
ORIGINAL RESEARCH
published: 22 July 2020

doi: 10.3389/fnint.2020.00036

Edited by:

Gui Xue,
Beijing Normal University, China

Reviewed by:
Tzu-Yu Hsu,

Taipei Medical University, Taiwan
Philip Tseng,

Taipei Medical University, Taiwan

*Correspondence:
Qiufang Fu

fuqf@psych.ac.cn

Received: 30 August 2019
Accepted: 05 June 2020
Published: 22 July 2020

Citation:
Zhou X, Fu Q and Rose M (2020) The

Role of Edge-Based and
Surface-Based Information in
Incidental Category Learning:
Evidence From Behavior and

Event-Related Potentials.
Front. Integr. Neurosci. 14:36.
doi: 10.3389/fnint.2020.00036

The Role of Edge-Based and
Surface-Based Information in
Incidental Category Learning:
Evidence From Behavior and
Event-Related Potentials
Xiaoyan Zhou1,2,3, Qiufang Fu1,2* and Michael Rose4

1State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,
2Department of Psychology, University of Chinese Academy of Sciences, Beijing, China, 3The Research Center for
Psychological Education, University of International Relations, Beijing, China, 4NeuroImage Nord, Department for Systems
Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany

Although it has been demonstrated that edge-based information is more important
than surface-based information in incidental category learning, it remains unclear how
the two types of information play different roles in incidental category learning. To
address this issue, the present study combined behavioral and event-related potential
(ERP) techniques in an incidental category learning task in which the categories
were defined by either edge- or surface-based features. The results from Experiment
1 showed that participants could simultaneously learn both edge- and surface-
based information in incidental category learning, and importantly, there was a larger
learning effect for the edge-based category than for the surface-based category. The
behavioral results from Experiment 2 replicated those from Experiment 1, and the ERP
results further revealed that the stimuli from the edge-based category elicited larger
anterior and posterior P2 components than those from the surface-based category,
whereas the stimuli from the surface-based category elicited larger anterior N1 and
P3 components than those from the edge-based category. Taken together, the results
suggest that, although surface-based information might attract more attention during
feature detection, edge-based information plays more important roles in evaluating the
relevance of information in making a decision in categorization.

Keywords: edge-based information, surface-based information, cross-modal category learning, incidental
category learning, event-related potentials

INTRODUCTION

A fundamental question in category learning is how the category knowledge is extracted and
represented in the human brain. The prototype theory posits that people form a summary
representation in the form of prototypes in category learning (Knowlton and Squire, 1993; Reber
et al., 1998a,b; Reed et al., 1999; Smith and Minda, 2002; Smith, 2002; Bozoki et al., 2006; Homa et al.,
2011). The exemplar theory posits that people store categorical members as individuated memory
representations in category learning (e.g., Nosofsky and Zaki, 2002; Zaki and Nosofsky, 2004, 2007;
Tunney and Fernie, 2012). The rule-based theory, however, contends that people extract verbal
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rules of prominent features as the category representations in
category learning (Maddox et al., 2003; Maddox and Ashby, 2004;
Ashby and Maddox, 2005, 2011; Carpenter et al., 2016; Ashby and
Valentin, 2017). The above theories differ in the exact content
of the category representation; all of them focus on what type of
category structure is formed in category learning but ignore the
issue of whether the category representation includes primarily
edge- or surface-based features.

Edge-based features (e.g., line, shape, and contour) often
appear at boundaries to separate an object from its background,
whereas surface-based characteristics (e.g., color, brightness,
and texture) always define the physical description of a
stimulus (Tanaka et al., 2001; Hagen et al., 2014). It has been
demonstrated that the representation mediating initial object
recognition contains edge-based information such as an object’s
shape but not surface-based information such as its color or
texture (Biederman, 1987; Biederman and Ju, 1988; Elder and
Velisavljević, 2009; Rokszin et al., 2015). It has been also
found that surface-based information such as color facilitates
recognition only when a stimulus is presented for a relatively long
period of time (Laws and Hunter, 2006; Fu et al., 2016) or when
objects belong to structurally similar categories with a high color
diagnostic (Tanaka and Presnell, 1999; Nagai and Yokosawa,
2003; Bramão et al., 2011, 2012). Importantly, although color
photographs include both edge- and surface-based information,
while line drawings include only edge-based information, the
neural activation in response to line drawings is similar to that
for color photographs, indicating that the information included
in the line drawings might be equivalent to the original objects
or scenes they depict (Sayim and Cavanagh, 2011; Walther et al.,
2011; Fu et al., 2016).

If object representation consists primarily of edge-based
information, it can be expected that edge-based information
might play a more crucial role than surface-based information
in category learning, as both include the processing of current
stimuli and the comparison between the current stimuli and
their internal representations. Indeed, it has been demonstrated
that people perform much better when the category is defined
by the edge-based features than by the surface-based features,
indicating that the two types of information play different roles
in category learning (Zhou et al., 2019). However, it remains
unclear how the two types of information play different roles in
category learning.

Object categorization has been described as a two-stage
process (Vanrullen and Thorpe, 2001; Palmeri and Gauthier,
2004; Ungerleider and Bell, 2011; Taminato et al., 2014;
Serre, 2016). During the first stage, visual features such as
color, motion, and texture are processed, and the proximal
representation of the current stimulus is formed in the primary
visual cortex and the extrastriata visual cortex (Riesenhuber and
Poggio, 2000; DiCarlo et al., 2012). The extraction of visual
features is often reflected by early event-related potential (ERP)
components including the posterior P1 and N1 and the anterior
N1 and P2 prior to about 200-ms poststimulus onset (Freedman
et al., 2003; Scholl et al., 2014). The posterior P1 component
indexes early sensory processing and is sensitive to attention
allocation (Anllo-Vento and Hillyard, 1996; Luck et al., 2000;

Fabre-Thorpe et al., 2001; Martínez et al., 2006), whereas the
posterior N1 component reflects a discrimination process and
also indicates a benefit of exogenous (i.e., bottom–up) attention
(Vogel and Luck, 2000; Curran et al., 2002; Chen et al., 2006;
Marzecová et al., 2018). The anterior N1 component is observed
with a peak latency approximately halfway between the posterior
P1 and N1 latencies (Luck and Kappenman, 2012) and reflects
the top–down (i.e., voluntary, endogenous) control needed for
focusing attention on stimuli (He et al., 2004, 2008; Marzecová
et al., 2018). For example, there is a larger anterior N1 component
when the cue and the target are presented at the same location
than at different locations (He et al., 2004, 2008). In addition,
the anterior P2 component has been linked to the detection and
analyses of target visual features (Hillyard and Münte, 1984; Luck
and Hillyard, 1994; Luck, 2012). For example, there is a larger
anterior P2 component for stimuli containing target features
compared to stimuli missing several features (Federmeier et al.,
2005; Chen et al., 2006; Gratton et al., 2009).

