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Pancreatic cancer is one of the most lethal tumors owing to its unspecific

symptoms during the early stage andmultiple treatment resistances. Pyroptosis,

a newly discovered gasdermin-mediated cell death, facilitates anti- or pro-

tumor effects in a variety of cancers, whereas the impact of pyroptosis in

pancreatic cancer remains unclear. Therefore, we downloaded RNA expression

and clinic data from the TCGA-PAAD cohort and were surprised to find that

most pyroptosis-related genes (PRGs) are not only overexpressed in tumor

tissue but also strongly associated with overall survival. For their remarkable

prognostic value, cox regression analysis and lasso regression were used to

establish a five-gene signature. All patients were divided into low- and high-risk

groups based on the media value of the risk score, and we discovered that low-

risk patients had better outcomes in both the testing and validation cohorts

using time receiver operating characteristic (ROC), nomograms, survival, and

decision analysis. More importantly, a higher somatic mutation burden and less

immune cell infiltration were found in the high-risk group. Following that, we

predicted tumor response to chemotherapy and immunotherapy in both low-

and high-risk groups, which suggests patients with low risk were more likely to

respond to both immunotherapy and chemotherapy. To summarize, our study

established an effective model that can help clinicians better predict patients’

drug responses and outcomes, and we also present basic evidence for future

pyroptosis related studies in pancreatic cancer.
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Introduction

Pancreatic cancer (PAAD), which is primarily composed of pancreatic ductal

adenocarcinoma, is one of the most fatal malignancies in the United States, with a

survival rate of about 10% (Siegel et al., 2021). The poor prognosis and stable incidence

rates of PAAD cases were not only associated with increased exposure to risk factors such
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as obesity, diabetes, tobacco use, and alcohol consumption, but

also with nonspecific symptoms at the early stage (Stolzenberg-

Solomon et al., 2013; Rebours et al., 2015; Walter et al., 2016).

Worse still, only modest progress has been achieved in reducing

the mortality rate of PAAD. Though immunotherapy has proved

to be a promising treatment in many other malignancies, few

PAAD patients benefited from ICIs (Torphy et al., 2018; Galluzzi

et al., 2020). The “cold” tumor microenvironment is one of the

primary reasons for its immunotherapy resistance (O’Donnell

et al., 2019). The tumor microenvironment of PAAD is mainly

composed of immunosuppressive cells, such as tumor-associated

macrophages, myeloid-derived suppressor cells, and regular

T-cells (Clark et al., 2007). Additionally, it is believed that an

unusually intense desmoplastic reaction surrounding PAAD

contributes to the formation of a barrier that prevents

immune infiltration and chemotherapy exposure (Provenzano

et al., 2012; Ho et al., 2020). Therefore, it is critical to investigate

the molecular pathways related to PAAD microenvironment.

Pyroptosis is defined as the caspase (CASP) family-driven

programmed necrotic cell death mediated by gasdermin (GSDM)

(Shi et al., 2015). When triggered by bacterial, viral, toxin, or

chemotherapy, pyroptosis can release pro-inflammatory

cytokines and immunogenic material, promoting the

activation and infiltration of immune cells (Loveless et al.,

2021; Yu et al., 2021). Pyroptotic cell death is characterized by

cellular swelling and bubble-like protrusions forming on the cell

membrane surface, as well as the release of IL1 and IL18 (Loveless

et al., 2021; Yu et al., 2021). Cancers of all forms are closely

related to pyroptosis (Yu et al., 2021). On one hand, inducing

pyroptosis was originally considered a promising therapeutic

strategy for increasing anti-tumor immune response. On the

other hand, the activation of multiple signaling pathways and the

release of cytokines can lead to tumorigenesis and drug resistance

(Xia et al., 2019). The connection between PAAD and pyroptosis

is still unclear. Recent work demonstrated that STE20-like kinase

1 slowed PAAD progression by triggering ROS-mediated

pyroptosis, implying that pyroptosis may be a potential

therapeutic target for PAAD (Cui et al., 2019).

One possible reason for the depressing outcomes of

immunotherapy is that PAAD cells can avoid cell death

induction (Chen et al., 2021). Thus, we sought to advance our

understanding of the pyroptotic pathway in PAAD and construct

a pyroptosis-related gene (PRG) prognostic signature. Our study

provided an effective prognostic model as well as basic evidence

for subsequent pyroptosis-related studies in PAAD.

