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Abstract: CTGF is upregulated in patients with idiopathic pulmonary fibrosis (IPF), characterized
by the deposition of a pathological extracellular matrix (ECM). Additionally, many omics studies
confirmed that aberrant cellular senescence-associated mitochondria dysfunction and metabolic
reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, alveolar
endothelial cells, fibroblasts, and macrophages). Here, we reviewed the role of the CTGF in IPF
lung cells to mediate anomalous senescence-related metabolic mechanisms that support the fibrotic
environment in IPF.
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1. Introduction

IPF is a chronic, devastating, irreversible lung disease, characterized by injury-induced
alveolar epithelial cell stress, progressive pathogenic myofibroblast differentiation, and
imbalanced macrophage polarization, resulting in ECM deposition. Indeed, although other
cell types undoubtedly contribute significantly, fibroblasts, the alveolar epithelium, and
alveolar macrophages are the most critical drivers involved in the initiation and progression
of pulmonary fibrosis. Cellular interaction between those intrinsically pathological cells,
cell–matrix cross-talk, and abnormal immune activation, contributes to the multifarious
pathogenesis of chronic progressive fibrotic diseases [1].

Normally, in wound repair, the myofibroblast secretes an ECM and undergoes apopto-
sis when the repair process is resolved. In IPF, the extensive accumulation of an immortal,
myofibroblast-produced ECM results in lung stiffness that will maintain dynamic interplay
between the ECM and other resident cells, such as fibroblasts, endothelial cells, pericytes,
and fibrocytes [2]. The ECM affects structural remodeling and contributes to a fibrogenic
niche in progressive fibrosis [3]. The cross-talk between the ECM and lung-resident cells
plays a vital role in initiating fibrosis, which persists in disease progression [4].

Environmental exposure and occupational factors contribute to the risk of developing
IPF. Even though there is no known cause for IPF, and its onset appears to occur sponta-
neously, several pieces of evidence emphasize that alveolar epithelial injury induced by
environmental triggers will result in lung fibrosis [5,6].

The overexpression of a matricellular protein, connective tissue growth factor (CTGF),
is a hallmark of fibrosis in multiple tissues in the mediation of the pro-fibrotic effects
of tumor growth factor-β (TGF-β) [7]. CTGF is a primary mediator of TGF-β-induced
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pulmonary fibrosis. CTGF was found to be overexpressed in fibrotic lesions in major
organs, including the lung, kidney, liver, skin, cardiovascular system, gastrointestinal
system, eye, and gingiva [8]. This review highlights the role of CTGF in regulating cellular
senescence, the metabolic reprogramming–mitochondria dysfunction mediator, and the
pro-fibrotic environment in IPF.

2. Structure, Regulation, and Function of CTGF

CTGF, also known as the cellular communication network 2 (CCN2), is a TGF-β-target
gene and a member of the CCN family of secreted proteins that regulate matricellular
protein [9]. Matricellular proteins are expressed at higher levels during physiological and
pathological processes, with distinct functions that bind to multiple receptors, other growth
factors, and proteases, modulating their activity and mediating cross-talk between the ECM
and cells [10].

CTGF (or CCN2) is a cysteine-rich, heparin-binding protein containing 349 amino
acids, with an apparent molecular weight of 36–38 kDa. CCN family members have
six members of multifunctional proteins, labeled CCN1 to CCN6. The CCN acronym is
composed of the first three proteins members of the family: Cyr61 (cysteine-rich protein
61), CTGF, and NOV (nephroblastoma overexpressed gene) [11]. CCN proteins have a
typical modular structure with four conserved domains, i.e., insulin-like growth factor
(IGF)-binding proteins (IGFBPs) next to a von Willebrand factor type C repeat (VWC) (both
are N-terminal fragments) and thrombospondin type I repeat (TSR) next to a C-terminal
cystine-knot (CT) (forming a C-terminal fragment together) [12]. These domains each have
specific binding partners, including an IGF protein for IGFBP, the TGF-β family for VWC,
specific integrins (α4β1, α5β1, α6β1, and ανβ3) and sulfated glycoconjugates for TSP, and
heparin-sulfate-containing proteoglycans (HSPGs), such as syndecan 4 and perlecan for
CT [13,14].