During the second stage, the information of the current
stimuli is compared with internal categorical representations to
make a decision (Ungerleider and Bell, 2011; Taminato et al.,
2014). The evaluation of information relevance in making a
decision is more likely to be reflected by relatively late ERP
components including the posterior P2, the anterior P3a, and
the posterior P3b after about 200 ms of the stimulus onset
(Scholl et al., 2014). The posterior P2 might be engaged in
more complex encoding processes including the reactivation of
stored information and evaluative processes that occur when a
visual input is compared with an internal representation (Dunn
et al., 1998). It has been found that there is a shorter posterior
P2 latency for easily categorizable stimuli (letters or geometrical
figures) than hardly categorizable stimuli (structured textures
and Asiatic characters; Pernet et al., 2003). The anterior P3a
component displays maximum amplitude over frontal/central
electrode sites and might reflect a mixture of category selection
and categorization uncertainty with enhanced responses to
stimuli at the category boundary (Scholl et al., 2014). The P3b
components are typically highest on the scalp over parietal
brain areas and are related to task demanding and cognitive
resources (Polich, 2007). In addition, noncategory members
elicit larger posterior P3b components than categorical members
(Folstein et al., 2008).

In the current study, to investigate how edge- and surface-
based information play different roles in category learning, we
adopted behavioral and ERP techniques in an incidental category
learning paradigm in which the categories were defined by either
edge- or surface-based features. The purpose of Experiment 1 was
to explore whether participants could simultaneously acquire
the representations of categories defined by edge- and surface-
based features and whether edge-based information plays a more
important role than surface-based information in incidental
category leaning. If edge-based information plays a more primary
role than surface-based information in category learning, we
would expect that the learning effect would be higher for the
category defined by edge-based features than those defined by
surface-based features as in Zhou et al. (2019). In Experiment 2,
the ERPs technique was used to investigate how the two types
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of information would play different roles in category learning.
If the category representation consists of primarily edge-based
information, the categorization based on edge- and surface-based
features would differ in early and later ERP components.

EXPERIMENT 1

We adapted the stimuli from Gorlick and Maddox (2013)
in which cartoon animals were constructed from 10 binary
dimensions and each dimension has two features. For example,
the shape of the horn can be like a comb or the moon, and
the shape of the head can be acutilingual or lamellirostral.
To compare the roles of edge- and surfaced-based features in
category learning, we maintained five edge-based dimensions
including the shapes of the horn, head, body, tail, and leg and
added five corresponding surface-based dimensions including
the color of the horn, head, tail, and the texture of the body
and leg. As a result, the current stimuli varied along 10 binary
dimensions, with five edge- and five surface-based dimensions
(see Figure 1A). It has been demonstrated that when the category
is defined by a four-feature-based rule, participants perform
better when the category is defined by edge-based features
than by surface-based features (Zhou et al., 2019). Thus, in
the present study, the two categories were defined by a four-
feature-based rule of either edge- or surface-based features. To
investigate whether participants could simultaneously acquire
the two categories and express a learning advantage for the
category defined by the edge-based features, the stimuli from
both categories were presented in the training phase, and
unbeknownst to participants, the stimuli of each category were
always accompanied by the same type of sound. Participants were
asked to rate how likeable the cartoon animal and the sound were
on each trial in the training phase.

Methods
Participants
Twenty-five university students (14 female, mean
age = 22.16 years, SD = 1.95) voluntarily participated in the
experiment. They were paid for their attendance. All of them
reported normal or corrected to normal vision. The experiment
was approved by the Institutional Review Board of the Institute
of Psychology, Chinese Academy of Sciences. Data from two
participants were excluded from further analysis because their
accuracy for both categories was below chance (0.5), and data
from one participant were excluded because his accuracy for the
surface-based category was above 2 standard deviations from the
mean accuracy.

Materials
The visual stimuli were cartoon animals that varied along
10 binary dimensions, with five edge-based dimensions including
the shape of the horn, head, body, tail, and leg, and five surface-
based dimensions including the color of the horn, head, tail,
and the texture of the body and leg. Each dimension has two
features. Each category was defined by a four-feature-based rule
of different types of features. For the edge-based category, the
category members were defined by the shape of the horn, tail, leg,

and head; correspondingly, for the surface-based category, the
category members were defined by the color of the horn and tail,
the texture of the leg, and the color of the head (see Figure 1B).
Specifically, for the edge-based category, category members were
those with a comb horn, a paw-shaped leg, a short and round
tail, and a bent head; for the surface-based category, category
members were those with a violet horn, a cuspidal leg, a green
tail, and a blue head. The features of the four defined dimensions
were fixed, while the features of the other six dimensions could
change randomly. Thus, there were a total of 64 members in
each category. Because four category members could be classified
to both categories, they were excluded in the training phase.
For each category, 20 category members were presented in the
training phase, and the other 40 were presented in the test phase.
The four stimuli that belonged to both categories were presented
twice in the test phase.

The auditory stimuli were two types of instrument sounds:
one was guitar sound, and the other was sand hammer sound.
They were produced by the software GarageBand and presented
with the same volume (80 db).

Procedure
There was a training phase, a test phase, a probability rating
phase, and an importance rating phase (see Figure 2) for
each participant.

Training Phase
The stimuli were presented on a 17-inch cathode-ray tube (CRT)
monitor and subtended a visual angle of <12◦ (see Nosofsky
et al., 2012). Each trial began with a fixation cross at the center
for 800 ms, and then, a visual stimulus and a sound were
presented for 5,000 ms. Participants were instructed to observe
the visual stimulus and listen to the sound carefully during their
presentation. After the stimuli disappeared, they were asked to
rate how likeable the cartoon animal and the sound were from
1 (very unlikeable) to 4 (very likeable). The intertrial interval
was 500 ms. Unbeknownst to the participants, the stimuli of
each category were always accompanied by the same type of
sound. The combination of the category and the sound was
counterbalanced between participants. There were 20 trials for
each category, for a total of 40 trials in the training phase. All the
trials appeared in a random sequence.

Test Phase
After the training phase, participants were informed that the
visual stimuli they had rated could be divided into two categories
(i.e., ‘‘category with guitar’’ or ‘‘category with sand hammer’’)
according to the sound they were accompanied with during the
training phase. Then, they were asked to classify some novel
visual stimuli according to the category knowledge they acquired
in the training phase. On each trial, a visual stimulus appeared
and remained on the screen until participants made classification
by pressing one of the two keys with labels ‘‘guitar’’ or ‘‘sand
hammer’’ on the keyboard. After the response, the next trial
was initiated following a 1,000-ms intertrial interval. There were
88 test trials, of which 40 belonged to the edge-based category,
40 belonged to the surface-based category, and eight belonged to
both categories.
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FIGURE 1 | Stimulus examples. (A) Two stimulus examples that varied on the features of 10 dimensions. (B) Examples of categorical members for each category.