Materials and methods

Data extraction

The workflow of our study is revealed in Figure 1. The UCSC

Xena (Goldman et al., 2020) (Xean, http://xena.ucsc.edu/) was

used to obtain the RNA sequencing profile and clinical following

data of the TCGA-PAAD cohort and GTEx cohort. Xena was also

implemented to integrate normalized counts from TCGA-PAAD

and GTex cohort due to limited matched controls in the TCGA-

PAAD cohort. All PAAD patients without survival following were

excluded in this study. In this cohort, there are 177 PAAD patients

and 167 normal pancreatic tissue. The GISTIC copy number

dataset and DNA methylation data for all selected patients were

obtained from cBioportal (https://www.cbioportal.org/), while the

somatic mutation data of patients was downloaded from TCGA

(https://portal.gdc.cancer.gov/). Additionally, we downloaded two

extra GEO datasets (GSE28735 and GSE62452, https://www.ncbi.

nlm.nih.gov/geo/) and ICGC sequencing profiles from ICGC

(https://daco.icgc.org/) as independent validation cohorts

(Zhang et al., 2012; Yang et al., 2016).

Identify differential expressed genes and
perform functional analysis

The 33 PRGs were selected from a previously published study

and are listed in Supplementary Table S1 (Ye et al., 2021). The

FIGURE 1
The workflow of our study.
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“DESeq2” package was used to identify differentially expressed

genes (DEGs) (Love et al., 2014). Additionally, we conducted

correlation analyses of gene expression and methylation using

the cBioportal (http://cbioportal.org) (Cerami et al., 2012). The

Mann-Whitney or unpaired t-test was used to investigate gene

expression differences across distinct copy number variations

(CNV). The function of DEGs was analyzed using KEGG

enrichment analysis and gene set enrichment analysis (GSEA)

via the “clusterProfiler” R package (Yu et al., 2012). p-values < 0.

05 were defined as statistically significant.

The construction of prognostic prediction
models

To begin, univariate cox regressions were utilized to examine

the relationships between individual 33 PRGs and overall survival

(OS) in the TCGA cohort. p-value< 0.05was set as the threshold to

identify prognostic-related PRGs. LASSO regression analysis was

then used to select significant PRGs andminimize the likelihood of

overfitting. Based on these selected PRGs, the prognostic model

was constructed using multivariate cox regression analysis. The

risk score for OS was constructed as the following formula:

risk score � ∑
5

i

Xipβi

Where X represents the gene expression level and β represents

the regression coefficient calculated by multivariate Cox

regression. All patients were separated into high- and low-risk

groups based on the media value of the risk score.

Validation of the prognostic prediction
model

To evaluate the accuracy of the predictionmodel, time receiver

operating characteristic (ROC) curve, nomograms, Kaplan-Meier

survival curve, and decision curve were established in the TCGA

cohort and validation ICGC cohort. The ROC curves at 1-, 3-, and

5- years were generated using the R package “timeROC” (Blanche

et al., 2013). The Kaplan-Meier survival curve was generated by

using the R package “survival” (Grambsch, 2000). The decision

curve and the following clinic impact curve were finished by the R

package “rmda” (Brown, 2018). And the R package “regplot”

(Marshall, 2020) was used to perform the nomogram analysis.

Molecular variation analysis and tumor
mutation burden between subgroups

After combining the copy number dataset with the somatic

mutation dataset of TCGA, we visualized the top 15 genes with the

highestmutational frequencies and compared their somaticmutation

status across subgroups using the R package “maftool” (Mayakonda

et al., 2018). The TMB value of each patient was also calculated

through “maftool”, and the Mann-Whitney or unpaired t-test was

used to compare TMB values across subgroups (Mayakonda et al.,

2018). p-values < 0.05 were considered statistically significant.

Comprehensive immune characteristics
analysis between subgroups

By relating gene expression data to cell purity data, the

“ESITMATE” R package was utilized to determine the

activities of tumor cells, immune cells, and stromal cells inside

the tumor environment (Yoshihara et al., 2013). We next used

single-sample GSEA through the “GSVA” R package to

determine the relative proportions of 28 different types of

tumor-infiltrating immune cells (Hanzelmann et al., 2013).

Supplementary Table S2 contains all the gene sets for targeted

immune cells. Apart from that, the relative expression levels of

the ICIs-targeted genes were determined using FPKM values and

compared using Mann-Whitney or unpaired t-test.

