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Abstract
Aim: To assess the pathobiological and translational importance of whole-blood transcriptomic analysis in inflammatory bowel disease [IBD].
Methods: We analysed whole-blood expression profiles from paired-end sequencing in a discovery cohort of 590 Europeans recruited across 
six countries in the IBD Character initiative (newly diagnosed patients with Crohn’s disease [CD; n = 156], ulcerative colitis [UC; n = 167], and 
controls [n = 267]), exploring differential expression [DESeq2], co-expression networks [WGCNA], and transcription factor involvement [EPEE, 
ChEA, DoRothEA]. Findings were validated by analysis of an independent replication cohort [99 CD, 100 UC, 95 controls]. In the discovery co-
hort, we also defined baseline expression correlates of future treatment escalation using cross-validated elastic-net and random forest model-
ling, along with a pragmatic ratio detection procedure.
Results: Disease-specific transcriptomes were defined in IBD [8697 transcripts], CD [7152], and UC [8521], with the most highly significant 
changes in single genes, including CD177 (log2-fold change [LFC] = 4.63, p = 4.05 × 10-118), MCEMP1 [LFC = 2.45, p = 7.37 × 10-109], and S100A12 
[LFC = 2.31, p = 2.15 × 10-93]. Significantly over-represented pathways included IL-1 [p = 1.58 × 10-11], IL-4, and IL-13 [p = 8.96 × 10-9]. Highly con-
cordant results were obtained using multiple regulatory activity inference tools applied to the discovery and replication cohorts. These analyses 
demonstrated central roles in IBD for the transcription factors NFE2, SPI1 [PU.1], CEBPB, and IRF2, all regulators of cytokine signalling, based 
on a consistent signal across cohorts and transcription factor ranking methods. A number of simple transcriptome-based models were associ-
ated with the need for treatment escalation, including the binary CLEC5A/CDH2 expression ratio in UC (hazard ratio = 23.4, 95% confidence 
interval [CI] 5.3–102.0).
Conclusions: Transcriptomic analysis has allowed for a detailed characterisation of IBD pathobiology, with important potential translational 
implications.
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1.   Introduction
The inflammatory bowel diseases [IBD], Crohn’s disease [CD] 
and ulcerative colitis [UC], are common causes of chronic 
illness worldwide, affecting 0.5–1.0% of the population in 
Europe and North America.1 IBD is now a global health bur-
den with rising incidence and prevalence, particularly among 
newly industrialised nations.1 Although mortality is low, 
morbidity associated with IBD remains high and health care 
costs continue to increase.

IBD is characterised by intestinal and circulatory inflamma-
tory changes, and much of the progress in drug development 
has been fuelled by our improved understanding of the mo-
lecular processes involved in disease pathogenesis. Although 
this has transformed the medical management of IBD,2,3 the 
pathogenesis of this disease is still not completely understood. 
Furthermore, given the heterogeneity within IBD, treatment 
response differs widely between patients. With the advance-
ments in ‘-omic’ technologies, there has been progress in our 

SIGNIFICANCE OF THIS STUDY

What is already known about this subject?

	•	 Transcriptomic studies in IBD have identified susceptibility genes that represent new biological pathways and potential treat-
ment targets, including PAI1.

	•	 Blood expression profiles associate with the need for treatment escalation in IBD. Mucosal transcriptomic signatures of IBD 
may predict response to biologic agents.

	•	 Dynamic growth of knowledge about regulatory networks has enabled inference of transcription factor activity from 
transcriptomic data.

	•	 Despite a decade of expression profiling research, whole-blood transcriptome in IBD remains underexplored.

What are the new findings?

	•	 We demonstrate that an IBD-specific whole-blood transcriptomic profile can be defined and replicated with similarities in ex-
pression profiles between Crohn’s disease and ulcerative colitis.

	•	 New-onset IBD is characterised by overexpression of bactericidal neutrophil glycoprotein CD177 and an intestinal stem cell 
marker OLFM4.

	•	 Smoking in IBD is associated with greater expression of GPR15, which encodes a T cell colon-homing receptor.
	•	 Dysregulation of IL-1, IL-4, and IL-13 pathways are present at diagnosis.
	•	 Comparative transcription factor activity in the IBD Character and independent replication cohorts revealed consistently in-

creased expression footprints of NFE2, SPI1 [PU.1], CEBPB, and IRF2 in IBD compared with controls.
	•	 A number of relatively simple oligo-marker expression models are associated with treatment escalation in UC and include 

two-parameter models—notably the proportion of expression of CLEC5A to CDH2 [C-type lectin-like protein to cadherin 2].

How might it impact on clinical practice in the foreseeable future?

