (ii) the -35 site,
which is located downstream of the UP element, and has
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the pattern pat(2) = P35 = tcttgacat (underlining indicates a
commonly used consensus for group I σ70 factors; how-
ever, the σ4 domain of these factors appears to be in con-
tact with 9 nucleotides in the region extending from -30 to
-38 [43,44]); (iii) the -10 site, which is located down-
stream of the -35 site, and has the pattern pat(3) = P10 =
tataat (this site is highly conserved). We used the follow-
ing boundaries for the distances between the sub-regions:
l1 = 0, l2 = 5 (these boundaries were extracted from the
examples of UP-elements in [25-27]), d1 = 14, d2 = 20
(these boundaries are standard for the distance between
the -35 site and the -10 site). To search for the first pattern
pat(1) of the UP-element, the simple matching algorithm
was chosen with an a and t mismatch score of 0.5. The rea-
son is that in the full UP-element consensus and the con-
sensuses of two of its subsides – distal and proximal – in
some places do not distinguish between a and t. We
assumed that the consensus for the -35 site of length 9 is
less conserved than that of the -10 site, and so in order to
detect the second pattern pat(2) of the -35 site we used a
dynamic programming algorithm to search for optimal
alignment, with boundaries for the number of permissi-
ble deletions/insertions of R2 = 2. For the most of -35
sites, which were detected by algorithm, no insertions/
deletions were applied. However, this scoring system
allowed us to identify some stronger promoter candidates.
Thus, the insertion of C between two AA in the sequence
TCTTGAAT of TM1016, increases the score of a putative
promoter (see below). The -10 site is better conserved, and
so we used the straightforward matching algorithm to
detect this site.

To define the total score function, tot_sc (formula 1), we
chose the following normalized scores for the three pat-
terns and for the distance between the -35 site and -10 site
(no information was available about the best values for
the distance between the UP element and the -35 site):

nsc1(17,W1) = nsc_up = 1 - (17 - W1)/20, (2)

nsc2(9,W2) = nsc_35 = 1 - (9 - W2)/10, (3)

nsc3(6,W3) = nsc_10 = 1 - (6 - W3)2/10, (4)

and the values of the normalized distance score,
nsc_dist23(14,20,ls2) = nsc_dist, are defined as follows:

We also chose linear coefficients C1 = 0.3, C2 = C3 = 0.25,
D12 = 0, and D23 = 0.2. These coefficients indicate the rel-
ative importance of corresponding sub-regions for evalu-
ating the total score of a candidate sequence. They were
chosen empirically, after preliminary tests with several

annotated genomes, assuming a higher significance of the
UP element, equal significance of the -10 and -35 boxes,
and lower significance of the distance between them. In
this application, the value D12 = 0 means that we ignore
the variations of the distance between a putative UP ele-
ment and -35 box because a priory it is not known what
value is the best in the interval 0–5 nt.

Formulas 2, 3 and 4 reflect the lack of exact matching for
the different sub-regions. If the -10 box is highly con-
served and is essential for initiation of transcription [22],
then the penalty for its mismatches is higher than for
those of the other parameters. For example, for 2 mis-
matches, the penalty is (6 - 4)2/10 = 0.4 for the -10 site,
whereas it is (9 - 7)/10 = 0.2 for the -35 site, and (17 - 15)/
20 = 0.1 for the UP element. The choice of the normalized
score functions in equations 2, 3 and 4 is based on empir-
ical observations, and on common sense, and may seem
to be arbitrary. We want to stress that, in fact, the total
score function tot_sc also has a further role: it does not sig-
nificantly change the set of the best candidates identified
by the algorithm. This set is defined by the three score
bounds Sc1 = scup for UP element, Sc2 = sc35 for -35 site,
and Sc3 = sc10 for -10 site. The total score affects only the
ordering of these candidates amongst themselves.

The general scheme of the algorithm is as follows. It has
the following input: (i) the name of a genome file in Gen-
Bank format; (ii) three parameters of scores: scup, sc35 and
sc10, determining the minimum acceptable similarity
between candidate sequences of the UP element, the -35
box, and the -10 box, respectively, and the E. coli consen-
sus patterns. For each gene in the genome input file that is
not inside an operon, the algorithm runs in two steps:

(i) it extracts a 300-bp DNA region, s, upstream of the
annotated coding sequences for tRNA, rRNA or proteins
(we limited the search to 300 bp, since most E. coli pro-
moters fall within this length inter-gene space [41,45]);

(ii) then it uses the FIND_TRIAD procedure to identify the
best strong promoter candidate within s that satisfies con-
ditions (1) and (2) above. If such a candidate is found, it
is added to the output list of strong promoters.

We recommend to read attentively the "ReadMe" infor-
mation [see Additional file 1] before to start proceeding
the "strong_promoters.doc" software [see Additional file
2]. The algorithm is implemented by a program that pro-
duces the results in two forms: (i) a Text-format table
which lists all strong promoter candidates in a genome,
and provides additional information about the operon
organization of genes located downstream (for example,
see Fig. 1); (ii) a Word-format table which lists strong pro-
moter candidate sequences. A 20-nt sequence preceding a

ls2 17 16 18 15 19: , ,distance between the -35 and -10 sites, nt 114 20

1 0 95 0 85 0 7

,

_ . . .nsc dist
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possible initiation codon of each ORF is also included in
the annotation, as this could be useful for the visual exam-
ination of the translation signals of the corresponding
genes. Lastly, the user can select a convenient score for
each sequence-specific motif taking into consideration the
promoter features of the annotated genome if they differ
from the E. coli-specific patterns used to create the algo-
rithm (for example, a weakly conserved -35 or -10 box).