Immunotherapy and chemotherapeutic
response prediction

The TIDE (Tumor Immune Dysfunction and Exclusion) web

tool (http://tide.dfci.harvard.edu/) was used to predict

immunotherapy responses (Jiang et al., 2018). Patients with a

lower TIDE score were considered to have a better response to

immunotherapy. Besides, based on the GDSC (Genomics of

Drug Sensitivity in Cancer) database, the R package

“oncoPredict” was used to perform ridge regression analysis

on each sample to predict IC50 values for targeted drugs

(Maeser et al., 2021). A Mann-Whitney or unpaired t-test was

used to compare TIDE scores and IC50 values across subgroups.

p-values<0.05 were considered statistically significant.

Results

Alterations of pyroptosis-related genes
RNA expression in pancreatic cancer

To begin, we identified differentially expressed PRGs

between PAAD tissue and normal pancreatic tissue from the

TCGA-GTEx integrated cohort. The heatmap of PRGs revealed

that nearly all PRGs are significantly overexpressed within PAAD

tissue (Figure 2A). More specifically, the expression of AIM2,

CASP1, CASP3, CASP5, GSDMA, GSDMC, IL1B, IL6, IL18,

NLRP1, NLRP2, NLRP3, NLRP7, NOD2, TNF, GPX4, and

PYCARD increased more than twofold, whereas

CASP9 expression decreased (Figure 2B). Following that, we
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analyzed two additional GEO datasets (GSE28735 and

GSE62452) to see whether this differential expression is

widespread, which showed a significantly less trend of

increase (Supplementary Figures S1A,B) (Zhang et al., 2012;

Yang et al., 2016). Considering that the samples of

GSE28735 and GSE62452 were taken from tumor and paired

adjacent normal tissue, while control samples for the TCGA

cohort were derived from healthy pancreas samples from a

different cohort, the batch effects may partially account for

the difference. Nevertheless, all three cohorts revealed

unequivocally that PRGs were activated in PAAD and 18 of

these PRGs were overexpressed in all of the datasets when setting

p < 0.05 as threshold. We next enriched these 18 PRGs into

pyroptosis signaling pathways and discovered that caspase-1, 3,

and 8-dependent pyroptosis, as well as gasdmin B-mediated

pyroptosis, were all closely related with pancreatic cancer

(Supplementary Figure S1C). In general, multiple pyroptosis

mechanisms are commonly activated in pancreatic cancer.

Then, principal component analysis was processed to

identify PRGs expression characteristics between normal

pancreatic tissue and PAAD, which revealed a clear

distinction among samples (Figure 2C). To achieve a better

understanding of the relationship among PRGs, the

correlation matrix was constructed by calculating the Pearson

correlation coefficient between each two genes within either

normal samples from the GTEx cohort or PAAD samples

from the TCGA cohort. In normal pancreatic tissue, the

majority of PRGs were found to be remarkably positively

linked with each others while only five genes were shown to

be adversely connected to other PRGs, including NLRP2,

GSDMA, CASP5, NLRP1, and NOD2 (Figure 2D). Among

the PAAD samples, the expression of PRGs was likewise

FIGURE 2
Identify differentially expressed PRGs between PAAD and normal pancreatic tissue. Genes with |log2 fold change (log2FC) | > 1 and adjusted p
value < 0.05 were considered as differentially expressed genes. (A)A heatmap to show PRGs expression within normal tissue (FPKM data from GTEx
cohort) and PAAD tissue (FPKM data from TCGA cohort). (B) The Volcano plot created using the “Enhanced Volcano” R package to show differently
expressed PRGs. (C) Principal component analysis was processed to identify PRGs expression characters between the normal pancreatic tissue
and the PAAD tissue. (D) A heatmap of correlation matrix of the PRGs within normal tissue from GTEx cohort. (E) A heatmap of correlation matrix of
the PRGs within PAAD tissue from TCGA cohort.
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positively correlated, which suggested that the co-interaction of

PRGs may have a role in PAAD development (Figure 2E).

DNA methylation and copy number
variation affect the pyroptosis-related
genes expression

To elucidate possible explanations for the increased expression of

PRGs in the TCGA cohort, we analyzed DNAmethylation and CNV.

