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ABSTRACT

Monitoring the concentration of antibiotics in body fluids is essential to optimizing the therapy and
minimizing the risk of bacteria resistance, which can be made with electrochemical sensors tailored with
appropriate materials. In this paper, we report on sensors made with screen-printed electrodes (SPE)
coated with fullerene (C60), reduced graphene oxide (rGO) and Nafion (NF) (C60-rGO-NF/SPE) to
determine the antibiotic metronidazole (MTZ). Under optimized conditions, the C60-rGO-NF/SPE sensor
exhibited a linear response in square wave voltammetry for MTZ concentrations from 2.5 x 1077 to
34 x 10~% mol/L, with a detection limit of 2.1 x 10~7 mol/L. This sensor was also capable of detecting MTZ
in serum and urine, with recovery between 94% and 100%, which are similar to those of the standard
chromatographic method (HPLC-UV). Because the C60-rGO-NF/SPE sensor is amenable to mass pro-
duction and allows for MTZ determination with simple principles of detection, it fulfills the requirements
of therapeutic drug monitoring programs.

© 2021 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The alarming increase in bacteria resistance has brought failure
to many treatments requiring antibiotics [1], which is especially
worrying because introducing new drugs into the market is
expensive and takes a long time. New approaches are therefore
needed to preserve the efficacy of currently approved antibiotics
[2], as exemplified by the therapeutic drug monitoring (TDM)
program used in clinical practice to quantify concentrations of
antibiotics and other drugs in body fluids [2,3]. With TDM com-
bined with knowledge from pharmacokinetics, one may identify
situations where an unnecessary amount of drug has been
administered, and optimize the concentration which would inhibit
bacterial growth [4,5]. An important requirement for the success of
TDM is to develop low-cost, easy-to-use tests to quantify the drugs
in body fluids. Today, this type of test is performed with expensive,
time-consuming methods, including radioimmunoassays, high-
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performance liquid chromatography (HPLC), fluorescence polari-
zation immunoassay, enzyme immunoassay, and enzyme-linked
immunosorbant assay [6—9]. In this context, electrochemical sen-
sors and biosensors are strong candidates to fulfill the TDM re-
quirements, for they have been proven excellent in the monitoring
of antimicrobial drugs [10—12], in addition to the detection of an-
tibiotics in water [10,13], food [14,15], and biological samples
[16,17].

The development of efficient electrochemical sensors for TDM
which are also of low cost, demands a judicious choice of materials,
both for the electrodes and coating layers used in functionalization.
From the large library of materials for this purpose, carbon nano-
materials (e.g., graphite, nanohorns, fullerenes, carbon nanotubes,
graphene, carbon nanoparticles, and nanodiamonds) should be
highlighted for their reproducible electrocatalytic responses,
biocompatibility and enhanced electron transport [18,19]. In this
study, we chose carbon ink to produce screen-printed electrode
(SPE) amenable for mass production [20], which was modified by
two other types of carbon nanomaterials, namely, reduced gra-
phene oxide (rGO) and fullerene (C60) in order to leverage their
intrinsic properties such as increased active area, suitability for
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immobilization of electrocatalytic compounds and easy fabrication
[21]. Fullerenes have been widely used as nanomediator for sensors
since they allow for operation at lower potentials, thus reducing the
interference from electroactive compounds [22—27].

We tested the suitability of the electrochemical sensors by
determining the concentration of metronidazole (MTZ), a synthetic
antibiotic to treat trichomoniasis, dysentery, liver abscesses, rosa-
cea and anaerobically infected burn wounds, in addition to surgical
prophylaxis [28,29]. For patients with burn wounds, in particular,
sepsis is a major cause of morbidity and mortality due to the
inability to maintain a sterile environment in the hospital and avoid
contamination with microorganisms and their ensuing antibiotic
resistance [2,30,31]. Detection of MTZ is also relevant to minimizing
its side effects, which include nauseas, diarrhea, neurotoxicity,
optic neuropathy, peripheral neurophaty and ancephatopathy.
Furthermore, it has shown genotoxic effects in animal models [28].
The electrochemical sensors reported to determine MTZ were
made with molecularly imprinted polymers [32—36], B-cyclodex-
trin-functionalized gold nanoparticles/poly(L-cysteine) [37], 3D
hierarchical porous graphene/polythionine [38], Ni/Fe-layered
double hydroxides [39], modified glassy carbon electrodes, multi-
walled carbon nanotubes [40], composite film derived from cys-
teic acid, poly(diallydimethylammonium chloride)-functionalized
graphene [41], and carbon paste electrode [42—44] in pharma-
ceutical drug tablets and fish tissue [32,33,40], and human blood
serum [35]. In this work, we employed C60-rGO and Nafion, for the
first time to the best of our knowledge, to modify a low-cost SPE.