CTGF expression is regulated at the transcriptional, post-transcriptional, and trans-
lational levels by various physiological and pathological factors [15]. Directly or through
cross-talk with cell surface receptors, such as TGF-β and angiotensin, external stimuli
initiate signaling pathways that recruit transcription factors to the nucleus, inhibiting or
stimulating the expression of CTGF [16]. The critical transcription factors for the regulation
of CTGF expression were found to be SMAD2, Yes-associated protein (YAP)/transcriptional
coactivator with PDZ-binding motif (TAZ)/transcriptional enhancer factor TEF-1 (TEAD),
ETS proto-oncogene 1 (ETS-1), PI3K-AKT, Fox0, and mitogen-activated protein kinase
(MAPK)/Id-1 [17–20].

The biological function of CTGF is that it binds to specific receptors to initiate signal
transduction, directly binding cytokines, regulating their availability and activity, mediat-
ing the matrix turnover by binding to ECM proteins, and regulating the activity of cytokines
and growth factors through modulation cross-talk between signaling pathways [16]. CTGF
is expressed in mesenchymal cell lineage and mediates physiological tissue regeneration
and pathological fibrosis via ECM deposition, fibroblast proliferation, matrix production,
angiogenesis, and granulation tissue formation [15,21]. Depending upon the microenvi-
ronment condition and cell type, CTGF is involved in several pathologic processes such as
carcinogenesis and tumor development [22], diabetes [23], neuromuscular disorders [24,25],
systemic sclerosis [26], ocular diseases [27], cardiac fibrosis [28,29], renal fibrosis [30], liver
fibrosis [31], and lung fibrosis [32]. The regulation of CTGF is described in Figure 1.
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leading to apoptosis resistance in macrophages and fibroblasts. Conversely, accumulation of mtROS 
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Figure 1. (A) Regulation of CTGF. CTGF expression is mainly regulated at the transcriptional level by
various stimuli factors either directly or through cross-talk with cell surface receptors (TGF-β) that
induce signaling pathways that recruit transcription factors (YAP/TAZ/TEAD, SMAD2, Ets-1, PI3K-
AKT, and Fox0) to the nucleus, inhibiting or stimulating the expression of CTGF; (B) CTGF regulates
aberrant metabolic responses associated with senescence of alveolar epithelial cells, endothelial cells,
fibroblasts, and alveolar macrophages. As an essential downstream mediator of TGF-β1-induced
mitophagy, CTGF induces mtROS and increases glycolysis, lactate, and glutaminolysis, leading to
apoptosis resistance in macrophages and fibroblasts. Conversely, accumulation of mtROS inhibits
mitophagy to promote alveolar epithelial apoptosis; (C) CTGF maintains pro-fibrotic environment.
Injured AECII secretes CTGF via autocrine and paracrine, inducing alveolar epithelial cells undergo-
ing EMT to promote fibroblasts’ migration and proliferation, regulating myofibroblast differentiation,
and driving macrophage polarization, resulting in ECM deposition and lung fibrosis.