	•	 The identified transcription factors may reveal targets for novel therapeutic interventions.
	•	 Whole-blood transcription analysis may allow for the assessment of disease course and outcome: a critical step towards pre-

cision medicine in IBD.   
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understanding of the molecular profiles of disease onset, drug 
resistance, and disease course.4

Among these, transcriptomic analyses have contributed to 
addressing these challenges by identifying signatures correl-
ated with response to therapy5,6 and a T cell-derived signa-
ture that associates with the need for treatment escalation.7 
The reproducibility of these signals has not been established 
and the field has been confounded by concerns regarding in-
consistencies in analytical techniques and in the criteria for 
treatment escalation.8 Most recently, analysis of the whole 
blood-derived transcriptome has shown promise in a study 
by Biasci et al., and has led to a multicentre clinical trial in 
the UK to validate this signature as a predictor of treatment 
escalation.9

The applications of ‘-omic’ technologies to define disease 
pathogenesis and to identify new targets for therapeutic inter-
ventions are high on the research agenda for IBD.10 Here, we 
provide the first report of the circulating transcriptome in the 
extended IBD Character inception cohort, presenting with 
suspected IBD across six European centres. We describe the 
gene expression profiles and, using a series of recently devel-
oped analytical tools, define expression modules and novel 
transcription factor [TF] involvement. We confirm these key 
findings in an independent, publicly available dataset, set-
ting the scene for subsequent mechanistic and interventional 
studies.

2.   Materials and Methods
2.1.   Discovery cohort
Patients with suspected or established IBD and healthy con-
trols were recruited across six European centres over 2013–
2016 [see Supplementary Methods, including a schematic 
overview of the study]. Whole blood was collected in Paxgene 
tubes. Ion AmpliSeq Human Gene Expression Core Panels 
[20 802 amplicons] were run with the Ion AmpliSeq Library 
Kit Plus in the Wellcome Trust Clinical Research Facility in 
Edinburgh.

2.2.   Replication cohort
The replication cohort11 from Poland included 96 adult and 
103 paediatric patients with IBD [CD, n = 99, and UC, n = 100] 
and 95 controls of whom 52 were children. Moderate-to-
severe disease was present in 36 participants with CD [29 
children] and 38 with UC [31 children]. The controls included 
adults undergoing cancer screening and children with surgi-
cal, orthopaedic, or ophthalmological conditions without in-
flammation. Details of paired-end sequencing of whole-blood 
RNA in the replication cohort and clinical characteristics are 
given by Ostrowski et al.11

2.3.   Transcriptomic analysis
After alignment, filtering, and quality check, differential 
expression was assessed with DESeq2. Genes expressed 
differentially with log-fold change [LFC] >1, which also re-
tained significance after Bonferroni correction, were subject 
to ontology investigations. DESeq2-normalised expression 
data were used in downstream applications. A  weighted 
gene co-expression network analysis was done with the R 
package WGCNA. Traits correlated with modules included: 
diagnosis, gender, age, C-reactive protein [CRP], smoking, 
Montreal classification, and the need for treatment escal-

ation. Three methods were used for the inference of TF ac-
tivity from the expression data: Effector and Perturbation 
Estimation Engine [EPEE],12 ChIP-X Enrichment Analysis 
3 [ChEA3],13 and Discriminant Regulon Expression 
Analysis [DoRothEA2] v2.14 In order to maximise the true-
positive rate, the EPEE and ChEA3 results were intersected 
[Supplementary Methods]. Immunity-focused differen-
tial ratio analysis with intermediary inference [DRAIMI] 
was conducted. Similarities of individual transcription 
profiles to LM22 cell type signatures were assessed using 
CIBERSORT. To determine how these results compare with 
the mucosal expression profiles, we used a meta-analysis 
of intestinal biopsy microarray studies performed by 
Granlund et al.15

2.4.   Treatment escalation
This sub-study aimed to differentiate between patients who 
required an escalation of therapy within the first year fol-
lowing diagnosis and those who remained escalation-free 
throughout and at the end of the follow-up period lasting 
not less than 1 year [patients with escalation within the first 
week following diagnosis were excluded]. Treatment escal-
ation was defined as the need for a biologic, ciclosporin, 
and/or surgery, instituted for a disease flare after initial 
remission. In UC, the definition of treatment escalation 
also included any patient requiring colectomy during the 
index admission. We built models predicting the need for 
escalation using analyses of whole-blood transcriptomes 
and models based on: [a] the elastic-net regression, [b] the 
random forest, and [c] a custom procedure exploiting dif-
ferences of unrelated transcript ratios. Additionally, we 
applied elastic-net and random forest classifications to a 
set of transcripts matching the ones used by Biasci et al.16 
in order to confirm their predictive potential. Details, 
including escalation criteria from Biasci et al., are given in 
the Supplementary Methods.

3.   Results
3.1.   Overview of results section
This section starts with the presentation of the differen-
tial expression analysis in the discovery and replication 
cohorts, and the related gene ontology investigations. 
These data are followed by a description of modules and 
hub genes demonstrated by weighted gene correlation net-
work analysis [WGCNA]. Next, outcomes from a new 
type of gene expression ratio-based analysis are presented. 
Subsequently,TF inference using the three methods across 
the discovery and replication cohorts is described, and 
the results are compared and analysed in the contexts of 
gene expression and deconvoluted cell type abundance. 
Finally, the transcriptomic data are used to build models 
predicting treatment escalation. We demonstrate that the 
best-performing predictive model in UC was related to the 
key identified TFs. A graphical overview of the study is also 
presented in Figure 1.

3.2.   Clinical characteristics of the discovery cohort 
[IBD Character]
In total, 590 participants were recruited, including 156 pa-
tients with CD, 167 diagnosed with UC, and 267 controls, 
which included 54 healthy controls and 213 symptomatic 

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac033#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac033#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac033#supplementary-data


1258 J. K. Nowak et al.

controls with no evidence of IBD at follow-up. The base-
line clinical characteristics are summarised in Table 1 in 
Supplementary Methods by centre. Of note, UC patients were 
older [p = 2.4 × 10-5] and less likely to smoke [p = 1.0 × 10-8] 
compared with controls, but no differences in smoking pat-
terns or demographics were observed between CD patients 
and controls.