2. Materials and methods
2.1. Reagents, materials, and apparatus

MTZ, clindamycin, dipyrone, tetracycline, diclofenac, ranitidine,
uric acid, caffeine and C60 were purchased from Sigma-Aldrich (Sao
Paulo, Brazil). Graphene was obtained from Graphene Supermarket
(Calverton, MD, USA). A stock solution of MTZ at 1.0 x 10~2 mol/L
was prepared by diluting 17.1 mg in a 10 mL capacity flask. The
electrochemical measurements were performed with an Autolab
potentiostat/galvanostat (model PGSTAT-30, Eco Chemie, Utrecht,
The Netherlands) controlled by NOVA 2.1 software. The electro-
chemical system had a screen-printed sensor with three-
electrodes: pseudo-reference electrode (Ag/AgCl), auxiliary elec-
trode made of carbon ink and the working electrode with func-
tionalized carbon ink (r=0.15 cm) connected with an auxiliary
cable.

HPLC-UV analysis was made with a Shimadzu model 10ATvp LC
system (San Francisco, CA, USA), consisting of two pumps (LC-
10AT), column oven (CTO10A), and UV detector (SPD-10A). The
mobile phase consisted of a 1.0 x 10~ mol/L phosphate buffer (pH
7.0) solution and acetonitrile at the ratio of 95:5 (V/V) (filtered
through a 0.22 um pore membrane filter) at the temperature of
20 °C. The flow rate was 1 mL/min and detection was made at
320 nm. This analytical method was used for the comparison with
the electrochemical sensor [45].

2.2. Fabrication and preparation of C60-rGO-NF/SPE sensors

SPE were made as reported in the literature [46,47]. A negative
mask with the SPE model was prepared in an adhesive vinyl
polymeric material using Silhouette Studio version 2.7.4 software
and an electronic craft cutter from Silhouette Cameo (Silhouette
America, Sao Paulo, Brazil). Fig. 1 shows the main steps for pre-
paring the electrode: (1) the vinyl mask was fixed on a polyester
sheet (USA Folien Laserjet Clear A4 transparency film); (2) the
carbon ink (C2160602D2 from Gwent Electronic Materials Ltd., Sao
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Paulo, Brazil) was deposited on the support with a plastic spatula
and cured at 90 °C for 30 min; (3) the Ag/AgCl ink (C2051014P10,
Gwent Electronic Materials Ltd., Sao Paulo, Brazil) was applied to
the part corresponding to the pseudo-reference electrode, and then
the ink was cured at 60 °C for 30 min; (4) removal of the vinyl mask;
(5) delimitation of the geometric area of the working electrodes
with a rectangular vinyl mask, followed by a heater press and (6)
SPE for use.

To obtain an active sensor, the SPE was placed in an acid bath
(0.5 mol/L H2S04) under stirring for 1 min (for partial functionali-
zation of the electrode surface). A suspension (2 mL) containing
rGO (3 mg) and NF (50 pL, 0.5% V/V) was prepared and subjected to
an ultrasonic bath for 20 min to yield a homogeneous dispersion.
An aliquot of 3 pL of C60 solution prepared in CH,Cl, was cast onto
the electrode surface, and dried for 1 h. In the pretreatment process
cyclic voltammetry (2 cycles) was used with the potential scanning
from 0 to —1.5 V at a scan rate of 20 mV/s in a 1 mol/L KOH solution.
Another potential scanning was carried out (550 to —50 mV) at a
scan rate of 50 mV/s using the phosphate buffer solution (pH 7.0)
with the goal of stabilizing the electrochemical sensor response
[48].