Methods
Construction of recombinant linear DNAs
Putative promoter regions in the T. maritima genome,
identified by the algorithm described above, were ampli-
fied by PCR using appropriate oligonucleotide primers
connected to the previously-described G. stearother-
mophilus argC gene [46]. This reporter gene encodes N-
acetyl glutamylphosphate reductase, a thermostable and
soluble protein that is easily detectable after exposing E.
coli cleared lysates to 65°C. In order to increase protein
yield, the ribosome-binding site of G. stearothermophilus

argC was modified to the sequence GGAGGGGGAACAT-
ATG (the modified Shine-Dalgarno site and the initiation
codon are underlined), and the distance between the -10
promoter site and the Shine-Dalgarno site was shortened
to 15 bp (Fig. 2). The DNA fragment carrying the argC
gene was connected to T. maritima or control promoters
by two consecutive PCR steps, as described previously
[47]. The quantity and quality of the amplified DNAs were
determined with a 2100 Bioanalyzer (Agilent Technolo-
gies).

Two well-characterized strong promoters, Ptac and PargC,
were used as references to compare the strength of the
putative promoters of T. maritima. The strong promoter
Ptac contains an AT-rich nucleotide sequence upstream of
a -35 site [48], which has no defined UP element; it was
obtained from the vector pBTac2 (purchased from Boe-
hringer Mannheim). PargC, a strong promoter of G. stearo-
thermophilus, contains the UP element, as demonstrated

Text-format presentation of strong promoter candidatesFigure 1
Text-format presentation of strong promoter candidates.
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both in vivo and in vitro, and was amplified from the plas-
mid pHAV2 [32].

Cell-free protein synthesis
PCR-generated linear DNA fragments carrying a promoter
region fused to the argC reporter gene were used to evalu-
ate the promoter strength in a coupled transcription-
translation system, as described previously [49]. The cell-
free extracts were prepared from the E. coli strain BL21
(DE3) Star recBCD (our laboratory construction) as
described by Pratt [50]. Protein synthesis was carried in
the presence of pyruvate oxidase to generate ATP [51].
Typically, 50 ng of PCR-amplified DNA was added to a
pre-mix containing all necessary compounds and 10 μCi
of [α35S]-L-methionine (specific activity 1000 Ci/mmol,
37 TBq/mmol, Amersham-Pharmacia Biotech), and E. coli
S30 cell-free extracts. The reaction mixture was incubated
at 37°C for 90 min, and heated to 65°C for 10 min. After
centrifuging, the supernatant was precipitated with ace-
tone, and then protein samples were separated by SDS-
PAGE and bound to 3 MM paper. The ArgC protein syn-
thesized in vitro was quantified by counting the radioactiv-
ity of the corresponding band with a PhosphorImager 445
SI (Molecular Dynamics).

The bacterial genome sequences were extracted from
available data banks. The logo of T. maritima promoter
consensus sequences was generated at the WebLogo site as
described in [52,53].

Results
The number of strong promoters reflects the A+T content 
of bacterial genomes
In our algorithm, 26 of the 32 symbols used to evaluate
matches in the three promoter-specific patterns, namely
in the UP element and the -35 and -10 boxes, are a and t.
One could expect the number of genes transcribed from
potential strong promoters to depend on the A+T content
of a given genome. To find out whether this is indeed the
case, we compared the frequency of candidates in 300-bp
regions located upstream of genes of annotated bacterial
genomes and in random sequences of the same regions
generated by computing. First, we calculated the (A+T)%
in all 300-bp regions preceding each gene or operon in the
annotated genomes (Table 1). The A+T content in these
DNA regions was found to be slightly higher than that of
the entire genomes of almost all bacteria that have been
analyzed. Next, we generated 10.000 random sequences
with the same A+T content for all the 300-bp regions of
each genome. The algorithm was applied to detect strong
promoter candidates in the 300-bp real genomic and ran-
dom-generated regions of 43 bacterial genomes.

We tested different matching stringencies and empirically
found that the score parameters sUP = 13, s35 = 5.5 and
s10 = 4.5 satisfied the criteria required for scaled compar-
ative analysis without grossly exaggerating the number of
candidate sequences identified in the various genomes.
This analysis revealed that the real genomes with an A+T
content of less than 50% contained many more potential
strong promoters than their simulated counterparts (see

Diagram of the fusion DNA constructs used to express the G. stearothermophilus argC-reporter gene from putative strong pro-moters of T. maritima in a cell-free systemFigure 2
Diagram of the fusion DNA constructs used to express the G. stearothermophilus argC-reporter gene from 
putative strong promoters of T. maritima in a cell-free system. The argC gene was amplified with forward 5'-GGAG-
GGGGAACATATGATGAA and reverse 5'-GGACCACCGCGCTACTGCCG primers from pHAV2 [32] by conserving a 112-
bp downstream region carrying transcriptional terminators of the vector DNA.

T. maritima promoter region Reporter gene argCRBS
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Table 1: A+T content of bacterial genomes and 300-bp regions located upstream of genes and the percentage of strong promoter 
candidates predicted in 300-bp real genomic and random-generated regions of the same content.