FIGURE 2 | The trial procedure of different phases in Experiment 1.

Probability Rating Phase
During this phase, each defined dimension with different features
such as comb-like horn in blue was presented, and participants

were asked to report when a stimulus included the features
displayed, what was the probability it belonged to the category
accompanied with guitar, and the category accompanied with
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sand hammer separately. Participants were asked to indicate
the probability on a continuous sliding scale from 0 to 100,
where 0 = definitely no, 50 = equally likely to be yes or no, and
100 = definitely yes. Each defined dimension of the two categories
was presented two times, and thus, there were 16 trials in the
probability rating phase.

Importance Rating Phase
Finally, the names of the 10 dimensions including five edge-
based dimensions and five surface-based dimensions were listed
in a questionnaire, and participants were asked to rate how
important each dimension was when they classified the stimuli
on a continuous scale from 0 to 100, where 0 = not important at
all, 50 = moderately important, and 100 = very important.

Results
Accuracy in the Test Phase
The responses for the eight stimuli that belonged to both
categories were excluded from this analysis because they could
not be divided into correct and incorrect ones. Figure 3A
shows the accuracy for each category in Experiment 1. To
examine whether participants could simultaneously learn the
two categories incidentally, a one-sample t-test was used to
compare the performance with chance (0.50) for each category.
The accuracy for both categories were significantly above chance
(edge-based: M = 0.69, SD = 0.14, t(21) = 6.36, p< 0.001, Cohen’s
dz = 1.36; surface-based: M = 0.61, SD = 0.10, t(21) = 5.01,
p< 0.001, Cohen’s dz = 1.07), indicating that participants learned
the two categories incidentally at the same time. To explore the
role of different features in category learning, we conducted a
paired-samples t-test, which revealed that the accuracy for the
edge-based category was significantly higher than that for the
surface-based category [t(21) = 2.68, p< 0.05, Cohen’s dz = 0.57].
Thus, consistent with the previous research (Zhou et al., 2019),
the results suggested that participants performed better when
the category was defined by edge-based features than by surface-
based features.

Probability Ratings
To explore whether participants could be aware of the relation
between the defined features and the category membership, we
first calculated the average rating when the defined dimension
had or did not have the defined features separately and then
obtained the difference ratings between them (see Figure 3B).
If the difference rating was significantly above zero, it would
indicate that participants might be aware of the relation between
the defined features and the category membership, and vice versa.
A one-sample t-test revealed that for the edge-based category, the
difference ratings of the tail and head shapes were significantly
above zero (tail shape: t(21) = 4.04, p < 0.01, Cohen’s dz = 0.86;
head shape: t(21) = 3.08, p < 0.05, Cohen’s dz = 0.66); for the
surface-based category, the difference ratings of the tail and
head colors were significantly above zero (tail color: t(21) = 3.40,
p < 0.01, Cohen’s dz = 0.72; head color: t(21) = 2.37, p < 0.05,
Cohen’s dz = 0.51). The results indicated that participants were
partially aware of the relation between the defined features and
the category membership.

To explore whether participants could be more aware of
the relation between the defined features and the categorical
membership for one category than the other one, a 2 (category:
edge- vs. surface-based) × 2 (significant defined dimensions: tail
vs. head) within-subject ANOVA on the significant difference
ratings was conducted. The results revealed that the main effect
of defined dimensions was significant (F(1, 21) = 2.96, p = 0.10)
and the interaction effect (F(1, 21) = 0.01, p = 0.92) were not
significant. Importantly, the main effect of category was not
significant (F(1, 21) = 1.53, p = 0.23). Nothing at all follows from a
nonsignificant result in itself, but a Bayes factor (B) can indicate
substantial evidence for the null hypothesis (B < 1/3), that the
data are insensitive (1/3< B< 3), or substantial evidence for the
alternative (B> 3; Dienes, 2011, 2014; Fu et al., 2016). Therefore,
we calculated the Bayes factor B for the difference ratings between
the two categories, using the free online calculator on the website
from Dienes (2008). The mean difference of the difference ratings
between the two categories was 8.52; the standard error of
the difference was 6.89. Using the uniform range (0, 100) to
represent the alternative (where 100 was the extreme situation
when participants acquired completely explicit knowledge for
the edge-based category, but they did not acquire any explicit
knowledge for the surface-based category, i.e., the difference
was 100, while 0 was the extreme situation when participants
acquire similar explicit knowledge for the edge- and the surface-
based category, i.e., the difference was 0), it yields B = 0.32,
providing strong evidence that there was no difference in explicit
knowledge between the two categories.

Importance Ratings
To explore whether participants were more reliant on edge-
or surface-based features in classification, we calculated the
mean importance ratings for the four edge- or surface-based
defined dimensions, when participants classified the stimuli to
the two categories separately (see Figure 3C). A 2 (dimensions:
edge- vs. surface-based) × 2 (category: edge- vs. surface-based)
within-subjects ANOVA revealed only a significant effect of
dimensions (F(1, 21) = 8.04, p < 0.05, η2

p = 0.28). The main
effect of category (F(1, 21) = 0.26, p = 0.61) and the interaction
(F(1, 21) = 0.18, p = 0.68) did not reach significance. Similarity,
we calculated the Bayes factor B for the importance rating
difference between the two categories. The mean importance
rating difference between the two categories was 1.47, and the
standard error was 2.85. Using the uniform range (0, 100) to
represent the alternative (where 100 was the extreme situation
when the defined dimensions were rated with 100 for the
edge-based category but the defined dimensions were rated with
0 for the surface-based category, i.e., the difference was 100, while
0 was the extreme situation when the defined dimensions were
rated with similar importance ratings for the edge- and surface-
based categories, i.e., the difference was 0), it yields B = 0.06,
providing strong evidence that there was no importance rating
difference between the two categories. The results suggested that
participants always thought that the edge-based dimensions were
more important than the surfaced-based dimensions although
they could classify the stimuli based on either edge-based or
surface-based features.
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FIGURE 3 | Accuracy and ratings in Experiment 1. (A) The accuracy for the edge- and surface-based categories in the test phase. (B) The probability rating
differences of the defined dimensions between the edge- and surface-based category. (C) The importance ratings for the defined dimensions of the edge- and
surface-based categories. Error bars depict standard errors. *p < 0.05, **p < 0.01.