Both DNA methylation and CNV have been implicated in the

regulation of gene expression in a variety of cancers (Stranger et al.,

2007; Daniel et al., 2011). To ascertain if CNV influences PRGs

expression, we divided the TCGA cohort into five or fewer groups

based on their copy number for each gene, which included deletion,

shallow deletion, diploid, gain, and amplification. We discovered that

copy number is positively correlatedwith gene expression inmore than

half of the PRGs, suggesting a significant role for CNV in gene

regulation. Besides that, copy number is negatively correlated with

gene expression in 10% of PRGs and has no correlation in the

FIGURE 3
DNAmethylation, CNV, and gene expression correlation analysis. (A) Correlations between CNV and PRGs expression. Positive correlation was
defined as certain PRGs expression increased while copy number augmented. Negative correlation was defined as certain PRGs expression
decreased while copy number augmented. Uncertain was defined as both expression increasement and decrement can be observed while copy
number augmented. Unknown was defined as no significant differences between different CNV groups. (B) Pearson correlative value between
methylation (HM450) versusmRNA expression z-scores relative to all samples of each PRGs. (C)Violin plots of example positive correlated PRGs. The
rest PRGs are presented in Supplementary Figure S2. Significance was determined using the Mann-Whitney or unpaired t-test. Data shown are
means ± SD, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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remaining PRGs. (Figures 3A,C; Supplementary Figure S2). Since the

CNV alone could not fully account for the increased PRGs expression,

we performed a correlation analysis between DNA methylation and

PRGs expression, revealing that the expression of 28/33 PRGs is

negatively correlated with DNA methylation (Figure 3B). This

indicates both DNA demethylation and copy number increasement

contribute to the overexpression of PRGs in PAAD.

Construction of a prognostic gene
signature

The ROC curves for each PRGs revealed that the majority of

PRGs had a high predictive value for diagnosis, implying that they

may contribute to PAAD tumorigenesis (Figure 4A). To further

assess their prognostic potential, we performed a univariate cox

analysis between each PRG and OS, and 22 genes were screened

out (with p < 0.05) (Figure 4B). Lasso regression analysis was then

used to identify the most prognostic genes, and 5 genes were

chosen by the vertical grey line in Figure 4D (Figures 4C,D).

Finally, the model was determined by multivariate cox regression

within selected PRGs. Among them, GSDMC, IL18, and

NLRP2 are all associated with an increased risk, while the other

two confer a protective effect (Figure 4E). The formula of the risk

score was: risk score = (GSDMC*0.2302) -(ELANE*0.4664)+

(IL18*0.3341)—(NLRP1*0.4324)+ (NLRP2*0.1297). Taking the

median risk score as the cut-off value, we classified all TCGA

patients into low- and high-risk groups. Detailed clinical

FIGURE 4
Construction of a prognostic prediction model. (A)Heatmap to show AUC values for each PRGs. Three example ROC curves are displayed on
the left. (B)Hazard ratios analyzed via univariate cox regression to evaluate the prognostic ability for each PRGs. (C) LASSO coefficient profile of PRGs.
(D) Ten times cross-validation for parameter selections in the LASSO cox regression. (E)The nomogram incorporating 5 selected PRGs. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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information is presented in Table 1 Regardless of histologic stage,

disease type or OS, the majority of clinicopathological

characteristics are evenly distributed among two groups. An

increased risk score, on the other hand, may indicate a higher

histological grade and a greater likelihood of ductal and lobular

origins.

Prognostic value of pyroptosis-related
genes signature in TCGA and validation
cohort

To assess the prognostic efficacy of this signature, we

calculated the probability of 3-years OS in the TCGA cohort

(Figure 5A) and a validation cohort, ICGC (Supplementary

Figure S3A). The results indicated that the model had a high

predictive capacity in both cohorts. Additionally, time dependent

ROC analysis was used to assess the sensitivity and specificity of

this model. As for the TCGA cohort, beside 1-year, both 3-years

and 5-years corresponding areas under the curve (AUC) are over

0.75 (Figure 5B), whereas the ICGC cohort’s accuracy is lower,

with a 1-year AUC of 0.661 and a 3-years AUC of 0.528

(Supplementary Figure S3B). However, its poor performance

for predicting longer time survival status may be explained by the

fact that only 10% of patients in the ICGC cohort survive till the

third year. Following that, similar to the TCGA cohort, all

89 patients in the ICGC cohort were equally divided into low-

and high-risk groups based on their risk score, and we observed

TABLE 1 Clinical characteristics between risk score related subgroups.

Total (n = 177) Risk level p-value

low (n = 88) High (n = 89)

Age(year) 0.8259

<65 81 (45.76%) 41 (46.59%) 40 (44.94%)

≥65 96 (54.24%) 47 (53.41%) 49 (55.06%)

Gender 0.4021

Male 97 (54.80%) 51 (57.95%) 46 (51.69%)

Female 80 (45.20%) 37 (42.05%) 43 (48.31%)

TNM stage 0.2225

Stage I 21 (11.86%) 14 (15.91%) 7 (7.87%)

Stage II 145 (81.92) 70 (79.55.22) 75 (84.27%)

Stage III-IV 8 (4.52%) 3 (3.41%) 5 (5.62%)