(A+T)% of % of candidates in

N° Genome Bacterial genomes* 300-bp genomic regions 300-bp genomic regions 300-bp random sequences

1 Deinococcus radiodurans R1 (AE000513) 32.99 34.19 0.19 0
2 Caulobacter crescentus (AE005673) 32.77 34.40 0.05 0
3 Ralstonia solanacearum GMI1000 

(AL646052)
34.51 34.50 0.20 0

4 Pseudomonas aeruginosa PA01 
(AE004091)

33.44 35.38 0.27 0

5 Xanthomonas campestris pv. campestris 
(AE008922)

34.93 35.64 0.05 0

6 Mycobacterium tuberculosis (AL123456) 34.39 35.69 0.18 0
7 Xanthomonas axonopodis pv. citri 306 

(AE008923)
35.23 36.02 0.05 0

8 Mesorhizobium loti (NC002678) 37.25 39.09 0.13 0
9 Sinorhizobium meliloti 1021 (AL591688) 37.27 39.66 0.24 0
10 Mycobacterium leprae TN (AL450380) 42.20 43.14 0.29 0
11 Agrobacterium tumefaciens C58 

(AE007869)
45.64 43.20 0.74 0

12 Brucella melitensis 16 M chromosome I 
(AE008917)

42.84 45.73 1.02 0

13 Treponema pallidum (AE000520) 47.22 47.01 0.37 0.3
14 Chlorobium tepidum TLS (AE006470) 43.47 47.50 1.50 0.31
15 Salmonella typhimurium LT2 (AE006468) 47.78 51.08 3.54 0.7
16 Neisseria meningitidis serogroup B MC58 

(AE002098)
48.47 52.20 5.03 0.93

17 Escherichia coli O157:H7 (AE005174)** 49.50 52.54 4.80 1.1
18 Methanobacterium thermoautotrophicum 

ΔH (AE000666)
50.46 53.11 4.26 1.23

19 Synechocystis PCC6803 (AB001339) 52.28 53.71 2.89 1.7
20 Thermotoga maritima (AE000512) 53.75 54.66 3.27 2.15
21 Vibrio cholerae chromosome I 

(AE003852)
52.30 54.94 3.22 2.4

22 Yersinia pestis CO92 (AL590842) 52.36 55.77 6.78 3.0
23 Aquifex aeolicus (AE000657) 57.73 57.70 4.72 4.15
24 Bacillus halodurans C-125 (BA000004) 56.31 58.65 8.70 5.1
25 Bacillus subtilis (AL009126) 56.48 59.30 10.28 5.8
26 Mycoplasma pneumoniae M129 

(U00089)
59.99 61.71 5.25 9.7

27 Chlamydia muridarum (AE002160) 59.69 61.73 9.01 9.7
28 Pasteurella multocida PM70 (AE004439) 59.60 62.31 11.42 10.9
29 Chlamydophila pneumoniae J138 

(BA000008)
59.42 62.80 14.77 12.5

30 Streptococcus pneumoniae (AE005672) 60.30 62.88 15.83 13.0
31 Streptococcus pyogenes SF370 serotype 

M1 (AE004092)
61.49 63.99 16.87 14.3

32 Thermoanaerobacter tengcongensis MB4T 
(AE008691)

62.43 64.11 17.74 14.8

33 Listeria innocua Clip11262 (AL592022) 62.56 64.30 12.07 15.5
34 Haemophilus influenzae Rd (L42023) 61.85 64.45 15.61 16.0
35 Mycoplasma genitalium G37 (L43967) 68.31 69.50 15.99 35.0
36 Staphylococcus aureus N315 (BA000018) 67.16 69.71 35.25 36.1
37 Campylobacter jejuni (AL111168) 69.45 71.36 32.07 41.8
38 Clostridium acetobutylicum (AE001437) 69.07 71.83 45.08 44.2
39 Borrelia burgdorferi.(AE000783) 71.40 73.18 40.00 54.1
40 Rickettsia prowazekii Madrid E 

(AJ235269)
71.00 73.26 50.06 55.2

41 Clostridium perfringens 13 (BA000016) 71.43 74.74 53.94 58.1
42 Ureaplasma urealyticum (AF222894) 74.50 76.05 50.85 65.35
43 Buchnera aphidicola Sg (AE013218) 74.67 78.36 58.05 74.5

* A+T content of bacterial genomes was calculated from corresponding genomic DNA sequences available in gene banks.
** Similar values were found for the E. coli K12 genome.
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Table 1). The percentage of candidate sequences was very
low in the bacterial genomes with an A+T content of
between 33% and 47%, and these sequences were com-
pletely absent in the corresponding 300-bp, random-gen-
erated sequences. When the A+T content increased from
47% to 78%, the percentage of strong promoter candi-
dates increased dramatically, whereas the difference
between the real and random sequences decreased, and
virtually disappeared when the A+T content exceeded
62%. There were two exceptions where the genomes ana-
lyzed did not display this pattern at an A+T content of less
than 62%. One was M. pneumoniae, the genome of which
had an A+T content of about 60%, and in which the pro-
moters had no -35 consensus [54]. The other example is
the hyperthermophilic species A. aeolicus (~58% AT-rich
genome). This species is very close to the Archaea, and
occupies a unique position in the bacterial kingdom [55].

Our data show that the number N(A+T) of strong pro-
moter candidates in 300-bp random-generated sequences
corresponding to upstream regions of bacterial genes sat-
isfies the "exponential low" of the form N(A+T) = exp [c1
(A+T) + c2]. The distribution of strong promoter candi-
dates in real genomes indicates that the critical point of
the A+T content is close to 62% (Fig. 3). Above this level,
the number of random sequences reminiscent of strong
promoter patterns increases markedly.