3. CTGF Maintains the Pro-Fibrotic Environment in IPF

A recent hypothesis in the understanding of the pathogenesis of IPF stated that
aberrant epithelial and epithelial–mesenchymal cross-talk responses to chronic alveolar ep-
ithelial injury might induce fibrosis independently of inflammatory events [33,34]. Alveolar
epithelial injury provides an epithelium-associated pro-fibrotic environment. Recurrent in-
juries lead to epithelial apoptosis and drive the aberrant activation of epithelial cells to trans-
differentiate into fibroblast epithelial–mesenchymal transition (EMT) [35–37]. There are
phenotype changes characterized by downregulated epithelial markers, such as E-cadherin,
whereas fibroblast-specific genes, such as α-smooth muscle actin (α-SMA), N-cadherin,
fibroblast-specific protein 1 (FSP-1), and type I collagen, are upregulated [38]. Myofibrob-
lasts can also modulate epithelial apoptosis, preserving a pro-fibrotic environment [39].
As a result, bidirectional EMT cross-talk assists the pro-fibrogenic positive feedback loop,
resulting in fibrosis progression rather than wound resolution [40]. AECs become “vul-
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nerable and sensitive to apoptosis,” but myofibroblasts become “apoptosis-resistant and
immortal” [41].

Usual interstitial pneumonia (UIP) is a histopathologic and radiologic hallmark pat-
tern for IPF. It is characterized by variations in temporospatial heterogeneity fibrosis, the
accumulation of fibroblasts (fibroblast foci), and subpleural and paraseptal honeycomb-
ing [42]. Vanstapel et al. showed high expression of CTGF in fibrotic regions of restrictive
allograft syndrome (RAS) lungs [43]. Furthermore, CTGF was found to be upregulated
in cultured fibroblasts [44], injured epithelial cells [45], bronchoalveolar lavage and lung
tissue [43], and plasma [46]. CTGF is upregulated in patients with IPF as well as in pro-
fibrotic mediators and pro-fibrotic environments that contribute to fibrogenesis [47]. CTGF
likely maintains aberrant responses of alveolar epithelial cells, fibroblasts, and alveolar
macrophages in the development and progression of IPF (Figure 1). Many studies have
reported that CTGF plays direct and indirect roles in accelerated aging, mitochondria
dysfunction, and metabolic reprogramming.

3.1. Activated Alveolar Epithelial Cells Initiate a Cycle of Fibrosis through CTGF

The precise mechanism of how CTGF-related activated epithelial cells induce fibro-
genesis remains poorly defined. Following environmental injury, alveolar epithelial cells
trigger their apoptosis and become active by secreting pro-fibrotic factors TGF-β to attract
fibroblasts [48]. Type II alveolar epithelial cells (AECII) undergo EMT induced by EGFR–
RAS–ERK signaling via zinc finger E-box-binding homeobox 1 (ZEB1)–tissue plasminogen
activator (tPA), which augments fibroblast recruitment and activation [49]. AECII and
activated fibroblasts secrete CTGF via autocrine and paracrine secretion, which contributes
to the capacity of injured alveolar epithelial cells undergoing EMT to promote fibroblasts’
migration and proliferation [50,51]. The knockdown of the CTGF gene was shown to
attenuate inflammatory responses induced by silica in bronchial epithelial cells [52].

Kasai et al. showed that CTGF might play a role in mediating the EMT process initiated
by TGF-β1 [53]. Conversely, Shi et al. did not find evidence of the involvement of CTGF in
the process of EMT induction via TGF-β1 [54]. However, a recent study proved that the
effects of paracrine in secreted CTGF play an essential role in the EMT-like transition of
epithelial cells into mesenchymal cells [55]. Therefore, the deletion of CTGF in mice lung
epithelial cells attenuated the fibrotic response to bleomycin [51].

CTGF-induced EMT requires complex multiple signaling pathways to augment fibrob-
last migration and activation. Xu et al. demonstrated that CTGF contributes to fibroblast
activation and matrix protein accumulation via phosphoinositide 3-kinase (PI3K) [45].
Integrin-linked kinase (ILK)-mediated CTGF was shown to induce EMT in AECII cells [56].
Cheng et al. reported that hypoxia-induced CTGF generated α-SMA and collagen ex-
pression via the MAPK–MAPK kinase (MEK)–extracellular-signal-regulated kinase (ERK)
pathway [57]. Even though the role of ERK is unclear, the activation of the ERK signaling
pathway in TGF-β1-induced EMT is crucial [58]. In addition, TGF-β-induced CTGF in-
duces EMT-like changes in the adjacent epithelial cells through ERK, ADAM17, RSK1, and
C–EBPβ pathways [59]. Therefore, the inhibition of the MAPK–MEK–ERK pathway might
prevent the progression of pulmonary fibrosis [60]. The administration of CTGF was also
followed by upregulated tenascin C, an element involved in modulating ECM integrity
and cell physiology [61,62].