3.3.   Discovery cohort: differential expression 
analysis highlights inflammation, neutrophils, and 
antimicrobial peptides
After filtering, 14 182 whole-blood transcripts were included 
in the differential expression analysis in the discovery cohort. 
The number of differentially expressed transcripts was 8697 
in IBD vs. controls, 7152 in CD vs. controls, 8521 in UC vs. 
controls, and 1664 in CD vs. UC [Supplementary Table 1]. 
The split between the over- and under-expressed genes was 
almost equal. However, the absolute value of the log2-fold 
change [LFC] in comparisons against controls exceeded unity 
only for over-expression [1.4% for IBD vs. controls]. Colonic 
CD and UC appeared transcriptomically similar. An increased 
expression of alpha defensins was found in colonic vs. ileal 
CD. The genes with the most significant expression differences 
are presented in volcano plots [Figure 2; Supplementary Table 
1]. Results of a subanalysis focusing on smoking, which im-
plicate GPR15 and LRRN3, are presented in Supplementary 
Table 2.

3.4.   Replication cohort: differential expression 
analysis and integration confirm involvement 
of neutrophil marker CD177, alpha-defensins, 
and OLFM4
The results of an analogous DESeq2 analysis of pooled IBD 
and control data from the replication cohort are presented in 
Supplementary Table 1 and Supplementary Figure 1. Briefly, 
13 264 genes were included and the number of entities with a 

false-discovery ratio [FDR] <0.05 was 5402 in IBD, 4200 in 
CD, 5491 in UC, and 385 in an additional CD vs. UC com-
parison. From the highest results for both datasets [absolute 
LFC >1], genes with significant Bonferroni-corrected p-values 
were extracted to provide a consensus shortlist [Figure 3]. 

3.5.   Gene ontology brings focus to neutrophils, 
antimicrobial peptides, and metalloproteinases
To identify common ontology terms between the discovery 
and replication cohort, gene ontology analyses were per-
formed. Primary gene ontology results were concordant in 
CD and UC, providing a high level of significance for IBD. 
The main ontology terms in the discovery and the replication 
cohort overlapped [Figure 4]. Myeloid leukocyte function 
and immune responses best described the differences between 
IBD and controls. Neutrophil degranulation [p = 1.1 × 10-16], 
antimicrobial peptides [p = 9.8 × 10-8], and metalloproteinase 
activity [p = 5.5 × 10-4 Figure 4] were implicated. The com-
plete results of the gene ontology and Reactome analyses can 
be found in Supplementary Tables 3 and 4.

3.6.   Weighted correlation network analysis 
modules link inflammation and clinical traits, and 
feature toll-like receptor and neutrophil cytosolic 
factor genes
WGCNA of the discovery dataset identified 20 modules in 
IBD, 19 in CD, and 16 in UC. From these, we selected mod-
ules that were at least moderately associated with any of 
the traits [r >0.4, p <0.05]: three in IBD, two in CD, and 
five in UC. The pro-inflammatory modules were similar in 
all analyses and comprised genes associated with leukocyte 
activation and immunity. Conversely, the identified anti-
inflammatory modules related to T cell differentiation and 
activation. The only module to associate with the need for 
treatment escalation [r  =  -0.50, p  <0.0001] was found in 
UC and included genes with low module membership scores 
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Figure 1.  Overview of the study.
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[hub gene AMPD2]. The analysis of modules related to clin-
ical traits of IBD using protein-protein interaction networks 
revealed the involvement of TLR4, NCF2, and SPI1 across 
IBD, and integrins in UC [ITGA2B, ITGB3]. A  more de-
tailed description of WGCNA results along with a complete 
list of hub genes are presented in Supplementary File 1. A de-
scription of the modules and a full list of genes with module 
membership scores and tables of module-trait associations 
are presented in Supplementary File 1 and Supplementary 
Table 5.

3.7.   Immunity-focused differential ratio analysis 
with intermediary inference implicates regulation 
in pattern recognition receptors and NfkB pathways
In the discovery dataset, DRAIMI unequivocally impli-
cated pathways linked to pattern recognition receptors. 
The top result was RELA [also known as p65; 67.2% of all 
protein-protein interactions], followed by TLR4 [55.3%], 
and MYD88 [54.2%]. High involvement was noted also 
for three dual-specificity phosphatases [DUSP7, DUSP4, 
DUSP6] and natural cytotoxicity receptors 1 and 3 [NCR1, 

NCR3]. In terms of the number of interactions, these were 
supplemented by NFKB1, TRIM21, and MAPK3. The top re-
sults also included SYK. Almost all the listed genes [RELA, 
TLR4, MYD88, DUSP4, DUSP6, DUSP7, NFKB1, TRIM21, 
MAPK3] belong to pattern recognition pathways and specif-
ically highlight the TLR4-MYD88-RELA[p65]-NfkB axis. 
Within the 304 implicated genes [Supplementary Table 6], 
notable results also include HLA and IRF, NFATC2, IL4 
and its receptor, IL13, STAT3, ITGAV1, ITGAM, JAK1, 
IL2 and its receptors, FYN, TYK2, TNF, VCAM1, and other 
genes that fit well with prior knowledge. The list also includes 
CEBPB, which is one of the key genes identified by the TF 
activity inference analysis.