Strong promoter candidate sequences are located 
upstream of gene-coding regions
Another important aspect of the quality of detection is the
location of candidate sequences with regard to coding
regions in the genome analyzed. We compared the fre-
quencies of strong promoter-like patterns identified
upstream and downstream of the initiation codon in all
the genomes. The frequency of candidate sequences was
clearly greater in the upstream region of ORFs in most of
the genomes with an A+T content of less than 62% (Table
2). No difference was detected in T. pallidum (~47% AT-
rich genome), which belongs to a distinct phylum of Spi-
rochetes that appear to use different DNA patterns for the
promotion and regulation of transcription [56].

The fact that more candidate sequences were identified
upstream of ORFs highlights the fact that they are not ran-
domly distributed in bacterial genomes, which suggests
that the detection of strong promoter candidates in
genomes with an A+T content of less than 62% is fairly
reliable.

Experimental validation of virtual prediction: analysis of 
putative strong promoters of T. maritima
Taking our cue from the results of the virtual prediction,
we sought to find out whether, and if so, to what extent
the putative promoters are functional in a biological con-
text. To do this we used reporter-gene technology, which
relies on the fusion of an assayable sequence with a pro-
moter being investigated, and the subsequent evaluation
of promoter strength in a cell-free system (see Fig. 2). The
genome of the hyperthermophilic bacterium T. maritima
[57] was used to evaluate the feasibility of the algorithm
experimentally.

63 candidate sequences were detected in the T. maritima
genome using the matching scores described above. We
increased the penalty for mismatching of -35 and -10
boxes by raising the scores of s35 and s10 to 6 and 5,
respectively. This reduced the number of candidate
sequences to 34 (Table 3). In this shorter list, 28 T. mar-
itima strong promoter candidates possessed a total score
higher than the 0.8475 calculated for the reference strong
promoter, Ptac, that does not have a typical UP element
[48]. 15 of these candidates had a total score higher than
0.8775, as estimated for PargC, another reference strong
promoter that has a well defined UP element [32,49]. It is
worth mentioning that 6 candidate DNA regions in T.
maritima had a total score higher than 0.91, a value esti-
mated for E. coli promoters that govern the transcription
of 16S ribosomal RNA, and which were used as models
for studying the stimulating effect of the UP element on
gene expression [58].

The number of strong promoter candidate sequences is a function of the A+T content of bacterial genomesFigure 3
The number of strong promoter candidate 
sequences is a function of the A+T content of bacte-
rial genomes. For the score parameters sUp = 13, s35 = 
5.5, s10 = 4.5 and constants c1 = 0.22 and c2 = -11.7, the pic-
ture displays a linear graph of the "exponential low" (thin 
line), which approximates fairly closely to the curve ln 
[N(A+T)], shown as a thick line. The logarithm of the per-
centage of strong promoter candidates in real genomes is 
shown by ( ).
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We selected 13 candidate promoter sequences for further
analysis by evaluation of the ArgC thermostable protein
production in a coupled transcription-translation system.
These sequences all exhibited a total score ≥ 0.8475, apart
from TM1490 (see Table 3). The amplified DNA regions
were connected to the reporter gene argC, and used
directly to assess promoter activity in vitro (see Fig. 2). All
putative promoters of T. maritima were found to be active;
the protein yield ranged from 0.3 to 2.7-times that of the
reference Ptac promoter (Fig. 4). The gene expression from
the promoter PTM1272 was similar to that of Ptac,

whereas PTM0032 was reduced almost threefold. How-
ever, higher expression was detected from the other 11
promoters; the greatest expression level was observed for
PTM0477, PTM1016, PTM1429 and PTMt45. Reporter
gene expression was also higher for the strong promoter
PargC, which carries the UP element.

We next aligned experimentally analyzed promoters of T.
maritima (Fig. 5). The most conserved sequence was the -
10 box, which was identical to the E. coli consensus. The -
35 box was also highly conserved, except that cytosine

Table 2: Number of sequences reminiscent of strong promoters in regions located upstream and downstream of the initiation codon 
of genes in bacterial genomes.