Discussion
The results of Experiment 1 showed that participants could
simultaneously learn the categories defined by edge- and
surface-based features, and importantly, there was a larger
learning effect for the category defined by edge-based category
than by surface-based features. Consistently, participants
reported that edge-based dimensions were more important
than surface-based dimensions although they could classify the
stimuli based on either edge-based or surface-based features,
providing convergent evidence that edge-based features matter
more than surface-based features. Nonetheless, there were
no differences for the two categories in the acquisition of
explicit knowledge about the relation between the defined
features and the category membership, indicating that the
higher accuracy of the edge-based category might be due
to the difference in implicit knowledge between the two
categories, which means that edge-based features play a
more important role than surface-based features in implicit
category learning.

EXPERIMENT 2

Based on results from Experiment 1, Experiment 2 was aimed
to further investigate how the two types of information played
different roles in category learning by using the ERP technique.
The experimental design was identical to that in Experiment 1.

Methods
Participants
Twenty-three university students (11 female, mean
age = 20.42 years, SD = 1.36) voluntarily participated in the
experiment. They were paid for their attendance. All of them
reported normal or correct to normal vision. None of them
had any history of neurological or psychiatric diseases. All of
them were given the written informed consent. The experiment
was approved by the Institutional Review Board of the Institute
of Psychology, Chinese Academy of Sciences. Data from four

participants were excluded from further analysis because their
accuracy of both categories was below chance (0.5), and data
from one participant was excluded because his accuracy was
beyond 2 SDs from the mean accuracy.

Materials and Procedure
The stimuli and procedure were identical to Experiment 1, with
exceptions that the four stimuli belonging to both categories were
excluded in the training and test phases and each trial began with
the fixation cross at the center for 650–950 ms at random.

EEG Recording and Analysis
The EEG was recorded from 64 scalp sites using Ag–AgCl
electrodes in an elastic cap according to the International 10-
20 system. The vertical and horizontal electrooculograms (EOGs)
were recorded with two pairs of electrodes placed 1 cm above
and below one eye and 1 cm lateral from the outer canthus of
both eyes. The left mastoid was used as an online reference, and
the algebraic average of the left and right mastoids was used
as an offline re-reference. The impedance of the reference and
right mastoids electrodes were maintained below 5 kΩ, and the
impedance of other electrodes were maintained below 10 kΩ.
The eye-movement-induced artifact was excluded by the ‘‘Ocular
Artifact Reduction’’ module of the NeuroScan system. The EEG
signals were amplified by a NeuroScan Synamps amplifier with
a band pass of 0.05–100 Hz at a sampling rate of 1,000 Hz. EEG
data were low-pass filtered with a cutoff frequency at 30 Hz and
averaged offline for epochs of 800 ms, starting 100 ms prior to the
stimulus onset in the test phase and ending 700 ms afterward. A
baseline correction was performed for each epoch with respect
to the 100-ms prestimulus interval. Trials with artifacts that
were determined by a criterion of 50 µV were rejected offline,
which amounted to only 2.9% of the trials. On average, there
were 54 and 48 correct trials for the edge- and surface-based
categories, respectively.

The ERPs were first averaged separately across correct and
incorrect trials for the edge- and surface-based categories for
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each participant. In the statistical analyses of the ERP data, we
focused on early components including the peak amplitudes of
the posterior P1 (60–130 ms) and N1 (100–140 ms), the mean
amplitudes of anterior N1 (80–130 ms) and P2 (140–180 ms),
and later components including the mean amplitudes of the
posterior P2 (200–240 ms) and anterior P3a (300–450 ms).
On the basis of previous studies (Vogel and Luck, 2000; Chen
et al., 2006; Freunberger et al., 2007; Folstein and Van Petten,
2011; Marzecová et al., 2018) and the topography of each
component, a group of posterior electrodes (P3, Pz, P4, PO3,
POz, PO4, O1, Oz, and O2) were selected for the posterior
P1, N1, and P2; a group of anterior electrodes (F3, Fz, F4,
FC3, FCz, FC4, C3, Cz, and C4) were selected for the anterior
N1, P2, and P3a. To investigate whether the stimuli from the
edge- and surface-based categories would produce different
waveforms, the analyses were focused on the correct trials
from the two categories. A 2 (category) × 9 (electrodes)
within-subject ANOVA was conducted. Greenhouse–Geisser
corrections were adopted when the sphericity assumption was
violated (Greenhouse and Geisser, 1959).

Results
Behavioral Results
Accuracy in the Test Phase
Figure 4A shows accuracy for each category in Experiment 2.
As in Experiment 1, a one-sample t-test was used to examine
weather participants could learn the two categories. It revealed
that participants performed significantly above chance (0.50) for
both categories (edge-based: M = 0.70, SD = 0.16, t(17) = 5.16,
p< 0.001, Cohen’s dz = 1.22; surface-based: M = 0.61, SD = 0.14,
t(17) = 3.44, p < 0.01, Cohen’s dz = 0.81), respectively, indicating
that they learned how to classify the stimuli of the two categories
incidentally. To explore the role of different features in incidental
category learning, we conducted a one-tailed paired-samples
t-test, which revealed that the accuracy for the edge-based
category was significantly higher than that for the surface-
based category, t(17) = 1.86, p < 0.05, Cohen’s dz = 0.44.
Thus, consistent with Experiment 1, the results confirmed that
participants performed better for the category defined by edge-
than by surface-based features.

Probability Rating
As in Experiment 1, we calculated the difference rating for
each defined dimension (see Figure 4B). The one-sample t-test
revealed that only the difference rating of tail shape for the
edge-based category was significantly above zero (tail shape:
t(17) = 3.75, p < 0.01, Cohen’s dz = 0.88). The results indicated
that participants were partially aware of the relation between
the tail shape and the category membership only for the
category defined by edge-based features. As the tail shape is one
defined dimension for the edge-based category, the tail color
is the corresponding defined dimension for the surface-based
category. To explore whether participants could be more aware
of the relation between the defined features and the categorical
membership for one category than the other one, a paired-
samples t-test was conducted on the significant difference ratings
for tail. The results showed that the difference ratings for tail

shape in the edge-based category was significantly higher than
the difference ratings for tail color in the surface-based category
(t(17) = 3.01, p < 0.01, Cohen’s dz = 0.71), indicating that
participants acquired more explicit knowledge for the edge-based
category than for the surface-based category.

Furthermore, to explore whether the higher accuracy for the
edge-based category was caused by the difference in explicit
knowledge between the two categories, the accuracy differences
between the edge- and surface-based categories was regressed
on the difference between significant rating differences of tail
shape and tail color. The results demonstrated that the rating
difference for tail could not predict the accuracy difference in the
test phase (F(1, 16) = 1.80, p = 0.20), indicating that the higher
accuracy for the edge-based category might be caused by the
difference in implicit knowledge rather than the difference in
explicit knowledge.