In the validation cohort, SYK, MAPK1, and MAPK9 
were among the top results, emphasising the role of pattern-
recognition receptor pathways, and RELA was replicated, al-
beit with less significance [Supplementary Table 6]. The two 
most important results in the validation analysis were STAT4 
and PTPN6, and the results’ gene ontology was strongly 
linked to cell activation in the immune context and also in-
cluded protein degradation. Overall, DRAIMI underscored 

Table 1.  Basic characteristics of the discovery [IBD Character] transcriptomics cohort. Values are expressed as a median [1st–3rd quartile] or a 
percentage, and also as mean ± standard deviation for endoscopic scores.

 CD  
n = 156 [27%] 

UC  
n = 167 [28%] 

Non-IBD  
n = 267 [45%] 

Age, years 26 [21–37] 35 [27–46] 30 [23–40]

Sex, % female 77 [49%] 67 [40%] 145 [54%]

CRP, mg/L 7 [2–28] 3 [1–14] 2 [1–5]

Current smoker 43/132 [33%] 10/163 [6%] 47/245 [19%]

CD location    

L1/ L1+L4 49 [31%]/ 1 [1%]   

L2/ L2+L4  41 [26%]/ 5 [3%]   

L3/ L3+L4 47 [30%]/ 10 [6%]   

L4 3 [2%]   

CD behaviour    

B1 127 [84%]   

B2 13 [8%]   

B3 12 [8%]   

Froslie score [n = 121] 4 [2–7]  
mean 5.3 ± 4.6

  

Harvey–Bradshaw Index [n = 99] 6 [2.5–7.75]   

UC extent    

E1  42 [25%]  

E2  54 [32%]  

E3  72 [43%]  

Mayo endoscopic subscore [n = 122]  4 [2-7]  
mean 4.6 ± 3.0

 

Treatment-naive 38 [75%] 104 [63%]  

Most common medications at recruitment Oral prednisone 16 [10%]  
Intravenous steroids 11 [7%]  
Oral budesonide 8 [5%]  
Oral 5-ASA 6 [4%]

Rectal 5-ASA 26 [16%]  
Oral 5-ASA 20 [12%]  
Oral prednisone 15 [9%]  
Intravenous steroids 13 [8%]

 

Froslie score in patients on treatment 3 [2.75–7.0]  
mean 4.5 ± 3.4

  

Mayo endoscopic subscore in patients on treatment  4.0 [2.0–5.0]  
mean 4.0 ± 2.9

 

CD, Crohn’s disease; hsCRP. high-sensitivity C-reactive protein; IBD, inflammatory bowel disease; UC, ulcerative colitis; 5-ASA, 5-aminosalicylate.

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac033#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac033#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac033#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac033#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac033#supplementary-data


1260 J. K. Nowak et al.

the importance of regulation in pattern recognition receptors 
and NfkB pathways in the whole blood of patients with IBD.

3.8.   Transcription factor activity inference across 
cohorts and methods exposes the relevance of 
NFE2, SPI1, CEBPB, and IRF2 to IBD
TF activity inference was then conducted, and the obtained 
results were intersected across methods and cohorts. Both 
EPEE and ChEA3 identified TFs whose activity differed be-
tween patients from the IBD groups and the controls. The 
number of TFs ordered according to EPEE was 302, and in 
the case of ChEA3 it equalled 1632. Here, we initially focused 
on TFs most consistently appearing in the most important 
EPEE and ChEA3 results from the discovery [IBD Character] 
and replication [Ostrowski et al.] datasets [Table 2]. All the 
EPEE regulator scores and ChEA3 and DoRothEA2 results 
are presented in the supplementary data [Supplementary 
Tables 7–9].

3.9.   Intersection of results from TF inference 
uncovers patterns constant across diverse methods 
and two IBD cohorts
Four TFs were identified using the intersection procedure: 
NFE2, SPI1 [PU.1], CEBPB, and IRF2 [Figure 5]. DoRothEA2 
predicted the activity of all four TFs to be increased in IBD. 
Given the transcriptome similarity between CD and UC—and 
insignificant differences in the Montreal subgroup analyses—
attempts at identifying CD- or UC-specific TF activity yielded 
inconsistent results. EPEE suggested that IRF9, STAT1, and 

ELF1 activity in CD was lower than in UC. On the other 
hand, the transcriptional footprints of SPI1 [discovery] and 
IRF4 [replication] were clearer in CD than in UC, where 
C-reactive protein [CRP] was lower. In a supplementary ana-
lysis, ChEA3 highly ranked NFE2, SPI1, CEBPB, and IRF2 in 
IBD mucosal transcriptomes.