Unknown 3 (1.69%) 1 (1.14%) 2 (2.25%)

Histologic grade 0.0085

G1-G2 125 (70.62%) 70 (79.55%) 55 (61.80%)

G3-G4 50 (28.25%) 17 (19.32%) 33 (37.08%)

unknown 2 (1.13%) 1 (1.14%) 1 (1.12%)

Disease type 0.0553

Adenomas and adenocarcinomas 30 (16.95%) 21 (23.86%) 9 (10.11%)

Cystic, mucinous, and serous neoplasms 5 (2.82%) 3 (3.41%) 2 (2.25%)

Ductal and lobular neoplasms 141 (79.66%) 63 (71.59%) 78 (87.64%)

Epithelial neoplasms, NOS 1 (0.56%) 1 (1.14%) 0

Family history of cancer 0.5449

YES 62 (35.03%) 32 (36.36%) 30 (33.71%)

NO 47 (26.55%) 27 (30.68%) 20 (22.47%)

Unknown 68 (38.42%) 29 (32.95%) 39 (43.82%)

Family history of pancreatitis 0.7299

Yes 13 (7.34%) 6 (6.82%) 7 (7.87%)

No 127 (71.75) 65 (73.86%) 62 (69.66%)

Unknown 37 (20.90%) 17 (19.32%) 20 (22.47%)

Overall survive <0.0001
Alive 85 (48.02%) 59 (67.05%) 26 (29.21%)

Dead 92 (51.98%) 29 (32.95%) 63 (70.79%)
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an obvious difference in OS between the two groups. Higher risk

patients were associated with more deaths and tended to have

shorter survival time in both cohorts (Figures 5C,D;

Supplementary Figures S3C,D).

pyroptosis-related genes model
outperforms clinical characteristics in
prognosis

Following that, we compare the predictive accuracy of our

model to that of clinicopathological characteristics. Both

univariate and multivariate analyses indicated that risk score

is an independent predictor, moreover, age and disease type also

demonstrated their independent predictive ability with p < 0.1 as

the threshold value (Table 2). After combining these three

variables, a nomogram model was built to evaluate its clinical

utility (Figure 6A). Then, we processed decision curve and ROC

analysis to compare the clinical benefit of the composite

nomogram to that of a risk score or clinical characteristics

alone. While the composite model performed better than the

basic clinical factors in terms of prognosis accuracy, it

demonstrated limited clinical net benefit compared to the risk

score (Figure 6B). Additionally, the time-related AUCs of the risk

FIGURE 5
The prognostic analysis of PRGs signature. (A) Calibration plots of the nomogram for predicting OS within 3 years basing on PRGs signature in
the TCGA cohorts. (B) Time dependent ROC analysis in the TCGA cohort. (C–D) The plots of risk score and alive status(C) as well as Kaplan-Meier
survival analysis (D) in the TCGA cohorts.
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score model were consistently greater than those of the composed

model at each time point, suggesting that the risk score possessed

the greatest clinical utility (Figure 6C).

Bioinformation analysis based on the
pyroptosis-related genes model

We identified 365 genes with increased expression and

1,514 genes with decreased expression in the high-risk group

as compared to the low-risk group (Figures 7A,B). These DEGs

were then used to conduct KEGG enrichment and GSEA analysis

to further investigate the biological pathway correlated with risk

score. Interestingly, DEGs were predominantly enriched in

organismal systems such as endocrine, nervous, and

circulatory systems (Figure 7C). Meanwhile, the GSEA results

demonstrate that several pathways, including calcium signaling,

cAMP signaling, cGMP-PKG signaling pathways and so on, are

down-regulated in the high-risk group (Figure 7D). Apart from

functional analysis, we then looked at the somatic mutation

status of TCGA patients. As expected, high-risk individuals

have a considerably higher somatic mutation burden, typically

for the genes KARS and TP53, which are known to be the

primary drivers of PAAD (Kleeff et al., 2016) (Figure 7E;

Supplementary Figure S4A). Consistently, the tumor mutation

burden (TMB) was also found to be considerably greater in the

high-risk group than in the low-risk group (Supplementary

Figure S4B).

Given that KRAS and TP54 have been linked to other cell

death processes such apoptosis and ferroptosis, we attempted to

identity the specific correlation between oncogenes and

pyroptosis by comparing the expression of PRGs between

KRAS or TP53 mutated and unmutated individuals (Chen

et al., 2021). Despite the fact that GSDMC, NOD2, and

TABLE 2 Univariate and multivariate cox regression analysis for prognostic model and clinical characteristics.