Importance Ratings
As in Experiment 1, we calculated the mean importance
ratings for the four defined dimensions when participants
classified the stimuli as belonging to the edge- or surface-based
category separately (see Figure 4C). A 2 (dimensions: edge- vs.
surface-based) × 2 (category: edge- vs. surface-based) within-
subjects ANOVA revealed only a significant effect of dimensions
(F(1, 17) = 10.26, p < 0.01, η2

p = 0.38). The main effect of category
and the interaction did not reach significance (F(1, 17) = 0.57,
p = 0.46; F(1, 17) = 1.82, p = 0.20). As in Experiment 1, the Bayes
factor B for the importance rating difference between the two
categories was calculated. The mean importance rating difference
between the two categories was 1.01, and the standard error of the
difference was 1.35. Using the uniform range (0, 100) to represent
the alternative, it yields B = 0.03. The results confirmed that
participants always thought that the edge-based dimensions were
more important than the surfaced-based dimensions although
they could classify the stimuli based on either edge-based or
surface-based features.

ERP Results
Figure 5 shows the ERP data of correct trials for the edge- and
surface-based categories at each of the anterior electrodes (F3,
Fz, F4, FC3, FCz, FC4, C3, Cz, and C4) and posterior electrodes
(P3, PZ, P4, PO3, POZ, PO4, O1, Oz, and O2). Figure 6A
shows the grand-average ERP waveforms of correct trials for
the two categories averaged across nine posterior electrodes and
nine anterior electrodes, respectively. Figure 6B shows the scalp
topography of the anterior N1, P2, P3a, and posterior P2.

ERP Effects in the Early Categorization Stage
To explore the role of edge- vs. surface-based features in the
early categorization stage, a 2 (category) × 9 (posterior or
anterior electrodes) within-subject ANOVA was conducted on
the peak amplitudes of posterior P1 and N1, as well as the mean
amplitudes of anterior N1 and P2.

For the peak amplitudes of posterior P1, it revealed only a
significant effect of electrodes (F(4.41, 74.98) = 7.99, p < 0.001,
η2
p = 0.32). The main effect of category (F(1, 17) = 0.06, p = 0.81)

and the interaction (F(3.34, 56.77) = 1.55, p = 0.21) were not
significant. For the peak amplitudes of posterior N1, it revealed
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FIGURE 4 | Accuracy and ratings in Experiment 2. (A) The accuracy for the edge- and surface-based categories in the test phase. (B) The probability rating
difference of the defined dimensions for the edge- and the surface-based categories. (C) The importance rating for the defined dimensions of the edge- and
surface-based categories. Error bars depict standard errors. *p < 0.05, **p < 0.01.

that neither the main effects (category: F(1, 17) = 0.86, p = 0.37;
electrodes: F(3.72, 63.26) = 1.70, p = 0.17) nor the interaction
(F(4.05, 68.84) = 1.46, p = 0.22) was significant.

For the mean amplitudes of anterior N1, it revealed only
a significant effect of category (F(1, 17) = 7.83, p < 0.05,
η2
p = 0.32), indicating that stimuli from surface-based category

elicited larger anterior N1 than those from edge-based category.
The main effect of electrodes (F(3.17, 53.91) = 1.55, p = 0.21)
and the interaction (F(3.54, 60.17) = 1.44, p = 0.24) did not
reach significance.

For the mean amplitudes of anterior P2, it revealed a
significant effect of category (F(1, 17) = 5.53, p < 0.05, η2

p = 0.25),
indicating that stimuli from edge-based category elicited larger
anterior P2 than those from surface-based category. There was
a significant effect of electrodes (F(2.57, 43.69) = 8.96, p < 0.001,
η2
p = 0.35). However, the interaction did not reach significance

(F(2.99, 50.78) = 0.32, p = 0.81).

ERP Effects in the Late Categorization Stage
To explore the role of edge- and surface-based features in the
late categorization stage, a 2 (category) × 9 (posterior or anterior
electrodes) within-subject ANOVA was conducted on the mean
amplitudes of posterior P2 and anterior P3a.

For the mean amplitudes of posterior P2, it revealed that a
significant effect of category (F(1, 17) = 4.82, p < 0.05, η2

p = 0.22),
indicating that stimuli from the edge-based category elicited
larger posterior P2 than those from the surface-based category.
The main effect of electrodes was significant (F(3.16, 53.68) = 8.34,
p< 0.001, η2

p = 0.33). The interaction (F(2.91, 49.49) = 1.13, p = 0.35)
did not reach significance.

For the mean amplitudes of anterior P3a, it revealed that
the main effect of category was significant (F(1, 17) = 5.85,
p < 0.05, η2

p = 0.26), suggesting that stimuli from the surface-
based category led to larger anterior P3a than those from the
edge-based category. The main effect of electrodes reached
significance (F(2.69, 45.76) = 9.06, p < 0.001, η2

p = 0.35). The
interaction did not reach significance (F(3.16, 53.79) = 1.57,
p = 0.21).

The Relation Between Behavioral Data and ERP Data
To examine the relation between ERPs and behavioral
performance, we calculated the accuracy difference between
the edge- and the surface-based categories and the mean
amplitude differences for anterior N1, P2, P3, and posterior
P2. Then, the accuracy differences between the two categories
were regressed on the mean amplitude differences for anterior
N1, P2, P3, and posterior P2. The stepwise regression showed
that only the mean amplitude differences of anterior P3a could
significantly predict the accuracy differences between the edge-
and surface-based category in the test phase (F(1, 17) = 4.82,
p< 0.05) with an adjusted R2 of 0.18.

DISCUSSION

The behavioral results of Experiment 2 replicated the main
findings in Experiment 1, indicating that participants learned
better for the edge-based category than for the surface-based
category, confirming that edge-based features play a more
crucial role than surface-based features in incidental category
learning. Importantly, the ERP results revealed that there were
larger anterior N1 but smaller anterior P2 for the surface-based
category than for the edge-based category, indicating that stimuli
from the surface-based category might attract more attention but
less feature analysis was done for them compared with those
from the edge-based category at the early categorization stage.
Moreover, there were smaller posterior P2 but larger anterior P3a
for the surface-based category than for the edge-based category,
suggesting that edge-based information plays more important
roles in evaluating information relevance in making a decision
at the late categorization stage.