N° Genome Length, bp Number of genes Upstream region Downstream region

1 Deinococcus radiodurans R1 (AE000513) 2648638 2681 5 1
2 Caulobacter crescentus (AE005673) 4016947 3787 2 0
3 Ralstonia solanacearum GMI1000 (AL646052) 3716413 3477 7 0
4 Pseudomonas aeruginosa PA01 (AE004091) 6264403 5570 15 2
5 Xanthomonas campestris pv. campestris (AE008922) 5076188 4197 2 0
6 Mycobacterium tuberculosis (AL123456) 4411529 3922 7 0
7 Xanthomonas axonopodis pv. citri 306 (AE008923) 5175554 4344 2 0
8 Mesorhizobium loti (NC 002678) 7036074 6693 9 0
9 Sinorhizobium meliloti 1021 (AL591688) 3654135 3375 8 0
10 Mycobacterium leprae TN (AL450380) 3268203 2770 8 1
11 Agrobacterium tumefaciens C58 (AE007869) 2841581 2701 20 1
12 Brucella melitensis 16 M chromosome I (AE008917) 2117144 2059 21 4
13 Treponema pallidum (AE000520) 1138011 1083 4 3
14 Chlorobium tepidum TLS (AE006470) 2154946 2329 35 13
15 Salmonella typhimurium LT2 (AE006468) 4857432 4608 163 61
16 Neisseria meningitidis serogroup B MC58 (AE002098) 2272351 2226 112 45
17 Escherichia coli O157:H7 (AE005174) 5528445 5478 263 79
18 Methanobacterium thermoautotrophicum delta H (AE000666) 1751377 1900 81 24
19 Synechocystis PCC6803 (AB001339) 3573470 1074 31 6
20 Thermotoga maritima (AE000512) 1860725 1926 63 10
21 Vibrio cholerae chromosome I (AE003852) 2961149 2887 93 37
22 Yersinia pestis CO92 (AL590842) 4653728 4042 274 61
23 Aquifex aeolicus (AE000657) 1551335 1503 71 37
24 Bacillus halodurans C-125 (BA000004) 4202353 4125 359 87
25 Bacillus subtilis (AL009126) 4214814 4182 430 111
26 Mycoplasma pneumoniae M129 (U00089) 816394 705 37 14
27 Chlamydia muridarum (AE002160) 1069411 954 86 31
28 Pasteurella multocida PM70 (AE004439) 2257487 1996 228 64
29 Chlamydophila pneumoniae J138 (BA000008) 1226565 1097 162 51
30 Streptococcus pneumoniae (AE005672) 2160837 2306 365 156
31 Streptococcus pyogenes SF370 serotype M1 (AE004092) 1852441 1731 292 115
32 Thermoanaerobacter tengcongensis MB4T (AE008691) 2689445 2632 467 248
33 Listeria innocua Clip11262 (AL592022) 3011208 3529 426 229
34 Haemophilus influenzae Rd (L42023) 1830138 1775 277 94
35 Mycoplasma genitalium G37 (L43967) 580074 519 83 63
36 Staphylococcus aureus N315 (BA000018) 2814816 2638 930 418
37 Campylobacter jejuni (AL111168) 1641481 1684 540 353
38 Clostridium acetobutylicum (AE001473) 3940880 3738 1685 916
39 Borrelia burgdorferi (AE000783) 910724 875 350 292
40 Rickettsia prowazekii Madrid E (AJ235269) 1111523 885 443 252
41 Clostridium perfringens 13 (BA000016) 3031430 2779 1499 772
42 Ureaplasma urealyticum (AF222894) 751719 645 328 236
43 Buchnera aphidicola Sg (AE013218) 641454 584 339 225
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Table 3: Strong promoter candidates identified in T. maritima MSB8*.

Downstream located gene(s)** Strong promoter candidate sequence*** Total score****

TM_0013
conserved hypothetical protein
Operon: 2 genes

ACAATTTTTATCTGATATTTTTTTCACAttcaccatagtcgatTATAAC
<--- 97 bp --->aatctggaggtgacaatATG

0,8475

TM_0110
transcriptional regulator, XylR-related
Operon: 6 genes

ACCTTGATTTTAAATTATTTCCTGCATataattaatgtgaaCATAAT
<--- 10 bp --->aaaaggaggaatcgaagTTG

0,805

TM_0280
hypothetical protein
Operon: 6 genes

GCAATATTTGTCCAGAAATATACTTGATTtaacaaaaatggacaatgTAGAAT
<--- 37 bp --->aaggaggaatatcgtttATG

0,88

TM_0339
hypothetical protein
Operon: 3 genes

AGAAAAATTTTTTTGGAGACTTGACAaaatatttggtaatattcTAAAAT
<--- 5 bp --->gcaggaggtgacaaaatATG

0,8975

TM_0373
dnaK protein
Operon: 2 genes

TTTTACAAATTCTCATACGACCCCTTGACAtcccattctgtgcctcacTATAAT
<--- 21 bp --->tctaaggaggtgacacaATG

0,94

TM_0657
rubrerythrin
Operon: 3 genes

TAATGTAACTATTCAAAATCATTACAgtttataattatgtggTAAAAT
<--- 22 bp --->atagggaggtgcagggtATG

0,8125

TM_0682
hypothetical protein
Operon: 3 genes

GAATACTCTGTCAGAAAGATTCGTGATCAtcttttcacctcgtgtagTATAAT
<--- 7 bp --->gagtattcttctacacaATG

0,915

TM_1016
hypothetical protein

TAAAAATTTCATGAAAAATTTCTTGAATtctgtgaccaaaagggTTTAAT
<--- 5 bp --->gccggaggtgatgtgagATG

0,9175

TM_1167
hypothetical protein

GAAAAGTTACAGAAAAAGTACCCTTGTTAtctgaaggtgaaaaatggTAAAAT
<--- 61 bp --->tacagggagggcgggagATG

0,865

TM_t27
tRNA-Asn

TCATTCATTTTACCATCGAGTCCACTTGAAAttcaggaaggtatgtagTACAAT
<--- 0 bp --->tatccgtggaggttcc

0,8675

TM_1205
conserved hypothetical protein
Operon: 13 genes

GTTTTTTATCTCTACTAATTAGGTTGACAttattgattcagaagagTAAAAT
<--- 40 bp --->ccgaggaggtgtgatgaGTG

0,88

TM_1318
Operon: 2 genes

AGAAACAATTTTGGAATTTGATCCATGGACAttattacctttaatgGATAAT
<--- 0 bp --->tttaacggaggATG

0,8325

TM_t34
tRNA-Leu

AGAAAAATTTCCGATGAGGGTACTTGAAAagggtgaaaacctgtgcTATTAT
<--- 0 bp --->atatgtcggagttgcc

0,855

TM_1429
glycerol uptake facilitator protein
Operon: 3 genes

GCATTGTGATTTTTGTAACTATATTGACAtaaaacaaaaggtttgtTATAAT
<--- 107 bp --->caaggaggattgggaaaATG

0,9175

TM_t39
tRNA-Ala
Operon: 3 genes

AAAAATAAAAAGTCCTTCTGGGGATTGACCatatttcgtactcatgcTATAAT
<--- 50 bp --->taatataaagacgaggtggg

0,8725

TM_1667
xylose isomerase
Operon: 2 genes

AAGTATATCCTAAAAAAATATTTGAAAtgataccccaagattttaTATAAT
<--- 16 bp --->tttagggaggtgtttacATG

0,905

TM_1780
argininosuccinate synthase
Operon: 6 genes

GAAAATAACAGTGAAAAAACACTTCATAtaaatcatttcaaataatccTATAAT
<--- 15 bp --->aaagaggagggttcatcATG

0,875

TM_0150 (complem.)
ribosomal protein L32
Operon: 5 genes

AAAAATGTAAAAGAAGAGAAACTTGAATctttgaaaaacatcaTATACT
<--- 210 bp --->acgaggaggtataaaagATG

0,855

TM_0477 (complem.)
outer membrane protein alpha

ACAAAAAAACTTTAGAAAACTCTTGAATttcctttggacgggatggTATAAT
<--- 28 bp --->gaagggaggtttgtcccATG

0,9425

TM_0625 (complem.)
hypothetical protein

ATATTCGTTCTGAATGAAGGTTTTACATttcatccaaattattttggtTATAGT
<--- 152 bp --->attggaggcaaatagaaATG

0,805

TM_0656 (complem.)
conserved hypothetical protein
Operon: 2 genes

AACTTAAGTAACACAAAATTAACCTTGACAacgaaaggggggtgggTATAAT
<--- 42 bp --->aaggggttgggaactttGTG

0,8925

TM_0755 (complem.)
conserved hypothetical protein
Operon: 2 genes

AGAAATTCTTTGAAAACTATCTAGAATtcaaacgtcgcttttccagTATACT
<--- 101 bp --->aatggaggtgtctctgtATG

0,85

TM_0971 (complem.)
hypothetical protein

AAATATAAATCTGAATTTACTAAATTCACAtttagcaaatcatcattTATAAT
<--- 10 bp --->aggaatctcaagggggaATG

0,895

TM_1015 (complem.)
glutamate dehydrogenase

ATAATTTTTGCAATTTTATCTCTATACAtctcacatcacctccggctaTATATT
<--- 104 bp --->ttcgaggggggaaatgtATG

0,855
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preceded the -35 site in 9 promoters, and no significant
preference was detected for the nucleotides at the 5th and
6th positions. An 18-bp spacer appeared to be more repre-
sentative than a 17-bp distance between the -35 and -10
boxes. Although all candidates possessed an AT-rich
region upstream of the -35 site, some of them had only
one A-rich tract, suggesting that they harbor only a single
sub-site of a putative UP element. In any case, the high
score attributed to 11 identified promoters was corrobo-
rated by elevated activity in vitro. Taken together, the align-
ment data and the expression data from the cell-free
system, suggest that E. coli RNA polymerase efficiently rec-
ognizes putative strong promoters of T. maritima, and that
the presence of an UP-like element might contribute to
the strength of the promoter.

Two regions, (2.4 and 4.2) of the four domains of σ70 are
involved in the recognition of the -10 and -35 boxes of E.
coli promoters, respectively [59]. Several amino acids
involved in contact with DNA have been also identified in
the α subunit [60]. These DNA-binding regions in both
σ70 and α subunits of E. coli and T. maritima RNA
polymerases share high similarity (data not shown),
which highlights the fact that -35 and -10 boxes and UP-
like element all contribute to the high promoter activity in
the thermophilic host.

Discussion
Bacterial promoters can be arbitrarily classified as weak,
moderate and strong promoters, depending on the level
of expression of mRNAs or of the corresponding proteins.
We have developed an algorithm that can predict strong
promoters in bacterial genomes by matching the triad pat-

TM_1067 (complem.)
oligopeptide ABC transporter, 
periplasmic

GGATTATTTTATACTGAAAGCCCTTGACCttgttgtatgtttgttgaTATTAT
<--- 45 bp --->ataacgcagggggtggtATG

0,92

TM_1271 (complem.)
type IV pilin-related protein

GGGTGATATTTCAACATTAAAATCTTGACAttctaccatgtcaaggtgTATAAT
<--- 35 bp --->cccgggaggtggattttATG

0,9525

TM_1286 (complem.)
5-
methyltetrahydropteroyltriglutamate...

GTTTATGCAAATTTTCCTTCTGTTAACCAtgttacacacaacatgtggTATCAT
<--- 19 bp --->aatggaggtgaaaagggTTG

0,8625

TM_t31 (complem.)
tRNA-Leu

AAGTTTTGATTTTTGTAAGGTTGAAAtaatctttctgacgatgtggTATAAT
<--- 0 bp --->aaaaaaaggagcc

0,86

TM_1412 (complem.)
hypothetical protein

ATATGGAAGTTCAAAAAACATCTTGCTTtcagagtgtgtttgtggTATAAA
<--- 24 bp --->aataattccttagaggtATG

0,865

TM_1419 (complem.)
myo-inositol-1-phosphate synthase-...
Operon: 3 genes

AGAAAACTATTGGTAAAGCACTTGAAAtatatgactgtaaaaacgtgaTATAAT
<--- 61 bp --->ctaaggaggtgaaacatATG

0,87

TM_1439 (complem.)
hypothetical protein
Operon: 3 genes

TAGTATTCTACCCTAAACTCTTTCAttctggattcgataatTGTAAT
<--- 222 bp --->tgagagtgaaaaaggccATG

0,835

TM_t45 (complem.)
tRNA-Ser

AAAAGAAGGAAGAAAAATGAAAACTTGAACaaggaaacgattgagtgTATAAT
<--- 1 bp --->tttttctggtgtggagagga

0,865

TM_1786 (complem.)
hypothetical protein

GTATTATTCATTCTAAAAACTTGAAActgaccaaataaagtatTAGAAT
<--- 44 bp --->cacaagggggtgttttcATG

0,855

TM_1850 (complem.)
hypothetical protein

AAACGATTCTTCTAAAATGTGTTCTTGATTtgtatcactgttatgtTATAAA
<--- 43 bp --->aaaaaggaggtgaaactATG

0,855

TM_t11
tRNA-Thr
Operon: 2 genes

GAAAAGGGTTATCAGGAAATATCTTGAATagaaaaggttcgtgtgtTAAAAT
<--- 0 bp --->aaccacagaggcgagca

0,8825

TM_1272
glutamyl tRNA-Gln amidotransferase...
Operon: 3 genes

TTTCACATTTTGCATTATACACCTTGACAtggtagaatgtcaagatTTTAAT
<--- 99 bp --->ataatccacgagaggagGTG

0,8975

TM_0032 (complem.)
transcriptional regulator, XylR-related
Operon: 1 genes

AATATTAGAATTTGAACTATAATTCGAAAtaattcctgttattcactCATAAT
<--- 79 bp --->agcaggaggaatatggaGTG

0,86

TM_1490 (complem.)
ribosomal protein L14
Operon: 22 genes

GGTGAAAATATGCCCAGGAAACGTTTGACTggaatagttgtgagcgaTAAAAT
<--- 259 bp --->aagggaggggttgaatcATG

0,845

* The genome annotation of T. maritima AE000512 used for analysis was dated 28th December 2005.
** The gene order for the first 34 candidate sequences is shown on both strands as described in the annotated genome [49]. The complementary 
strand is noted as (complem).
*** The spacer between -35 and -10 sites and the region located downstream of the -10 site are shown in lowercase; the initiation codons of the 
ORFs are shown in capital letters at the end of the corresponding sequences.
**** The first 34 candidate sequences were detected with the score parameters sUP = 13, s35 = 6, s10 = 5; TMt11, TM1272, TM0032 and TM1490 
were detected with sUP = 12, s35 = 6, s10 = 5 and used for analysis in a cell-free system (see Fig. 3).

Table 3: Strong promoter candidates identified in T. maritima MSB8*. (Continued)
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tern specific for the group I σ70 factor of E. coli RNA
polymerase. The first step in the proposed triad pattern
approach involves matching the UP element located 300
bp upstream of a gene-coding sequence, and then match-
ing two optimally separated -35 and -10 boxes.

The accuracy of the computational prediction of bacterial
promoters depends on the A+T content of the genomes,
which means that the matrix has to be adjusted to account
for this factor in the DNA under analysis [29]. The data
presented highlight the fact that the detection accuracy is
lower in genomes with a high A+T content. The number
of potential strong promoters identified in 43 bacterial
genomes, is a direct function of their A+T content; this
implies that the accuracy of the prediction is lower for
genomes with A+T content higher than 62%.

Organization of strong bacterial promotersFigure 5
Organization of strong bacterial promoters. (A), Alignment of 13 promoter candidates of T. maritima; (B) consensus 
sequences of T. maritima and E. coli strong promoters; consensus of the E. coli UP element is described in [26, 27]; (C) the 
strong promoters Ptac and PargC were used as references in this study.
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Assessment of the strength of T. maritima strong promoter candidates in a cell-free systemFigure 4
Assessment of the strength of T. maritima strong pro-
moter candidates in a cell-free system. Lanes 1 – Ptac 
(reference); 2 – PTM0032; 3 – PTM0373; 4 – PTM0477; 5 – 
PTM1016; 6 – PTM1067; 7 – PTM1271; 8 – PTM1272; 9 – 
PTM1429; 10 – PTM1490; 11 – PTM1667; 12 – PTM1780; 13 
– PTMt45; 14 – PTMt11; 15 – PargC. Similar results were 
obtained in 3 experiments.
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The choice of the matching score is yet another difficulty
in identifying DNA-binding sites including promoters, as
the highest score may not be the one most biologically rel-
evant for genome-scale predictions [61,62]. It is therefore
helpful to use additional criteria to eliminate false-posi-
tives. It looks as if the total score of 0.8475, calculated for
the reference promoter Ptac, can be used as an reasonable
criterion for identifying real strong promoters recognized
by an Eσ70-like RNA polymerase. In particular, using the
scores applied to genomes analysis (see Tables 1 and 2),
the algorithm detects 7 potential strong promoters in M.
tuberculosis (~34% AT-rich genome) that encodes a variety
of σ factors, including σA that recognizes the promoters
possessing typical -10 and -35 boxes [63]. However, none
of the predicted strong promoters had a total score in
excess of 0.8475, and visual inspection indicated that
none of these promoters possesses an UP-like sequence,
suggesting that this gene expression-stimulating element
is absent in M. tuberculosis.

The possibility of applying linear PCR-generated mole-
cules for cell-free protein synthesis, without needing to
perform DNA cloning in bacteria, is a prerequisite for
assessing gene expression on a genome-wide scale. As a
first step in this direction, we tested reporter-gene fusions
to evaluate the strength of the promoters identified in the
genome of T. maritima. Though this approach does not
exclude possible masking effects of E. coli repressors or
activators in the extracts, it is relatively simple, timesaving
and informative, all of which are major advantages for
evaluating computational predictions. Using the two
well-characterized strong promoters (Ptac and PargC) as
references, high activity has been demonstrated for 11 out
of 13 candidate sequences of T. maritima. This is quite a
low proportion; however, it suggests that the detection
accuracy by the triad pattern algorithm might be close to
85%. The limitations of the algorithm in terms of specifi-
city and sensitivity of the virtual prediction of putative
strong promoters might be further experimentally evalu-
ated by analysis of bacterial genomes with high-through-
put methods.

This study offers the first insight into the organization and
distribution of strong promoters in hyperthermophilic
organisms, which probably constitute the longest lineage
in the microbial world [64]. Overall, strong promoters of
hyperthermophiles are similar to those of mesophilic ori-
gin. We have recently shown that the T. maritima RNA
polymerase α subunit binds to the PargG promoter
described here under PTM1780 [65]. It has been found
that the substitution of arginine in the hyperthermophilic
α subunit, corresponding to the position Arg265 in the E.
coli subunit and crucial for DNA recognition [60,66], or
the deletion of an AT-rich sequence located upstream of
the -35 site, decreases the binding affinity for DNA [65].

The PargG promoter harbors a UP-like element, and is
able to direct high gene expression in vitro. Moreover, this
element appears to compensate for a poor -35 box or non-
optimal 20-bp spacer of this promoter (see Table 3 and
Fig. 5). Hence, these observations, along with the data
obtained using other T. maritima promoters, allow us to
assume that the presence of a UP-like element with less
than 5 mismatches out of 17 nucleotides is essential for
the strength of most strong promoters. This is consistent
with the conservation of DNA interaction amino acids in
the α subunit of the hyperthermoiphilic RNA polymerase.
However, sequence-independent upstream DNA interac-
tions within the C-terminal domain of the α subunit
could often be required to initiate transcription in E. coli
cells [67]. Therefore, the functional significance of the UP-
like element in gene expression remains to be proven
experimentally in hyperthermophilic organisms.

The strong promoters of T. maritima direct the transcrip-
tion of genes involved in tRNA, ribosome synthesis,
energy metabolism, transport, and cell movement (see
Table 3). However, to our surprise, we found that 15 of
the 38 best candidates promote the transcription of hypo-
thetical proteins. The previously uncharacterized hypo-
thetical protein TM1016 (total score 0.9175) turns out to
share 28% identity with a biopolymer transport protein of
Vibrio vulnificus [68]. In this context, recent studies of the
T. maritima transcriptome have indicated that ABC trans-
porters could play a major role in its ecology [69]. Further
characterization of highly expressed hypothetical genes
identified in our study might help to elucidate their role
in the biology of this hyperthermophilic organism.

The strong promoter candidates prediction could contrib-
ute to the wide-scale genome expression analysis of evolu-
tionarily distant bacteria, especially of those that possess
an A+T DNA content lower than 62%. As a complement
to DNA microarrays, it could help to elucidate the overall
response of bacterial genomes to various environmental
stresses. Moreover, the triad pattern algorithm can be used
to extract the DNA region that carries translational signals;
this is useful for investigating ORFs located downstream
from the corresponding strong promoters (see Table 3).
Thus, almost half of the T. maritima ORFs transcribed
from putative strong promoters are preceded by a highly
conserved Shine-Dalgarno site located 7–9 nucleotides
from the ATG initiation codon, which is a characteristic
feature of elevated protein synthesis in gram-negative and
gram-positive bacteria [70]. This information will be use-
ful for comparing highly synthesized mRNAs with the
production of the corresponding proteins using high-
throughput transcriptomic and proteomic methods,
which is an important challenge in the fields of basic and
applied microbiology [71]. Furthermore, the characteriza-
tion of proteins whose expression is governed by strong
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promoters looks like a promising approach to selecting
candidate vaccines against microbial diseases and/or to
identifying potential new antibacterial targets in the fight
against nosocomial infections.

Further quantitative assessment of a dynamic and compli-
cated mechanism of protein-DNA and protein-protein
interactions involved in transcription might help to
develop a more advantageous multi-pattern tool using
both DNA and protein parameters to provide a compre-
hensive prediction of the strength of promoter activity in
bacterial cells.

Conclusion
The triad pattern algorithm developed predicts strong pro-
moter candidates by matching UP-like elements and iden-
tifying the presence of -35 and -10 boxes optimally
distanced from each other in the annotated bacterial
genomes. The presence of strong promoters is a function
of the A+T content of the bacterial genome, and the
number of false-positives is greater for genomes that have
an A+T content higher than 62%. The prediction algo-
rithm has been validated by cell-free experimental dissec-
tion of putative T. maritima promoters. The data indicate
that strong promoters govern the transcription of genes
coding vital functions, and of genes coding as-yet
unknown functions in this hyperthermophilic bacterium.
This algorithm is simple to use and flexible, and it could
be further adapted to meet the requirements of a genome
of interest if its promoter-specific motifs differ from con-
sensi recognized by Eσ70-like RNA polymerase.
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