3.2. CTGF Stimulates the Differentiation of Lung Fibroblasts

Fibroblasts are tissue mesenchymal cells that are fundamental in establishing and
maintaining an ECM. Fibroblast migration and activation, followed by myofibroblast
differentiation, is the central pathogenesis of pulmonary fibrosis [63,64]. TGF-β regulates
the mechanism of myofibroblast differentiation and connective tissue formation during
physiological repairment and fibrotic processes. CTGF acts as a downstream mediator
of TGF-β action, but CTGF does not act as a direct mediator to induce myofibroblast
differentiation and collagen matrix contraction [65,66]. Several studies reported that CTGF
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triggered fibroblast proliferation and migration and myofibroblast differentiation [67–69].
The deletion of CTGF reduced ECM production, characterized by the low expression of
COL1α2, COL3, and EDA-fibronectin mRNA [70].

As described previously, myofibroblasts may enhance the apoptosis of AECII. Al-
though the primary source of oxidative stress is inflammatory cells, myofibroblasts generate
reactive oxygen species (ROS) [71]. Shibata et al. demonstrated that secreted protein acidic
and rich in cysteine (SPARC) promotes hydrogen peroxide (H2O2) secretion by TGF-β,
leading to epithelial apoptosis [72]. Previously, Wang et al. demonstrated that the expres-
sion of CTGF and SPARC were increased in fibroblasts; therefore, SPARC might regulate
the collagen expression by affecting the expression of CTGF [73]. Next, SPARC and CTGF
seemed to be involved in the same biological pathway that upregulated collagen expression
in mice fibroblasts [74].

3.3. CTGF Modulates Dysfunction of Macrophage Polarization

Macrophage homeostasis is needed in the early phases of injury and the resolving
phase. In IPF, there is an aberrant wound-healing process following an alveolar epithelial in-
jury that involves the alteration of the polarization of M1 macrophages (pro-inflammatory)
and M2 macrophages (anti-inflammatory) [75]. The continuous release of various pro-
inflammatory cytokines and chemokines (M1 phenotypes) will preserve the fibrotic envi-
ronment and induce the secretion of anti-inflammatory/pro-fibrotic cytokines (M2 pheno-
types), leading to aberrant wound healing and tissue repair [76].

CTGF-associated macrophages drive polarization. CTGF was shown to be involved
in the mechanism of an increase in M1 and a decrease in M2 macrophage markers in the
pancreas [77]. Wang et al. also proved that CTGF regulates the polarization of macrophages
in hepatocellular cells [78]. Furthermore, Zhang et al. revealed that the secretion of
CTGF by M2 macrophages promotes fibroblast proliferation, migration, adhesion, and
ECM production via activating the AKT–ERK1/2–STAT3 pathway in lung fibrosis [79].
Therefore, a CTGF blockade abolished M2-polarized macrophage influx [80].

3.4. CTGF Increases Endothelial Growth

Although the mechanisms are not entirely clear, a study reported the possibility of en-
dothelial cells being a source of myofibroblasts and undergoing endothelial–mesenchymal
transition (EndoMT) [81]. The increased proliferation of endothelial cells was followed
by fiber formation and ECM deposition via sterol regulatory element-binding protein
2 (SREBP2) [82]. Moreover, protein C3ar1 and galectin-3 induced EndoMT in vivo and
in vitro [83].