GENERAL DISCUSSION

The behavioral results showed that knowledge for both edge-
and surface-based categories could be simultaneously acquired
in incidental category learning, and importantly, there was a
larger learning effect for the edge-based category than for the
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FIGURE 5 | Grand-average event-related potential (ERP) waveforms of correct trials for the edge- and the surface-based categories at anterior and posterior
electrodes separately. The color zone around the waveforms depicts standard errors.

surface-based category. Consistently, participants reported that
edge-based dimensions were more important than surface-based
dimensions although they could classify the stimuli based on

either edge-based category or surface-based features. The ERP
results revealed that the stimuli from the edge-based category
elicited larger anterior P2 and posterior P2 than those from
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FIGURE 6 | (A) Grand-average ERP waveforms of correct trials for the edge-based category and the surface-based category averaged across nine posterior
electrodes and nine anterior electrodes, respectively. The color zone around the waveforms depicts standard errors. (B) The scalp topography of the anterior N1, P2,
P3, and posterior P2, correct trials of the edge-based category minus correct trials of the surface-based category.

the surface-based category, while stimuli from the surface-based
category elicited larger anterior N1 and P3a than those from the
surface-based category. The results provided new behavioral and
ERP evidence that edge- and surface-based features play different
roles in incidental category learning. That is, although surface-
based information might attract more attention during feature
detection, edge-based information plays more important roles
in evaluating the relevance of information in making a decision
in categorization.

Participants were asked to observe each cartoon animal and
listen to the sound carefully and then rate how likeable they
were in the training phase. They were not asked to learn the
category directly, and no trial-by-trial feedback was provided
in both the training phase and the test phase. This guaranteed
that the learning process occurred incidentally. Under these
circumstances, participants performed above chance for both
categories, indicating that they could incidentally combine the
sound and the defined features to form the category knowledge
and use it in the test phase. Otherwise, the accuracy for one
category would be at chance level. Importantly, there was a larger
learning effect for the edge- than for the surface-based category,
and the larger learning effect was caused by the difference in
implicit knowledge between the two categories rather than the
difference in explicit knowledge, confirming that edge-based
features play a more crucial role than surface-based features in
implicit category learning.

The edge-based theory, such as Biederman’s recognition-by-
components model, posits that objects are recognized based on
their shape properties (Biederman, 1987; Biederman and Ju,
1988). Consistently, several studies have further demonstrated
that edge-based information is a principal discriminative cue
and its influence emerges earlier than texture and color (Elder
and Velisavljević, 2009; Rokszin et al., 2015). For example,
when extracting an average orientation from a set of objects,
performance has been found to be better when the orientation is
carried by the boundary features of the objects, relative to when it
is carried by the surface features of the objects (Choo et al., 2012).
Thus, the behavioral results of our two experiments provide new
evidence for the edge-based theory and extend the application of
this theory from object recognition to category learning.

Our ERP results revealed that the amplitude of anterior
N1 was larger for the surface- than for the edge-based category,
indicating that the stimuli from the surface-based category
might attract more attention compared with the stimuli from
the edge-based category. As stimuli from both edge- and
surface-based categories include five edge-based features and five
surface-based features, there should be no difference on feature
saliency between the two categories. That is, this attention effect
might not be due to a stimulus-driven attentional capture (e.g.,
Cave, 1999; Turatto and Galfano, 2000; Müller et al., 2009).
This is consistent with the finding that the posterior P1 and
N1 are not significantly different between stimuli from the two
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categories. Thus, the attention effect might be modulated by a
top–down mechanism (Connor et al., 2004; Theeuwes, 2010).
The information of the stimulus can be rapidly projected from
early visual areas directly to the prefrontal cortex resulting
in a coarse representation, which is subsequently used to
activate predictions about the most likely interpretations of the
stimulus (Bar et al., 2006; Schettino et al., 2011). If the category
representation consists of mainly edge-based features, the coarse
representation of stimuli for the edge-based category can be
formed more easily than that for the surface-based category.
Therefore, more top–down attention is needed for stimuli from
the surface-based category than for the edge-based category, as
reflected by a larger anterior N1 for the surface-based category
than for the edge-based category. These results are also consistent
with a previous study during which participants needed to decide
if the probe stimulus share the same category membership of
the previous two stimuli (Bigman and Pratt, 2004), and which
revealed that a larger N1 could be recorded in response to the first
stimulus when the knowledge of the target feature was unknown
and the attention was needed for all features during processing of
it compared with the second stimuli and the probe.

However, the ERP results revealed that the amplitude of
anterior P2 was larger for the edge-based category than for the
surface-based category. Relative to the condition under which
participants are instructed to discriminate between old and new
objects, the enhanced anterior P2 has been found in the condition
under which they need to decide additionally whether old objects
are larger or smaller since the more extensive evaluation of
specific perceptual attributes is engaged (Ranganath and Paller,
2000). It has also been found for word targets from which target
visual features can be more efficiently extracted when they are
congruent with the context (Federmeier et al., 2005). These
studies suggest that the anterior P2 reflects the detection of visual
features with feature-based attention (Luck and Hillyard, 1994;
Dunn et al., 1998; Luck, 2012). Because the anterior P2 is larger
for the edge-based category than for the surface-based category,
the anterior P2 component might reflect that the edge-based
features could be detected and analyzed more efficiently than the
surface-based features.

From the view of bottom–up visual processing, after
processing the presented object, the perceptual information is
matched to the representation in memory to make decisions
(Ungerleider and Bell, 2011; Taminato et al., 2014). It has been
found that the older adults with working memory encoding
decrements have lower posterior P2 amplitude than young adults
in a modified Sternberg recognition task (Finnigan et al., 2011),
and correct trials elicit larger posterior P2 than incorrect trials
in a digit span backward task (Lefebvre et al., 2005). The results
suggest that the posterior P2 reflects the cognitive matching
process. Consistent with this, our research shows that stimuli
from edge-based category elicit larger posterior P2 than that from
surface-based category, suggesting that edge-based information
from the current stimulus can be better evaluated and compared
with the stored inner categorical representation.

The P3a component has been proposed as an index of
stimulus categorization (Johnson and Donchin, 1980; Dien et al.,
2004). Folstein and Van Petten have separated that categorization

into a dual system: a relatively fast process if the category is
defined by a single- or two-feature conjunctions as indexed
by the posterior P3b, and a slower process engaged when the
number of relevant features exceeds two as indexed by the
P3a, which are late positive potentials at frontal scalp sites
(Folstein and Van Petten, 2004, 2011). As the category in the
present study is defined by four features and the surface- and
edge-based categories differ in the P3a, the results provide
supportive evidence for the two dual category systems (Folstein
and Van Petten, 2004, 2011). The larger P3a for the surface-
based category than for the edge-based category is also consistent
with previous studies showing that the anterior P3a might reflect
a mixture of category selectivity and categorization uncertainty
with enhanced responses to uncertain stimuli (Scholl et al.,
2014). Because the difference in the P3a amplitudes between
the two categories could predict the accuracy difference, the
relatively poor accuracy for the surface-based category might be
due to the difficulty in evaluating the surface-based features with
internal representations.