Variable Univariate analysiss Multivariate analysiss

Hazard
ratio (95% Cl)

p-value Hazard
ratio (95% Cl)

p-value

Risk score 2.72 (1.88–3.93) <0.0001 2.52 (1.69–3.76) <0.0001
Age 1.03 (1.01–1.05) 0.0076 1.02 (1.00–1.04) 0.0559

Gender

Female References

Male 0.81 (0.54–1.22) 0.3111

Tumor stage

Stage I References

Stage II 2.33 (1.07–5.09) 0.0334

Stage III 1.25 (0.15–10.28) 0.8323

Stage IV 1.56 (0.32–7.61) 0.5824

Histology grade

G1 References

G2 1.95 (1.00–3.79) 0.0487

G3 2.62 (1.30–5.27) 0.0071

G4 1.65 (0.21–12.85) 0.6346

Disease type

AAa References References

CMSa 4.80 (1.27–18.21) 0.0210 3.24 (0.82–12.86) 0.0948

DLa 3.16 (1.52–6.57) 0.0020 1.52 (0.71–3.25) 0.2786

History of chronic pancreatitis

No References

Yes 1.18 (0.56–2.47) 0.6649

Family history of cancers

No References

Yes 1.12 (0.65–1.92) 0.6858

aAA, is short for Adenomas and Adenocarcinomas.

CMS, is short for Cystic, Mucinous and Serous Neoplasms.

DL, is short for Ductal and Lobular Neoplasms.
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IL18 were modestly elevated while NLRP1 and NLRP6 were

lowered, the majority of PRGs between the mutant and non-

mutant groups were not significantly different (data not shown).

The link between pyroptosis and gene mutation is not evident

based on the existing findings, and more research is needed to

understand the particular interaction between the two.

Immunity features underlying the
pyroptosis-related genes model

We further characterize their immune environment

heterogeneity by elucidating the association between risk

score and immune state. The ESTIMATE web tool was first

used to determine cell distribution, and it revealed that high-

risk group had significantly less stromal cell and immune cell

infiltration. Meanwhile, the testing group ICGC cohort

presented a similar trend, though without a statistically

significant difference (Figure 8A; Supplementary Figure

S4C). Additionally, the compositions of specific cell types

were determined through ssGSEA, showing that the

infiltration of a considerable number of immune cell types

were reduced in high risk group, including effector memory

CD4+T-cells, effector memory CD8+T-cells, and type I helper

cells, which are known to have anti-tumor effects. Apart from

these, eosinophils, macrophages, mast cells, monocytes,

myeloid derived suppressor cells, and plasmacytoid dendritic

cells were found to be adversely associated with risk score

(Figures 8B,C).

Therapy response features underlying the
pyroptosis-related gene model

We suspected that a higher risk score would be correlated

with a weaker response to immunotherapy and other bio-

agents, given that patients in the high-risk group exhibited

reduced immune cell infiltration. Then, the TIDE analysis

corroborated our hypothesis, demonstrating that individuals

at low-risk are more likely to respond to ICI treatment but

without statistical significance (Figure 9A). Moreover,

patients in the high-risk group have higher exclusion score

but a lower dysfunction score, suggesting that immunological

exclusion was the primary cause of their poor outcomes

(Figure 9A). Notably, while both increased and decreased

expression of the ICI target gene can be observed, the link

FIGURE 6
Validation prognostic efficiency of PRGs signature. (A)Nomogram predicted 1- ,3-, and 5-years OS based on prognostic model combined with
clinical characteristic in the TCGA cohort. CMS: Cystic, Mucinous and Serous Neoplasms; DL: Ductal and Lobular Neoplasms; AA: Adenomas and
Adenocarcinomas. (B) The decision curve of the risk score, clinical characteristic and their combination. (C) time-dependent ROC curves for the risk
score, clinical characteristic, or their combination.
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between specific ICI and risk score requires further

investigation (Supplementary Figure S4D). Apart from that,

we used onco predict to predict the IC50 values for FDA-

approved drugs in high- and low- risk patients. Among the six

most commonly used drugs, the low-risk group had

considerably lower projected IC50 values for olaparib,

irirntecan, and gemcitabine, implying that lower risk is

associated with better outcomes from these

chemotherapeutic drugs (Figure 9B). Overall, patients in

the high-risk group were less sensitive to both

immunotherapy and chemotherapy in general, which may

have contributed to their poor prognosis.