2.3. Preparation of synthetic urine and serum samples

The synthetic urine sample was prepared by following the
procedure reported by Laube et al. [49] using the compounds found
in real samples: 49, 20, 10, 15, 18, 18 mmol/L of NaCl, KCl, CaCly,
KH,POg4, NH4Cl, and urea were added. The remaining volume of the
flask was filled with ultrapure water. The synthetic serum sample
was prepared as described by Parham and Zargar [50]. The flask
volume was completed with ultrapure water. The total volume of
the samples was 25 mL. After this step, the samples were spiked
with two levels of concentration of MTZ and an aliquot of 250 uL
was added separately in 10 mL of supporting electrolyte solution.

3. Results and discussion
3.1. Morphological characterization of the C60-rGO-NF/SPE sensor

The scanning electron microscopy image in Fig. 2A is typical of
rGO, with smooth multilayers in overlapping sheets with crumpled
and wrinkled sheets. Fig. 2B shows a dense, uniform C60 film
deposited on rGO, resulting from an evenly dispersed C60-rGO
mixture which had been subjected to an ultrasound bath before
modifying the surface electrode. NF is very diluted (0.01% V/V) and
therefore it could not be visualized in a straightforward manner,
though it may be responsible for some lighter shadows on the
image.

The chemical composition of graphene, GO and rGO was
assessed with X-ray photoelectron spectroscopy (XPS). Figs. 3A and
B display two well-defined binding energy peaks for graphene and
GO at 285.4 eV assigned to Cqs (graphene = 96.8% and GO = 87.3%)
and at 530.9 eV due to O1s (graphene = 3.2% and GO = 12.7%, insets
in Figs. 3A and B). With deconvolution of the XPS spectra of Cys, one
may determine the degree of oxidation and the binding of carbon
atoms: aromatic C—C bonds (carbon sp?, 284.5 eV); C—H (285.6 eV);
C—O (ether/alcohol, 286.5 eV), C=O0 (carbonyl, 287.6 eV), 0—C=0
(carboxyl, 289.5 eV). There was a large difference in peak intensity
between graphene and GO. For graphene the aromatic bond (C—C)
peak was large, indicating the expected high degree of order of the
hexagonal carbon structure. On the other hand, for GO there was an
increase in the peaks related to carbon bonds with oxygenated
groups (CO, C=0 and O—C=0) and CH, with a consequent decrease
in the peak related to aromatic C—C. This confirmed that oxygen-
ated groups were inserted in the carbon structure of graphene.
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Fig. 1. Schematic representation of the preparation of screen-printed electrode (SPE).

Fig. 2. Morphological characterization by scanning electron microscopy images of (A)
reduced graphene oxide (rGO) and (B) C60-rGO.

When GO was reduced using NaBHy, these groups were removed,
and their corresponding peaks decreased significantly, as shown in
Fig. 3C for rGO.

3.2. Catalytic activity from synergic effect between C60 and rGO

The analytic response of the C60-rGO-NF/SPE sensor was
determined using cyclic voltammetry for a concentration of MTZ of
1.0 x 104 mol/L. Fig. 4 shows the cathodic peak due to reduction of
MTZ on the electrode surface at —0.9 V vs. Ag/AgCl (3.0 mol/L KCI).
This peak increased when the SPE electrode was modified with C60
and rGO, with the current for C60-rGO-NF/SPE being 5 times the
value for SPE and 2.1 times the value for rGO/SPE. The increased
current can be attributed to an increase in the porosity of these
nanomaterials which increases the surface area of the electrode.
The electrochemical reduction of MTZ involves four electrons ac-
cording to reaction below [42].

R—NOy+ 4e~ + 4H" — R—NHOH + H;0

where
0
\
R= N)\CHg
|
CH,CH,OH

3.3. Effect of potential scan rate and pH

The presence of a cathodic peak and absence of anodic peaks in
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Fig. 5 indicate an irreversible redox process for MTZ on the C60-
rGO-NF/SPE sensor. The cathodic peak shifted to a more negative
potential and increased with the scan rate. The insets show that the
cathodic peak current decreased linearly with the scan rate, with a
correlation coefficient of 0.998. We also tried the v'/2 dependence
but fitting was poorer, with a correlation coefficient of 0.967.
Therefore, the MTX redox reaction was controlled by an adsorption
process (rather than a diffusion process).