In summary, the current study suggests that the edge-based
features play a more important role than surface-based features.
Furthermore, although the surface-based features attract more
attention at the early stage of classification, it is the edge-based
features that play a more crucial role in retrieving internal
representations and evaluating the relevant information in
decision making at the late stage of classification.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the Institutional Review Board of the
Institute of Psychology, Chinese Academy of Sciences. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

XZ and QF designed the experiment. XZ performed the
experiment and analyzed the collected data. XZ, QF, and MR
wrote and revised the manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China, the German Research Foundation (NSFC
61621136008/DFG TRR-169), and the National Natural Science
Foundation of China (61632004).

Frontiers in Integrative Neuroscience | www.frontiersin.org 11 July 2020 | Volume 14 | Article 36

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Zhou et al. Incidental Category Learning

REFERENCES

Anllo-Vento, L., and Hillyard, S. A. (1996). Selective attention to the
color and direction of moving stimuli: electrophysiological correlates of
hierarchical feature selection. Attent. Percept. Psychophys. 58, 191–206.
doi: 10.3758/bf03211875

Ashby, F. G., and Maddox, W. T. (2005). Human category learning. Annu. Rev.
Psychol. 56, 149–178. doi: 10.1146/annurev.psych.56.091103.070217

Ashby, F. G., and Maddox, W. T. (2011). Human category learning 2.0. Ann. N Y
Acad. Sci. 1224, 147–161. doi: 10.1111/j.1749-6632.2010.05874.x

Ashby, F. G., and Valentin, V. V. (2017). ‘‘Multiple systems of perceptual
category learning: theory and cognitive tests,’’ in Handbook of Categorization
in Cognitive Science, 2nd Edn, eds H. Cohen and C. Lefebvre (New York, NY:
Elsevier), 157–188.

Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M.,
et al. (2006). Top-down facilitation of visual recognition. Proc. Natl. Acad. Sci.
U S A 103, 449–454. doi: 10.1073/pnas.0507062103

Biederman, I. (1987). Recognition-by-components: a theory of human image
understanding. Psychol. Rev. 94, 115–147. doi: 10.1037/0033-295x.94.2.115

Biederman, I., and Ju, G. (1988). Surface versus edge-based determinants of visual
recognition. Cogn. Psychol. 20, 38–64. doi: 10.1016/0010-0285(88)90024-2

Bigman, Z., and Pratt, H. (2004). Time course and nature of stimulus evaluation in
category induction as revealed by visual event-related potentials. Biol. Psychol.
66, 99–128. doi: 10.1016/j.biopsycho.2003.10.003

Bozoki, A., Grossman, M., and Smith, E. E. (2006). Can patients with
Alzheimer’s disease learn a category implicitly? Neuropsychologia 44, 816–827.
doi: 10.1016/j.neuropsychologia.2005.08.001

Bramão, I., Francisco, A., Inácio, F., Faísca, L., Reis, A., and Petersson, K. M.
(2012). Electrophysiological evidence for colour effects on the naming of colour
diagnostic and noncolour diagnostic objects. Visual Cogn. 20, 1164–1185.
doi: 10.1080/13506285.2012.739215

Bramão, I., Reis, A., Petersson, K. M., and Faísca, L. (2011). The role of color
information on object recognition: a review and meta-analysis. Acta Psychol.
138, 244–253. doi: 10.1016/j.actpsy.2011.06.010

Carpenter, K. L., Wills, A. J., Benattayallah, A., and Milton, F. (2016).
A Comparison of the neural correlates that underlie rule-based and
information-integration category learning. Hum. Brain Mapp. 37, 3557–3574.
doi: 10.1002/hbm.23259

Cave, K. R. (1999). The Feature Gate model of visual selection. Psychol. Res. 62,
182–194. doi: 10.1007/s004260050050

Chen, A., Li, H., Qiu, J., and Luo, Y. (2006). The time course of visual
categorization: electrophysiological evidence from ERP. Chinese Sci. Bull. 51,
1586–1592. doi: 10.1007/s11434-006-1586-2

Choo, H., Levinthal, B. R., and Franconeri, S. L. (2012). Average orientation
is more accessible through object boundaries than surface features. J. Exp.
Psychol. Hum. Percept. Perform. 38, 585–588. doi: 10.1037/a0026284

Connor, C. E., Egeth, H. E., and Yantis, S. (2004). Visual attention: bottom-up
versus top-down. Curr. Biol. 14, R850–R852. doi: 10.1016/j.cub.2004.09.041

Curran, T., Tanaka, J. W., and Weiskopf, D. M. (2002). An electrophysiological
comparison of visual categorization and recognition memory. Cogn. Affect.
Behav. Neurosci. 2, 1–18. doi: 10.3758/cabn.2.1.1

DiCarlo, J. J., Zoccolan, D., and Rust, N. C. (2012). How does the brain solve visual
object recognition?. Neuron 73, 415–434. doi: 10.1016/j.neuron.2012.01.010

Dien, J., Spencer, K. M., and Donchin, E. (2004). Parsing the late positive complex:
mental chronometry and the ERP components that inhabit the neighborhood
of the P300. Psychophysiology 41, 665–678. doi: 10.1111/j.1469-8986.2004.
00193.x

Dienes, Z. (2008). Understanding Psychology As a Science: An Introduction to
Scientific and Statistical Inference. London, England: Palgrave Macmillan.
Available online at: http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/
inference/index.htm.

Dienes, Z. (2011). Bayesian versus orthodox statistics: which side are you on?
Perspect. Psychol. Sci. 6, 274–290. doi: 10.1177/1745691611406920

Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Front.
Psychol. 5:781. doi: 10.3389/fpsyg.2014.00781

Dunn, B. R., Dunn, D. A., Languis, M., and Andrews, D. (1998). The relation
of erp components to complex memory processing. Brain Cogn. 36, 355–376.
doi: 10.1006/brcg.1998.0998
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Rokszin, A. A., Győri-Dani, D., Linnert, S., Krajcsi, A., Tompa, T., and Csifcsák, G.
(2015). The interplay of holistic shape, local feature and color information

in object categorization. Biol. Psychol. 109, 120–131. doi: 10.1016/j.biopsycho.
2015.05.002

Sayim, B., and Cavanagh, P. (2011). What line drawings reveal about the visual
brain. Front. Hum. Neurosci. 5:118. doi: 10.3389/fnhum.2011.00118

Schettino, A., Loeys, T., Delplanque, S., and Pourtois, G. (2011). Brain dynamics
of upstream perceptual processes leading to visual object recognition: a
high density ERP topographic mapping study. NeuroImage 55, 1227–1241.
doi: 10.1016/j.neuroimage.2011.01.009