3.10.   Correlation between key TFs and other 
transcripts unveils inflammatory context
Correlations of NFE2, SPI1 [PU.1], CEBPB, and IRF2 
with other transcripts are presented in Supplementary 
Table 10. NFE2 correlated strongly with OSM [rho = 0.79, 
p  =  4.75  ×  10-69], TLR4, NCF4, and ITGAM. SPI1 
[PU.1] correlated with the kinase RPS6KA1 [rho  =  0.86, 
p  =  3.75  ×  10-97] and matrix metalloproteinase inhibitor 
TIMP2, as well as with NCF2 and NCF4. CEBPB expres-
sion associated with STX3 [rho = 0.74, p = 1.73 × 10-56], 
whose loss causes microvillus inclusion disease,17 INFGR2, 
inflammasome-triggering NLRC4, and TLR5. Last, IRF2 
correlated with mitochondrial superoxide dismutase SOD2 
[rho = 0.75, p = 2.1 × 10-60], the IL-1 antagonist ILR1N, the 
immune signal transducer MYD88, and IRF9.

3.11.   Analysis of TFs and cellular composition hint 
at a possible role of NFE2 and SPI1 in macrophage 
polarisation in IBD
The expression of the four selected TFs in individual 
subjects was correlated with the predictions of cell type 
abundance obtained using LM22 signatures in the discovery 
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Figure 2.  Volcano plots showing differential expression of whole-blood transcripts between inflammatory bowel disease [IBD] and subtypes of IBD vs. 
controls [A–C] and CD vs. UC [D] in the discovery cohort. Only transcripts with a false-discovery rate <0.05 are shown. Genes with log2-fold change 
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cohort. Correlations in IBD and controls appeared differ-
ent with regard to B cells [in IBD, stronger correlation with 
TFs in naïve and weaker in memory B cells], γδ T cells 
[stronger correlation with CEBPB in IBD], and M0 macro-
phages [stronger correlation with NFE2 and SPI1/PU.1 
in IBD, Figure 6]. Of note, stronger correlations imply a 
more systematic association between cell type abundance 
and gene expression, not necessarily higher expression. 
Similarities to LM22 signatures by group can be accessed 
in Supplementary Table 11.

3.12.   Prediction of treatment escalation using 
gene expression data
Data on escalation of treatment were available for 204 
IBD patients from the discovery cohort [mean follow-up 
580  days, 24.0% required escalation], including 89 with 
CD [mean follow-up length 502 days, escalation in 34.8%] 
and 115 with UC [mean follow-up length 641 days, escal-
ation in 15.6%]; 151 patients have not been exposed to 
anti-inflammatory or immunosuppressive medication at 
baseline [74%; Table 3]. Before escalation in the training 
cohort, patients with CD most commonly received the fol-
lowing treatments: azathioprine [n = 9], 6-mercaptopurine 
[n = 4], azathioprine and prednisolone [n = 2], azathioprine 
and budesonide [n = 2], prednisolone [n = 2], budesonide 
[n  =  2], intravenous methylprednisolone [n  =  2]. In UC, 
the following treatments were most frequently used before 

escalation: prednisolone and 5-aminosalicylates [n  =  6], 
azathioprine [n = 4], 5-aminosalicylates alone [n = 2].

3.13.   Machine learning methods achieve 
transcriptome-only prognostication
We applied machine learning to build prognostic models 
differentiating between patients who would require treat-
ment escalation within the first year or remain escalation-
free for at least 1  year. Elastic-net models had moderate 
performance in cross-validation (area under the curve [AUC] 
0.70–0.79), which was confirmed in test samples of IBD and 
UC but not in CD cases [AUC 0.80–0.83 and in CD 0.41; 
Supplementary File 2]. Random forest classifiers had cross-
validation AUCs ranging from 0.68 in IBD to 0.82 in UC [in 
test sets 0.74–0.76], indicating that the transcriptomic data 
could serve to predict escalation, albeit not precisely. Analysis 
of variable importance in random forest models hints at the 
potential role of C14orf28 in IBD overall, and of FZD6 and 
ARRDC2 in CD, as well as of MPZL2 and CSNK2A1 in UC 
[Supplementary File 2]. Gene ontology did not reveal specific 
pathway enrichment.

3.14.   CLEC5A-to-CDH2 gene expression ratio 
enables prognostication in UC and appears related 
to macrophage polarisation
The custom search for predictive transcript ratios yielded 
some of the highest AUC values in cross-validation [IBD 
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Figure 3.  The inflammatory bowel disease [IBD] differential expression consensus shortlist obtained by intersecting data from the discovery [IBD 
Character] and replication cohorts [Ostrowski et al.]. Flowchart illustrating the intersection of differential expressed transcripts in the discovery and 
the replication data. Mean log2-fold changes [LFC] and Bonferroni-corrected p-values [pBonf.] for genes overexpressed in the discovery and replication 
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0.76, CD 0.87, UC 0.90]. The top-performing ratios dis-
covered by the custom procedure in the training sets were 
CLEC5A/CDH2 in UC [AUC in test set 0.85], HIST1H3H/
GPR162 in CD [AUC 0.74], and STAB1/GPR162 in IBD 
[AUC 0.69]. The CLEC5A/CDH2 ratio achieved perform-
ance superior to complex models, with a hazard ratio for 
treatment escalation of 23.4 [95% CI 5.3–102.0; Figure 7]. 
In UC patients with available high-sensitivity [hs] CRP, AUC 
for the CLEC5A/CDH2 ratio was higher compared with 
hsCRP: 0.90 [0.84–0.96] vs. 0.69 [0.53–0.85; p  =  0.016] 
and not affected by prior exposure to IBD medications. In 
UC, the ratio with the second-best discriminatory power 
was ANPEP/SEC61A2. The top quotients are listed in 
Supplementary Table 12.