Discussion

PAAD is always diagnosed at an advanced stage because of

the lack of identifiable symptoms, and only a minority of patients

can benefit from conventional surgical treatment or cytotoxic

chemotherapy (Von Hoff et al., 2013; Walter et al., 2016). As a

result, PAAD is currently one of the top 10 most lethal tumors

(Rahib et al., 2014). The immunosuppressive and desmoplastic

milieu of PAAD is a substantial impediment to optimizing

therapeutic efficacy, including difficulties in drug transport

and limited responses to ICI-based immunotherapy (Li et al.,

2020). Stimulating the immunogenic cell death of tumor cells is

FIGURE 7
Comparison of the subgroups of TCGA cohort. (A) Principal component analysis of the TCGA cohort grouped by high and low risk. (B) A volcano
plot represented DEGs between the high- and low-risk groups of TCGA cohort. (C) Function enrichment analysis of DEGs based on the KEGG
signaling pathway. (D)GSEA result of DEGs based upon KEGG signaling pathway. (E) Distribution of frequently mutated genes in different TCGA
subgroups.
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regarded to be an efficient method of converting the “cool” tumor

microenvironment to a “hot” environment (Kroemer et al.,

2013). Given that tumor cells show intrinsic resistance to

apoptosis, targeting pyroptosis might be a more efficient

strategy for boosting immunotherapy (Huang et al., 2018).

Our study investigated the combined effects of various PRGs

in PAAD and developed a prognostic model capable of reliably

predicting patient survival status and response to prospective

targeted therapy.

In this study, we were surprised to find that the majority of

PRGs expressed significantly differently between normal

pancreatic tissue and PAAD, reflecting a fundamental change

in pyroptosis activity. Gene overexpression can occur for a

variety of reasons, including gene amplification, activating

mutation, or epigenetic modification (Stranger et al., 2007;

Daniel et al., 2011). In our case, most of these upregulations

occur in part as a result of increased copy number or

demethylation. Additionally, the majority of overexpressed

PRGs are strongly associated with poor prognosis, indicating

that they may contribute to survival state prediction. Thus, using

univariate cox and lasso regression to avoid overfitting, five

prognostic PRGs were chosen. Following that, we generated a

signature comprised of five PRGs (ELANE, GSDMC, IL18,

NLRP1, and NLRP2) by multivariate cox, which named risk

FIGURE 8
Associations between risk score and tumor microenvironment. (A) Comparison of stromal scores, immune scores, and ESTIMATE scores
between the high- and low-risk groups of TCGA cohorts. (B) Heatmap of ssGSEA enrichment scores of 28 immune cell types in the TCGA cohort.
Notably, the cells are grouped according to their widely accepted role in cancer, including anti-tumor, pro-tumor, and others. (C) Comparison of
ssGSEA enrichment scores of 28 types of immune cells between the high- and low-risk groups in the TCGA cohort. Data are presented as
means ± SD. Significant was determined using Mann-Whitney or unpaired t-test. *p < 0.05 **p < 0.005, and ****p < 0.00005.
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score, and validated its accuracy in both the training and

validation cohorts. Among these core genes, higher ELANE

and NLRP1 expression suggested a favorable prognosis for the

patients. Consistently, Cui et al. (2021) recently demonstrated

that neutrophil-derived active neutrophil elastase (ELANE) not

only kills numerous types of cancer cells while sparing proximal

non-cancer cells by liberating the CD95 death domain that

interacts with histone H1 isoforms, but also inhibits

metastasis via CD8+T mediated abscopal effect. Furthermore,

it has been discovered that NLRP1 downregulation promotes

tumorigenesis, including lung adenocarcinoma and colorectal

cancer (Chen et al., 2015; Shen et al., 2021). On the other hand,

overexpression of GSDMC, IL18, and NLRP2 were associated

with a poor prognosis in patients with PAAD. Hou et al. (2020)

showed GSDMC mediated non-canonical pyroptosis upon

caspase-8 activation and that high GSDMC expression

correlated with poor survival. It is difficult to thoroughly

elucidate the role of IL18 in cancer. A high level of IL18 in

pancreatic tumor tissue was associated with a shorter survival

time, increased invasion, and metastasis, whereas a high

IL18 level in plasma was correlated with a longer survival

time (Guo et al., 2016). By combining our signature with

previous studies, we were able to confirm and truly illustrate

the predictive usefulness of these core PRGs.