Fig. S1 shows that the cathodic peak current for MTZ increased
with the pH up to pH 7, above which it leveled off. This is why we
selected pH 7 for subsequent experiments to determine MTZ with
the C60-rGO-NF/SPE sensor. The potential at which the cathodic
peak occurred increased with pH, as is typical of an irreversible
electrochemical process. The equation for the Ep vs. pH in Fig. S1 is
Ep,=-0.4—0.062pH, where the slope of —0.062 mV/pH corresponds
to an equal number of protons and electrons in the electrochemical
reduction of MTZ [51].

3.4. Determination of MTZ using the C60-rGO-NF/SPE sensor

First, a comparison was made between differential pulse vol-
tammetry and square wave voltammetry (SWV). From the analysis of
peak current intensity and stability in the electrochemical signal, we
inferred that SWV presented the best response. Thus, this technique
was chosen for the detection and quantification studies of MTZ. The
quantitative determination of MTZ was performed under optimized
conditions for the C60-rGO-NF/SPE sensor. Fig. 6 shows a linear in-
crease in the peak current with MTZ concentration in the range
between 2.5 x 107 and 34 x 10~® mol/L, with a regression equation
I, (nA) = 0.15 + 0.1Curz (pmol/L) (r=0.998). The limit of detection
(LOD) was 2.1 x 10”7 mol/L, calculated using the statistical method
described by da Silva and Machado [52], LOD = yg + 3Sg, where yg is
the intercept of the calibration plot used as the blank signal and Sg is
the standard deviation (obtained directly from the analytical curve).
The concentrations for which the sensor works are clinically relevant
as they correspond to serum concentrations from patients reported
in the literature. For instance, after administering a single dose of
200 mg MTZ, the blood concentration varied from 5.8 x 10~7 mol/L
to 2.8 x 10~® mol/L within 24 h and with a renal excretion of 13%—
46% [53]. In subsidiary experiments we verified that the sensor
displayed a linear behavior for MTZ concentrations up to 10~ mol/L
(not shown). We also tested the accumulation potential (Ea.) at
potentials 0, —0.2, and —0.4 V with an accumulation time of 30 s, and
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Fig. 3. Evaluation of graphene functionalization by X-ray photoelectron spectroscopy analysis: (A) graphene, (B) GO and (C) rGO, and respective insets.
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Fig. 4. Cyclic voltammograms of 1.0 x 10~% mol/L metronidazole (MTZ) in 0.1 mol/L
phosphate buffer (pH 7.0) for bare SPE, rGO-NF/SPE and C60-rGO-NF/SPE. Scan
rate=25 mV/s. NF: Nafion.

did not observe an appreciable increase in current. This is favorable
for the electrochemical analysis, and E;.c was not used for deter-
mining MTZ in the SWV experiments.

Table 1 shows that LOD and linear range for the C60-rGO-NF/SPE
sensor are competitive with other electrochemical devices to
determine MTZ in the literature [36,38—40,42—44,54]. Further-
more, this sensor is highly stable, providing repeatable results with
small sample volumes. The whole methodology is also promising
because it is amenable to mass production of electrodes at a low
cost, which is essential for disposable devices.

3.5. Interference and repeatability studies

The repeatability of the electrochemical signal for MTZ using
C60-rGO-NF/SPE sensor was evaluated in 0.1 mol/L phosphate
buffer solution containing 5.0 x 10~® mol/L MTZ in 14 measure-
ments. The relative standard deviation (RSD) of the cathodic peak
current was 3.6% (Fig. S2). When different electrodes were
employed, RSD was 4.9% (for seven electrodes, i.e., n=7). Hence, the
proposed sensor had a good repeatability. The influence of possible
interferents in plasma and urine for MTZ determination was found
to be negligible, as demonstrated in Fig. 7, when several drugs and
substances were added to MTZ. There was no significant change in
the MTZ analytical signal, when clindamycine, diclofenac, tetracy-
cline, dopamine, uric acid, dipyrone, ranitidine and caffeine were
tested in SWV experiments using a 1:1 concentration ratio (ana-
lyte:interference). In addition, no change in analytical signal was
observed for a 1:10 concentration ratio (analyte:interference). The
MTZ concentration used was 5.0 x 10~ mol/L, while the interferent
concentration was 5.0 x 10~¢ mol/L.
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Fig. 5. Effect of different scan rates on cyclic voltammograms at the C60-rGO-NF/SPE
sensor in the presence of 5.0 x 10~ mol/L MTZ in 0.1 mol/L phosphate buffer (pH 7.0).