CTGF regulated endothelial cell function and angiogenesis under certain patho-
logical conditions [84,85]. CTGF interacted directly with vascular endothelial growth
factor (VEGF) in driving the development of fibrosis and associated lymphangiogene-
sis/angiogenesis [86,87]. Kato et al. found that the level of CTGF protein was higher in
bleomycin-treated mouse lungs than those in saline-treated lungs [88]. It was revealed
that CTGF helps the transition of endothelial cells in EndoMT through direct and direct
interaction with other pro-fibrotic proteins via hypoxia or inflammatory factors.

3.5. Fibrocyte Differentiation Involved in CTGF

Fibrocytes are the precursors of fibroblasts. The expression of fibrocytes in patients
with IPF was high, but the expression of lung fibrocytes was significantly higher compared
with circulating fibrocytes [89]. The association between the increased number of circulating
fibrocytes and the mechanism of fibrocyte differentiation remains unclear.

However, several studies support the involvement of CTGF in fibrocyte differentiation.
CTGF contributes to fibrocyte proliferation and enhances fibrocyte differentiation into
a myofibroblast phenotype through SMAD2 and ETA receptor (ETAR) [90,91]. Under
hypoxia conditions, CTGF was shown to induce the expression of circulating fibrocytes
through hypoxia-inducible factor-1α (HIF-1α) and histone deacetylase 7 (HDAC7) [92].
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4. CTGF Drives Senescence in IPF

Aging is one of the most critical risk factors, and many of the hallmarks of the aging
lung (genomic instability, epigenetic alterations, telomere deterioration, loss of proteosta-
sis, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem
cell tiredness, modified intercellular communication, and ECM dysregulation) have been
proposed as essential triggers for the development of IPF [93]. Recurrent microinjury in
aging epithelial cells in genetically susceptible individuals leads to the aberrant activation
of fibroblasts, resulting in the accumulation of ECM and fibrosis [94].

Both alveolar epithelial and fibroblast senescence trigger development and drive the
progression of IPF. Lung fibroblast senescence was shown to reduce proliferation, increase
migration, and induce cell-cycle arrest in alveolar epithelial cells [95]. Yao et al. recently
demonstrated that AECII cells isolated from IPF lung tissue exhibit characteristic transcrip-
tomic features of cellular senescence and promote progressive fibrosis [96]. In turn, specific
molecular-signaling-pathway-associated senescent fibroblasts promote the occurrence and
development of IPF [97]. Signal transducer and activator of transcription 3 (STAT3) activa-
tion pathways were involved in lung-fibrosis-driven fibroblast senescence [98]. Therefore,
the clearance of cellular (fibroblast, epithelial, and endothelial) senescence improved lung
function and fibrosis resolution [99].

Interestingly, the mitochondrial dysfunction of different cells shows different charac-
teristics in pulmonary fibrosis. A schematic of how CTGF drives senescence-associated
mitochondria dysfunction and metabolic dysregulation is depicted in Figure 1.

4.1. CTGF Influences Cellular Mitochondria Bioenergetics

Mitochondria dysfunction and metabolic dysregulations are pathognomonic in IPF.
The maintenance failure of mitochondrial quality control through three different mecha-
nisms: (1) mitochondrial biogenesis; (2) mitochondrial dynamics (fusion and fission); and
(3) mitophagy results in declined adenosine triphosphate (ATP) production, upregulated
endoplasmic reticulum (ER) stress, and increased mitochondrial ROS (mtROS) [100]. Mi-
tochondria dysfunction and metabolic reprogramming were identified in different IPF
lung cells (alveolar epithelial cells, fibroblasts, and macrophages) to promote low resilience
and increased susceptibility to the activation of pro-fibrotic responses [101]. Mitophagy
or the selective degradation of mitochondria via autophagy, essential for the clearance of
dysfunctional mitochondria, is downregulated in IPF [102].