3.15.   Genes belonging to a model by Biasci et al. 
are validated to have predictive potential
Of the 15 informative [non-housekeeping] transcripts used 
in the prediction score proposed by Biasci et  al., 12 could 
be extracted from the IBD Character dataset [Supplementary 
Methods]. The optimal elastic-net and random forest models 
performed well despite the limited number of predictors. 
A cross-validation AUC of 0.65–0.82 was achieved for IBD 
Character escalation criteria and 0.60–0.79 using the original 
escalation criteria from Biasci et al. The random forest model 
for UC reached AUC 0.87 in the test set using the discovery 
cohort [IBD Character] escalation criteria. Variable import-
ance analysis of IBD Character random forest models revealed 
that the following transcripts from Biasci et al. were the most 
informative: NUDT7, GZMH, and IL18RAP in IBD overall, 
GZMK and LY96 in CD [dominating the remaining genes], 
and IL18RAP in UC [exceeding other transcripts in UC].

4.   Discussion
This combined dataset represents a comprehensive study of 
the whole-blood transcriptome in IBD, and successfully iden-
tifies and replicates genes of interest in differential expression 
profiles. We also are able to describe co-expression networks 
and, in a novel detailed analysis, we identify and replicate TFs 
that may be driving the disease. To strengthen the TF ana-
lyses, we employed two complementary methods and exam-
ined two independent datasets of IBD cases and controls. 
New correlates of treatment escalation in UC are proposed. 
The results highlight underexplored areas of IBD biology, 
which provide new insights into pathogenesis and possible 
therapeutic interventions.

4.1.   Patients and controls
The IBD Character cohort comprised comparable numbers of 
patients with CD, UC, and controls across Europe. This was 
an inception cohort at presentation, which is reflected by a 
slightly higher upper quartile of CRP in CD. The location of 
CD and the extent of UC mirror the general structure in the 
population.18 The controls included both symptomatic con-
trols undergoing investigations for IBD, with no evidence of 
IBD at follow-up, and young, healthy Swedish volunteers. The 
access to and analysis of the dataset described by Ostrowski 
et al. provided replication of the findings from the discovery 
cohort.

4.2.   Differential expression
The overriding finding in this context was that CD and 
UC expression profiles were remarkably similar. CD177, 
OLFM4 [olfactomedin 4], DEFA4 [defensin A4], GALNT14, 
and ELANE exhibited the greatest differences in the joint 
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analysis. CD177 encodes human neutrophil alloantigen 
2a, which is present on cells exhibiting bactericidal activity 
in IBD,19 and impairs neutrophil migration.20 Interestingly, 
CD177+ neutrophils producing IL-17 are increased in aller-
gic asthma.21 Olfactomedin 4 is a marker of intestinal stem 
cells and is known to be increased in the IBD mucosal prote-
ome.22,23 The copy number of defensins A1–3 correlates with 
the diagnosis of CD and its colonic location.24 The product 
of GALNT14—a glycosylase—is enriched in neutrophils, and 
ELANE is a neutrophil elastase. Increased expression of alpha 
defensins in colonic vs. ileal CD is in line with a current hy-
pothesis on defensin deficiency in ileal CD.25

Smoking is considered the most significant modifiable risk 
factor for CD and its differential effects in CD and UC are 
of particular interest. The only transcript that clearly distin-
guished itself in the comparisons of current vs. never smokers 
was the G-protein coupled receptor GPR15, which encodes 
a colon-homing molecule for T cells.26 GPR15+ T cells se-
crete less IFN-γ, but more IL-17 after stimulation, suggesting 
a Th17-like phenotype.27 It has been shown that regulatory 
T cell GPR15 expression in UC patients is increased28 and, 
most recently, the dependence of GPR15 transcription on aryl 
hydrocarbon receptor signalling has been demonstrated.29

4.3.   Weighted gene co-expression network 
analysis
WGCNA yielded modules correlated with IBD and CRP. 
Yet, none of the modules associating with the diagnosis were 
independent of inflammation. Although the resulting gene lists 
were too extensive to clearly illustrate specific functions, they 
seem informative with regard to the actors of the anti-inflam-
matory response: CD3E, which is a subunit of the CD3 T cell 
co-receptor [otelixizumab target], CARD11, which induces 
apoptosis and NF-κB, and SMAD3, which is crucial for TGFβ 
signalling.30 Some of the genes with high anti-inflammatory 
module membership cause very early-onset IBD when defi-
cient [ZAP70, LRBA].31

4.4.   Transcription factors implicated in analysis
A key novel discovery in our study lies in the replication of 
multiple TFs that are dysregulated in IBD [Table 4].