Scholl, C. A., Jiang, X., Martin, J. G., and Riesenhuber, M. (2014). Time course
of shape and category selectivity revealed by EEG rapid adaptation. J. Cogn.
Neurosci. 26, 408–421. doi: 10.1162/jocn_a_00477

Serre, T. (2016). Models of visual categorization. Wiley Interdiscip. Rev. Cogn. Sci.
7, 197–213. doi: 10.1002/wcs.1385

Smith, J. D. (2002). Exemplar theory’s predicted typicality gradient can be tested
and disconfirmed. Psychol. Sci. 13, 437–442. doi: 10.1111/1467-9280.00477

Smith, J. D., and Minda, J. P. (2002). Distinguishing prototype-based and
exemplar-based processes in dot-pattern category learning. J. Exp. Psychol.
Learn. Mem. Cogn. 28, 800–811. doi: 10.1037/0278-7393.28.4.800

Taminato, T., Miura, N., Sugiura, M., and Kawashima, R. (2014). Neuronal
substrates characterizing two stages in visual object recognition. Neurosci. Res.
89, 61–68. doi: 10.1016/j.neures.2014.09.001

Tanaka, J., Weiskopf, D., and Williams, P. (2001). The role of color in high-level
vision. Trends Cogn. Sci. 5, 211–215. doi: 10.1016/s1364-6613(00)01626-0

Tanaka, J. W., and Presnell, L. M. (1999). Color diagnosticity in object recognition.
Percept. Psychophys. 61, 1140–1153. doi: 10.3758/bf03207619

Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta
Psychol. 135, 77–99. doi: 10.1016/j.actpsy.2010.02.006

Tunney, R. J., and Fernie, G. (2012). Episodic and prototype models of category
learning. Cogn. Process. 13, 41–54. doi: 10.1007/s10339-011-0403-2

Turatto, M., and Galfano, G. (2000). Color, form and luminance capture attention
in visual search. Vision Res. 40, 1639–1643. doi: 10.1016/s0042-6989(00)
00061-4

Ungerleider, L. G., and Bell, A. H. (2011). Uncovering the visual ‘‘alphabet’’:
advances in our understanding of object perception. Vis. Res. 51, 782–799.
doi: 10.1016/j.visres.2010.10.002

Vanrullen, R., and Thorpe, S. J. (2001). The time course of visual processing:
from early perception to decision-making. J. Cogn. Neurosci. 13, 454–461.
doi: 10.1162/08989290152001880

Vogel, E. K., and Luck, S. J. (2000). The visual N1 component as an index of a
discrimination process. Psychophysiology 37, 190–203. doi: 10.1111/1469-8986.
3720190

Walther, D. B., Chai, B., Caddigan, E., Beck, D. M., and Li, F. F. (2011).
Simple line drawings suffice for functional mri decoding of natural scene
categories. Proc. Natl. Acad. Sci. U S A 108, 9661–9666. doi: 10.1073/pnas.10156
66108

Zaki, S. R., and Nosofsky, R. M. (2004). False prototype enhancement effects
in dot pattern categorization. Mem. Cognit. 32, 390–398. doi: 10.3758/bf031
95833

Zaki, S. R., and Nosofsky, R. M. (2007). A high-distortion enhancement effect in
the prototype-learning paradigm: dramatic effects of category learning during
test. Mem. Cognit. 35, 2088–2096. doi: 10.3758/bf03192940

Zhou, X., Fu, Q., Rose, M. R., and Sun, Y. (2019). Which matters more in incidental
category learning: edge-based vs. surface-based features. Front. Psychol. 10:183.
doi: 10.3389/fpsyg.2019.00183

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zhou, Fu and Rose. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Integrative Neuroscience | www.frontiersin.org 13 July 2020 | Volume 14 | Article 36

https://doi.org/10.1111/j.1469-8986.1994.tb02218.x
https://doi.org/10.1111/j.1469-8986.1994.tb02218.x
https://doi.org/10.1016/s1364-6613(00)01545-x
https://doi.org/10.1016/s1364-6613(00)01545-x
https://doi.org/10.1016/j.beproc.2004.03.011
https://doi.org/10.1037/0278-7393.29.4.650
https://doi.org/10.1162/089892906775783642
https://doi.org/10.1038/s41598-017-18347-1
https://doi.org/10.1037/0096-1523.35.1.1
https://doi.org/10.1037/0278-7393.28.5.924
https://doi.org/10.1037/a0028064
https://doi.org/10.1038/nrn1364
https://doi.org/10.1016/s0926-6410(03)00134-4
https://doi.org/10.1016/j.clinph.2007.04.019
https://doi.org/10.1016/s0926-6410(99)00048-8
https://doi.org/10.1073/pnas.95.2.747
https://doi.org/10.1037/0735-7044.113.3.411
https://doi.org/10.1037/0735-7044.113.3.411
https://doi.org/10.1038/81479
https://doi.org/10.1016/j.biopsycho.2015.05.002
https://doi.org/10.1016/j.biopsycho.2015.05.002
https://doi.org/10.3389/fnhum.2011.00118
https://doi.org/10.1016/j.neuroimage.2011.01.009
https://doi.org/10.1162/jocn_a_00477
https://doi.org/10.1002/wcs.1385
https://doi.org/10.1111/1467-9280.00477
https://doi.org/10.1037/0278-7393.28.4.800
https://doi.org/10.1016/j.neures.2014.09.001
https://doi.org/10.1016/s1364-6613(00)01626-0
https://doi.org/10.3758/bf03207619
https://doi.org/10.1016/j.actpsy.2010.02.006
https://doi.org/10.1007/s10339-011-0403-2
https://doi.org/10.1016/s0042-6989(00)00061-4
https://doi.org/10.1016/s0042-6989(00)00061-4
https://doi.org/10.1016/j.visres.2010.10.002
https://doi.org/10.1162/08989290152001880
https://doi.org/10.1111/1469-8986.3720190
https://doi.org/10.1111/1469-8986.3720190
https://doi.org/10.1073/pnas.1015666108
https://doi.org/10.1073/pnas.1015666108
https://doi.org/10.3758/bf03195833
https://doi.org/10.3758/bf03195833
https://doi.org/10.3758/bf03192940
https://doi.org/10.3389/fpsyg.2019.00183
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles

	The Role of Edge-Based and Surface-Based Information in Incidental Category Learning: Evidence From Behavior and Event-Related Potentials
	INTRODUCTION
	EXPERIMENT 1
	Methods
	Participants
	Materials
	Procedure

	Results
	Accuracy in the Test Phase
	Probability Ratings
	Importance Ratings

	Discussion

	EXPERIMENT 2
	Methods
	Participants
	Materials and Procedure
	EEG Recording and Analysis

	Results
	Behavioral Results
	ERP Results


	DISCUSSION
	GENERAL DISCUSSION
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES


