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Commentary: Revival of motor
and sensory functions: Is this a
catholicon or hollow promise
for paraplegia?
Devendra K. Agrawal, PhD (Biochem), PhD (Med
Sci), MBA, MS (ITM), and Vikrant Rai, MBBS, MS,
PhD

CENTRAL MESSAGE

Preconditioning of mesenchymal
stem cells and using mesen-
chymal-stem-cell–derived extra-
cellular vesicles or exosomes via
intravascular route improve re-
covery in spinal cord ischemia–
reperfusion injury.
Devendra K. Agrawal, PhD, MBA, MS, and
Vikrant Rai, MBBS, MS, PhD

Spinal cord ischemic-reperfusion injury (SIRI) during thor-
acoabdominal aneurysm repair can lead to changes in motor,
sensory, and autonomic functions resulting in neurological
deficiency and disability. Minimally invasive surgical pro-
cedures limit the ischemic injury, but SIRI remains a
distressing complication manifested by paraplegia or para-
paresis.1 The changing microenvironment after SIRI inhibits
axonal regeneration. Bone-marrow–derived mesenchymal
stem cells (BM-MSCs), due to their plasticity, can be used
as potential therapeutics by modulating the microenviron-
ment. Therapeutic role of MSCs in spinal cord injury is
via regulating gliosis, antiapoptosis, inflammation, oxidative
stress, angiogenesis, differentiation to neural and glial cells,
axonal regeneration, and secretion of growth factors, cyto-
kines, and chemokines.2,3 MSCs are administered intracrani-
ally/intrathecally or intravascularly with better results for
larger lesions via the intravascular route.4 Retro-orbital in-
jection of MSCs after ischemic injury plays a protective
role in repairing SIRI in rats by preventing autophagy and
promoting neurite growth and regeneration.3 Preemptive
intrathecal injection of MSCs also plays a protective role
by stabilizing the blood–spinal cord barrier integrity after
SIRI via matrix metallopeptidase 9 and tumor necrosis
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factor-a inhibition.5 Increased number of neurons and
decreased damage to neurons in animal models and mixed
results of improvement in motor activity and sphincter con-
trol in some patients, whereas no improvement in others,
support the notion of therapeutic use of MSCs; however,
warrants an in-depth understanding of the repair mecha-
nisms to enhance therapeutic efficacy, efficiency, reproduc-
ibility, and to promote clinical use of MSCs.2,6,7

Nakai and colleagues8 report improved hindlimb motor
function with significantly preserved motor neurons in mice
with SIRI and injected intravenously with human BM-
MSCs by promoting angiogenesis and antiapoptosis and inhi-
bition of proinflammatory cytokines. Using Dil (1,1’-Diocta-
decyl-3,3,3’,3’-Tetramethylindocarbocyanine Perchlorate)-
labeled human BM-MSCs revealed localization of MSCs in
the ventral horn of the spinal cord; however, the number of
survivingMSCs was not evaluated. This is important because
apoptosis of transplanted MSCs is a limitation in MSC-based
therapy. Preconditioning ofMSCwith hypoxia effectively in-
creases the survival rate of BM-MSCs via increased HIF-1a
(hypoxia-inducible factor 1-alpha), neurologic function,
blood–spinal cord barrier, and tissue damage along with
apoptosis inhibition after SIRI.9 Administration of simulated
microgravity-cultured MSCs improves motor recovery after
SIRI in rats.10 Recently, the protective effect of MSCs has
been attributed to the paracrine effect of MSC-derived extra-
cellular vesicles (EVs)/exosomes,7 and cell-free therapy using
MSC-exosomes is an exciting novel therapy in spinal injury.
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FIGURE 1. Cellular processes involved in the regulation of injury repair mechanisms, neuroprotection, and enhancement of therapeutic efficacy of stem

cells.
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However, the source for the most potent EVs with therapeutic
efficacy needs to be determined. The route of injectingMSCs
may have different effects andNakai and colleagues8 have the
advantage of using commercially available allogeneic and
autologous human BM-MSCs intravenously compared with
previous studies11 using autologousMSCs administered intra-
thecally. Investigating the acute and long-term effects of
MSC-based therapy on the number of neurons and axonal
regeneration is also important. These findings support the
feasibility of therapeutic use of MSCs (Figure 1); however,
the route of administration, preconditioning of MSCs to
enhance survival for longer duration, using MSC-derived
EVs, and investigating the long-term effect on neuronal num-
ber; generation of action potential; and motor, sensory, and
autonomic function; microenvironment of the ischemia–
reperfusion injury site; host-graft interactions; and the feasi-
bility of therapeutic cell delivery using 3-dimesional scaffolds
should be the focus of the follow-up research.
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