3.6. Analytical applications to urine and serum samples

Proof-of-concept experiments were performed to determine
MTZ in synthetic serum and urine samples. Table 2 shows the SWV
results for the C60-rGO-NF/SPE sensor under the same conditions
identified in the optimization process. Recovery of MTZ ranged
from 94% to 100% with RSD of 3.3% in triplicate experiments for
serum and urine samples. Significantly, the relative error in these
results was within 10% of the values obtained with the standard
HPLC method (Fig. S3).

4. Conclusion

We have designed an electrochemical sensor that can be
employed in therapeutic drug monitoring, for which distinct

0_ —
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e 3
T 2432
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Fig. 6. SWV at C60-rGO-NF/SPE sensor for different concentrations of MTZ in a
phosphate buffer (pH=7.0) and analytical curve (inset). Parameters square wave vol-
tammetry (SWV): f=15 Hz, A=75 mV, and AE=5 mV.
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Table 1
Comparison of analytical results for the C60-rGO-NF/SPE sensor with other methods to determine metronidazole in the literature.
Electrode sensor Method Linear range (pmol/L) LOD (pmol/L) Refs.
MIP/MWCNT/GCE? v 1.2-20 0.00029 [36]
3D-HPG/PTH/GCE” % 0.05—70 0.001 [38]
Ni/Fe-LDH electrode® Amperometry 5.0-1610 58 [39]
Polydopamine/MWCNTs—COOH nanocomposites/GCE? DPV 5-5000 0.25 [40]
LDH_/CQDS@CPEC DPV 1.5-300 0.2 [42]
CPE! SWV 1-100 0.99 [43]
CPE-CD*® DPV' 0.5—-103 0.28 [44]
Carbon fibre microdisk electrode Swvh 1.0-2.2 0.5 [54]
C60-rGO-NF/SPE SWv 0.25—-34.0 0.21 This work
2 Molecularly imprinted polymer (MIP) and multi-walled carbon nanotubes (MWCNT) modified glassy carbon electrode (GCE).
b Graphene-like carbon architecture and polythionine modified GCE.
¢ Ni/Fe-layered double hydroxides (Ni/Fe-LDH) on the GCE.
4 Polydopamine and carboxylic MWCNT modified GCE.
€ LDH and carbon quantum dots (CQD)@carbon paste electrode.
f Carbon paste electrode.
& Electropolymerization of a-cyclodextrin on carbon paste electrode.
h_ Square wave voltammetry.
! Differential pulse voltammetry.
A B
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X
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Fig. 7. (A) Study of interference with different drugs and (B) SWV graph.
Table 2

Results from the analysis of synthetic urine and serum samples using C60-rGO-NF/SPE sensor under optimized conditions. The last column shows the relative error compared

with the standard HPLC method.

Matrices Added (mol/L) Foundproposed method” (MOI/L) Foundcomparative method” (MOI/L) Recovery® (sensor, %) Relative error®
Urine 1.0 x 107 (96 +0.1) x 1077 (95 +0.1) x 1077 96 -32

1.0 x 107> (94+02) x 106 (94 +0.1) x 1076 94 0
Serum 1.0 x 1076 (1.0+02) x 1076 (1.1 +0.1) x 1076 100 -9.1

1.0 x 107> (9.5+03) x 1076 (99 +0.1) x 107 95 4.0

2 Average of 3 concentrations.
b Recovery percentage = (Foundproposed method/added) x 100.

¢ Relative error = [(FoundProposed method — FoundComparative method)/FoundComparative method] x 100.

carbon nanomaterials were combined. The suitability of the
methodology was demonstrated with the antibiotic MTZ, which
could be determined with an LOD of 2.1 x 10~ mol/L using the
C60-rGO-NF/SPE sensor. Furthermore, this sensor could be applied
to determine MTZ in urine and serum samples, with recoveries
similar to those of the standard HPLC-UV technique. The method
exhibits high stability, repeatability and reproducibility. The high
performance of the sensor may be attributed to the synergy in
electrocatalytic activity of C60 and rGO, as indicated by the results
with cyclic voltammetry and SWV. The fast response and low cost
of the electrochemical sensors require a small expenditure of
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materials and reagents. The materials, concepts, and methodology
are generic and may be extended to other antibiotics and drugs, and
this is promising for drug monitoring to fight bacteria resistance.
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