Mitochondrial fusion proteins, such as mitofusin1 (MFN1) and mitofusin2 (MFN2),
regulate surfactant lipids in AECII. However, the role of mitofusin is controversial. MFN2
was linked to the high production of ROS [103]. Meanwhile, MFN1- and MFN2-deficient
AEC2 cells were more susceptible to mitochondrial damage, leading to lung fibrosis [104].
Additionally, the inhibition of ER-stress-modulated MFN2, through the repression of the
PERK–ATF4 pathway, attenuated fibrosis, characterized by decreased protein expressions
of CTGF, TGF-β, and α-SMA [105]. Moreover, ER stress inhibition attenuated the increases
in α-SMA, CTGF, and TGF-β expressions and apoptotic markers [106].

4.1.1. Alveolar Epithelial Mitochondria Dysfunction

AECII cells have the highest number of mitochondria for the production of ATP.
Evidence in AECII emphysema indicated that high mitochondrial superoxide/mtROS
production leads to reduced mitochondrial fusion, contributing to mitochondrial dam-
age [107]. The elevation of mtROS-induced mitochondrial dynamic imbalance was shown
to trigger impaired mitophagy alveolar cells, and the release of ER stress was shown to lead
to epithelial apoptosis via PTEN-induced putative kinase 1 (PINK1) [108]. Furthermore,
AECII releases senescence-associated secretory phenotype (SASP) protein with pro-fibrotic
effects [96,109].

CTGF is one of the SASP factors. AECII cells augmented the expression of CTGF in
bleomycin-induced lung fibrosis [110]. The expression of CTGF was significantly elevated
on the mRNA level, suggesting epithelial senescence in kidney fibrosis [111]. Furthermore,
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CTGF was shown to decrease mitochondrial metabolism, resulting in ER-stress-associated
pro-fibrotic effects in cardiovascular fibrosis [112].

4.1.2. Lung Fibroblast Mitochondria Dysfunction

In contrast with AECII, the impairment of mitochondrial control in fibrotic lung fibrob-
lasts leads to apoptosis resistance. Increased mtROS in fibroblasts promotes the damage
of mtDNA through TGF-β1-mediated NADPH oxidase 4 (NOX4) signaling, resulting in
reduced mitochondrial biogenesis via downregulated Nrf2 expression, leading to reduced
mitophagy and the promotion of apoptosis resistance [113]. CTGF induces fibroblast
senescence and associated anti-fibrotic phenotypes via p53 and p16INK4a [114]. Yang et al.
revealed the involvement of CTGF in TGF-β1-mediated NOX4 signaling [115].

The expression of CTGF is upregulated in fibroblast-related senescence. Kim et al.
firstly demonstrated that CTGF is a novel biomarker protein of cellular senescence in
fibroblasts [116]. There was an increased secretion of TGF-β1 and CTGF in response to a
senescent fibroblast-derived ECM [117]. The overexpression of CTGF in fibroblasts induced
the upregulation of p21 (CIp1/WAF1), Cyclin D1, and p16Ink4A, leading to autophagy and
senescence [118].

4.1.3. Macrophage Mitochondria Dysfunction

In addition to fibroblasts, IPF alveolar macrophages also drive apoptosis resistance.
A study that used IPF specimens and mice models revealed that the activation of Akt1-
mediated ROS in alveolar macrophages resulted in mitophagy and apoptosis resistance [119].
Augmented mitochondrial biogenesis was also generated via the upregulation of peroxisome
proliferator-activated receptor-γ-coactivator 1-α (PGC-1α), Jumonji domain-containing 3
(Jmjd3), and mitochondrial transcription factor A (TFAM) [113]. In addition, the metabolic
reprogramming of macrophage mitochondria regulates the switching of M1 macrophages
to M2 macrophages in lung fibrosis [120]. Diminished mitochondrial quality control results
in augmented mitochondrial dysfunction, increases ROS, which leads to decreased ATP
production, promotes intrinsic apoptosis, and lung macrophages polarize to pro-fibrotic
phenotypes [113]. The pro-fibrotic M2 lung alveolar macrophages were not dependent on
fatty acid oxidation and synthesis or lipolysis but on glycolysis [121].