NFE2 is underexplored in the context of mucosal inflam-
mation and immunity in general. Both NFE2 and SPI1 [PU.1] 
are overexpressed and undermethylated in systemic sclerosis 
in comparison with controls.43

SPI1 [PU.1] governs Th9 immunity, which in IBD is still 
insufficiently understood, but appears predominantly pro-
inflammatory.44 In animal models, interleukin-9 deficiency 
protected mice against trinitrobenzene sulphonic acid 
[TNBS]- and oxazolone-induced colitis.45 The IL-9 receptor 
is also overexpressed in the intestinal epithelium of patients 
with IBD. Consequently, IL-9 appears as a therapeutic tar-
get in UC. Enokizumab [MEDI-528], a humanised anti-IL-9 
monoclonal antibody, was well tolerated in asthmatic pa-
tients.46 To the best of our knowledge, there are no current 
trials examining anti-IL-9 for the treatment of IBD. Moreover, 
strategies against PU.1 [SPI1 product] are currently being de-
veloped in oncology.47

CEBPB was found to lie 150 kb downstream from an IBD 
risk locus.48 Interestingly, profiling of transcription start sites 
in IBD biopsies also highlighted CEBPB as potentially in-
volved in the disease.49 It is overexpressed in the mucosa of 
patients with UC50 and strategically positioned at the interface Ta
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Table 3.  Basic characteristics of randomly split subgroups of the discovery cohort [IBD-Character] used for building predictive models and assessing 
their performance. Values are expressed as a median [1st-3rd quartile] or a percentage.

 CD UC

Training Testing Training Testing 

n 71 18 92 23

Sex, % female 38 [53%] 10 [56%] 39 [42%] 9 [39%]

Age, years 27.0 [24.0-34.0] 32.0 [24.0-52.0] 36.5 [27.0-44.0] 32.0 [24.0-46.0]

CRP, mg/L 8.75 [2.2-43.0] 9.4 [2.2-73.0] 3.7 [1.2-14.0] 2.2 [1.5-9.1]

Treatment-naive 56 [79%] 14 [78%] 64 [70%] 17 [74%]

CRP, C-reactive protein.

B cells memory Pearson’s r 0.6

0.4

0.2

0

–0.2

–0.4

B cells naive
Eosinophils
Macrophages M0
Macrophages M1
Macrophages M2
Mast cells activated
Mast cells resting
Monocytes
Neutrophils
NK cells activated
NK cells resting
Plasma cells
T cells CD4 memory activated
Tcells CD4 memory resting
T cells CD4 naive
T cells CD8
T cells gamma delta
T cells regulatory (Tregs)

IBD IBDnonIBD nonIBD

CEBPB IRF2 NFE2 SPI1/PU.1

IBD nonIBD IBD nonIBD

Figure 6.  Heatmap illustrating Pearson’s correlations between transcription factor expression and LM22-predicted cell type abundance in the whole 
blood of patients with inflammatory bowel disease [IBD] and in controls, in the discovery cohort. A stronger absolute correlation suggests more 
consistent expression in the cell type. Apart from B cells, γδ T cells, and M0 macrophages, the absolute differences between the two groups were 
small [<0.3].

IBD CD UC Any
ReplicationReplication DiscoveryReplicationDiscoveryDiscovery

EPEE

NFE2

SPI1

CEBPB

IRF2

ChEA

Transcription factor identi�ed as overactive in respective cohorts vs controls

Transcription factor not identi�ed as having increased or reduced activity vs controls

EPEE ChEA EPEE ChEA EPEE ChEA EPEE ChEA EPEE ChEA
Any

DoRothEA

Figure 5.  The intersection of EPEE and ChEA3 results in the discovery and replication data. Rectangles filled in blue indicate the presence of a 
transcription factor among the most significant results in the given analysis. Contrasts between inflammatory bowel disease [IBD], Crohn’s disease 
[CD], ulcerative colitis [UC], and controls were explored. DoRothEA2 was used to confirm the findings [thus filtering out IRF1, which is not shown]. 
SPI1 encodes PU.1.

of myeloid and epithelial inflammation clusters in a network 
analysis of mucosal IBD transcriptomes.51 A recent study by 
Sudhakar et al., employing ChEA3 in transcriptomic modules 
from CD4+ and CD14+ cells in 33 patients with CD, hinted 
at the involvement of both SPI1 and CEBPB.52 Some research 
has indicated a role for fibrates in reducing CRP [IL-6] in re-
sponse to IL-1 via CEBPB.53

Finally, IRF2 mediates the functions of IFNγ. Fontolizumab, 
a monoclonal antibody against IFNγ, was not efficacious in 
CD trials, a result that might have been influenced by a large 

placebo effect as well as the anti-inflammatory effects of IFNγ 
through downregulation of IL-23.54

4.5.   Transcription factor activity inference
In brief, the two main TF inference methods employed in this 
study—EPEE and ChEA3—are complementary in terms of 
accepted transcriptomics data, computational approaches, 
regulon tissue-specificity, and regulatory network sources. 
Other notable TF inference tools include BART, DoRothEA 
v2, iRegulon [a Cytoscape application], TFEA.ChIP, and 
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oPOSSUM. We chose DoRothEA v2 for reasons that included 
an up-to-date regulon library [Supplementary Methods]. Our 
concordance-based approach to filtering is arbitrary, but 
motivated by the way TF inference tools are developed and 
aimed at indicating only TFs unequivocally supported by di-
verse methods in independent data sources.

4.6.   Predicting treatment escalation
The translational application of transcriptional profiling of 
IBD in practice is of immediate clinical interest. A  whole 
blood-derived 17-gene classifier proposed by Biasci et al. has 
been shown to be highly predictive of disease course. This 
forms the basis of the current biomarker-stratified PROFILE 
trial in CD.16 By applying machine learning to our dataset 
using 12 out of 15 informative genes, we provide confirma-
tory evidence of such a signature predicting treatment escal-
ation with an AUC of up to 0.87. This is important as the 
first independent confirmation of this signature. Moreover, 
we report that simpler models, involving two transcripts 

only, may have comparable utility. In the strongest binary 
model we derive, the CLEC5A/CDH2 signature [Box  1] 
strongly associates with the need for treatment escalation 
in UC and makes a promising candidate for further external 
validation [Box 1].