Additionally, the singnature revealed differences in several

pathways between the two groups. Due to the fact that the

number of downregulated genes was much more than the

number of upregulated genes, the majority of pathways, such

as GABAergic synapase and insulin secretion, were enriched by

downregulated genes, and these pathways may have a correlation

with PAAD progression and prognosis. For example, gaba

suppresses PAAD by inhibiting the β-adrenergic cascade and

FIGURE 9
Therapy response features underlying the PRGs model. (A) Comparison of TIDE score, T-cell dysfunction (“Dysfunction”) score, and T-cell
exclusion (“Exclusion”) scores between the high- and low-risk groups of the TCGA cohort. (B) Predicted IC50 for olaparib, irinotecan, gemcitabine,
fluorouracil, erlotinib, and paclitaxel for low-risk and high-risk groups. Data shown are means ± SD. Symbols represent the individual patients.
Significant was determined using the Mann-Whitney or unpaired t-test. *p < 0.05 **p < 0.005, ***p < 0.0005, and ****p < 0.00005.
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nicotine-induced cell proliferation (Al-Wadei et al., 2011; Al-

Wadei et al., 2013; Al-Wadei et al., 2016). cAMP has both pro-

and anti-tumor effects in malignancies (Tagliaferri et al., 1988;

Ligumsky et al., 2012; Almahariq et al., 2015); To our surprise,

the calcium signaling pathway and the neuroactive ligand-

receptor interaction pathway, both of which are associated

with a poor prognosis (Bettaieb et al., 2021; Qian et al., 2021),

were downregulated in the high-risk group. However, the link

between pyroptosis and these pathways is currently unknown

and needs further investigation.

The pro- or anti- tumor effects of proptosis are somehow

determined by the surrounding microenvironment (Hou et al.,

2021). Several investigators reported the pyroptosis of tumor cells

can induce inflammatory response in microenvironment and

attracting CD4+ and CD8+T-cell populations (Wang et al., 2020).

In our case, though multiple PRGs are robustly overexpressed

within PAAD, it is evident pancreatic tumor microenvironment

exhibits an immunosuppressive condition (Zhu et al., 2014; Jiang

et al., 2016; Kumar et al., 2022). One possible explanation for this

is that, unlike acute pyroptosis induction, chronic induction of

pyroptosis in some tumors can result chronic inflammation,

which leads to a tumor-promoting microenvironment

(Tsuchiya, 2021). Besides, extracellular ATP released from

pyroptotic cells can be rapidly broken down into adenosine,

an immunosuppressive substance, the gradual release of modest

amounts of ATP from pyroptotic tumor cells may impact

antitumor immunity (Vultaggio-Poma et al., 2020; Tsuchiya,

2021). Apart from that, the pytoptosis that happened in the

center region of the tumor could result in chronic tumor necrosis,

which suppressed the anti-tumor immunity and accelerated

tumor progression (Hou et al., 2020). In our model, patients

with lower risk scores were infiltrated with more immune cells,

including several anti-tumor immune cells. So that if therapy-

induced pyroptosis is expected to improve the pancreatic tumor

microenvironment it may be important to determine the

appropriate extent of pyroptosis induction, which should be

neither too strong nor too weak (Tsuchiya, 2021).

Apart from the immune cell landscape, this signature also

showed a significant correlation with somatic mutation status and

therapeutic response. The patients with higher risk scores carried

more mutation burden, with more mutations in KARS, TP53,

ADAMTS12, SMAD4 FAT4, DCHS1, and CDKN2A mutations.

Among these genes, KARS, CDKN2A, TP53, and SMAD4 are four

major genes involved in the progression of PAAD (Kleeff et al.,

2016). However, it is unclear whether these oncogenes are involved

in pyroptosis. Moreover, TIDE analysis revealed that PAAD

patients with lower risk scores had a higher likelihood of

achieving durable benefits from immunotherapy. PAAD is also

characterized by a remarkable tolerance to chemotherapy (Kleeff

et al., 2016). Thus, to test the PRGs signature’s predictive utility in

clinical practice, we next predicted the sensitivity to FDA-proved

PAAD chemotherapeutic drugs based on gene expression profiles.

Similar to immunotherapy, a low-risk score was associated with a

better response to olaparib, irinotecan, and gemcitabine. In

general, our findings demonstrated that patients with low-risk

scores were more likely to be have a reduced mutation burden and

benefit from both immunotherapy and chemotherapy.

In this study, we created a valuable PRGs signature and

thoroughly explored its correlations with prognosis, immune

infiltration, somatic gene mutation, and treatment response.

Our model performs well in predicting patient prognosis and

treatment response. Moreover, we laid the groundwork for a more

complete understanding of pyroptosis’s role in PAAD. However,

our work is still in its early stage and the limitations of this study

are clear. Further clinical trials need to be conducted to fully verify

the accuracy of this model. The true involvement of pyroptosis in

cancer remains a mystery, and additional researches are required.
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