The predictive accuracy of the signature proposed by Biasci 
and colleagues is worthy of discussion. This was assessed 
using two sets of criteria: our more stringent criteria, prede-
fined for the discovery cohort, and the broader criteria, ori-
ginally applied by Biasci et al., which included azathioprine. 
Both demonstrate that the signature may predict the need for 
an escalation of therapy. However, there are some caveats. 
First, we note that our analysis is approximated, as the ori-
ginal equation is not available and could not be assessed. We 
did not use separate criteria for CD and UC and no data on 
the number of escalation events were available. Furthermore, 
not all transcripts used by Biasci et al. were expressed in the 
discovery cohort at sufficient levels. Nevertheless, these fa-
vourable results highlight the potential for generalisation 
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Figure 7.  Ulcerative colitis treatment escalation depending on the CLEC5A/CDH2 ratio [low-risk <3]. The log-rank test p-value is shown. Hazard ratio: 
23.4 (95% confidence interval [CI] 5.3–102.0). Patients with escalation after 1 year and censored within the first year [excluded from modelling] are also 
included for illustration.

Table 4.  Transcription factors implied in inflammatory bowel disease by this study point towards involvement of the Th9 immune response, monocytes/
macrophages, and IFN-ϒ.

 Biological significance 

NFE2 Implied in megakaryocyte maturation and development of erythroid colonies.32,33 May bind IL-8 promoter.34 In late-stage 
megakaryocytes, NFE2 is upregulated by IRF2 [see below], but suppressed by IFNα 35,36

SPI1 [PU.1] Key regulator of Th9 immunity, marker of Th9 cells. Inhibits uncontrolled neutrophil activation.37 Together with CEBPB  
[see below] enables IL1B transcription38

CEBPB Involved in monocyte survival,39 expression of IL-17-regulated genes,40 and development of Th2 cells. May form homo- or 
heterodimers with other CEBP proteins

IRF2 Induced by IFNϒ, competes with IRF1 to deactivate the expression of IFNα and IFNβ. Activates IL-7 and belongs to  
non-canonical inflammasome detecting cytosolic lipopolysaccharide41,42

NFE2, nuclear factor erythroid 2; SPI1, Spi-1 proto-oncogene; CEBPB. CCAAT enhancer binding protein beta; IRF2, interferon regulatory factor 2.

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac033#supplementary-data
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of this specific gene signature, and the value of prognostic 
transcriptomic markers in IBD in general.

4.7.   Limitations and future directions
The prognostication part of the study, albeit based on a large, 
international cohort, would require independent validation, 
and a quantitative polymerase chain reaction [qPCR] assay 
would need to be developed. Alternatively, flow cytometry 
or immunohistochemistry could also be helpful in further 
investigation of the role of CLEC5A in IBD, with the lat-
ter potentially bringing the method close to the bedside by 
prospectively studying blood smears or retrospectively ana-
lysing archived UC intestinal biopsy material. A larger sam-
ple size of any future investigations in this domain would 
allow for the study of the relationship between disease ac-
tivity on treatment and the accuracy of prediction of the 
disease course.

The presented analyses implicating NFE2, SPI1, CEBPB, 
IRF2, and CLEC5A, CDH2 would all benefit from func-
tional validation. Further study of the transcription factors’ 
importance could involve chromatin immunoprecipitation-
sequencing. With regard to differentially expressed genes, 
discriminating between IBD-related transcriptomic changes 
that are protective and those that are pathogenic would 
also require further mechanistic study. These limitations are 
balanced by the large sample size, as well as by a significant 
overlap of the main results between different methods and in 
an independent replication cohort.

4.8.   Conclusion
Detailed whole-blood transcriptomic analyses in two large 
European cohorts has progressed our understanding of sev-
eral aspects of IBD. The most overexpressed genes may rep-
resent important molecules in the pathogenesis of this disease 
and are potentially druggable targets—in this context we 
highlight CD177, OLFM4, and GPR15. Moreover, a number 
of TFs are implicated in our discovery and validation datasets 
as having an important role in inflammation. In particular, 
NFE2, SPI1 [PU.1], CEBPB, and IRF2 are the most involved 
and warrant further study. Importantly, we also provide the 
first validation of the predictive signature proposed by Biasci 
et al. to be of translational use, and provide evidence that sim-
pler models, such as the CLEC5A/CDH2 expression ratio, 
constitute promising candidates for validation in the predic-
tion of treatment escalation in IBD.

Overall, our study provides the foundation for future work 
focusing on the mechanistic and clinical roles of the TFs impli-
cated in IBD, including single-cell sequencing studies of blood 
leukocytes in IBD, with the aim of pinpointing targetable 
pathways and establishing the role of genes overexpressed in 

IBD. Further scaling up of transcriptomic research in terms of 
cohort sizes will be necessary to reveal the disease biology in 
finer detail and to establish practical classifiers with a range of 
diagnostic, subtyping, and prognostic applications.
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Supplementary data are available at ECCO-JCC online.
The data underlying this article are available in ArrayExpress 
(accession E-MTAB-11349).
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