However, the precise role of CTGF in cellular mitochondria bioenergetics is not fully
understood. Indeed, CTGF plays a supporting role as an essential downstream mediator of
TGF-β1-induced mitophagy. The interplay between IPF mitochondria-produced ROS and
CTGF induces glycolysis and mitophagy, leading to apoptosis resistance in macrophages
and fibroblasts. By contrast, the accumulation of mtROS inhibits mitophagy to promote
alveolar epithelial apoptosis.

4.2. CTGF Regulates Cellular Metabolic Dysregulation

Metabolic dysregulation is a hallmark of fibrosis and function as a critical contributor
to the pathogenesis of the disease. The metabolism of glucose, lipid, glutamine, and other
fuel substrates, affects proliferation, differentiation, apoptosis, autophagy, senescence, and
inflammation [122]. The aberrant metabolism regulation in IPF involved the degradation
of adenosine triphosphate (ATP), the impairment of glutathione (GSH)/upregulated gluta-
mate levels, an imbalanced proline–ornithine ratio, increased glycolysis, an imbalanced
arginine metabolism, decreased heme and biliverdin levels, a decreased tricarboxylic acid
(TCA) cycle, and a downregulated sphingolipid metabolism [123,124].

Multiple cell types, including alveolar epithelial cells, fibroblasts, and macrophages,
undergo the dysregulation of cellular metabolism. Environmental injury to AECII in a
genetically predisposed host induces an aberrant cellular metabolism response within
those cells, contributing to the development of pulmonary fibrosis. Fatty-acid-induced ER
triggered AECII to become more vulnerable to apoptosis [125]. Dysregulated metabolic
pathways of activated IPF fibroblasts result in upregulated glycolysis, lactate production,
and increased glutamine metabolism [126]. In addition, macrophages generate ROS, use
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aerobic glycolysis to generate cytokines, and employ mitochondrial respiration to maintain
inflammation, leading to fibrosis [127].

4.2.1. Glucose Metabolism

Glucose metabolism deviation is essential for the development of fibrosis. Usually,
the final process of glycolysis for the utilization of acetyl-CoA in mitochondria is followed
by the conversion of pyruvate to lactic acid in low-oxygen-tension conditions. However,
metabolic adaptation in cancer cells was shown to shift mitochondrial oxidative phos-
phorylation to aerobic glycolysis, which is known as the Warburg phenomenon [128].
Interestingly, the Warburg effect plays a crucial role in non-tumor diseases such as fibro-
sis. The metabolic shift illustrates the increased glucose uptake in the development of
lung fibrosis.

Aerobic glycolysis is an essential step in the initiation of the fibrotic process. A
study demonstrated that reprogramming glucose metabolism, characterized by the el-
evation of the expression of glycolytic enzymes (6-phosphofructo-2-kinase/fructose-2,
6-biphosphatase 3 (PFKFB3), and HIF-1α) is required for the initiation and sustainment
of myofibroblast differentiation [129]. The overexpression of CTGF in fibroblasts induces
a “pseudo-hypoxic” state in mediating glycolysis via hypoxia-inducible factor-1α (HIF-
1α) [118]. In turn, aerobic glycolysis was shown to sustain the YAP–TAZ signaling pathway,
one of the most important transcription factors of CTGF [130]. Aerobic glycolysis and lac-
tate production are prominent features of myofibroblast differentiation regulated by TGF-β,
SMAD, and CTGF [131]. Hypoxia-induced CTGF expression contributes to pulmonary
fibrosis via the mitogen-activated kinase–MEK kinase 1–extracellular-signal-regulated ki-
nase 1–GLI 1–GLI2 and activator protein-1 (MEKK1–MEK1–ERK1–GLI 1–GLI 2 and AP-1)
signaling pathways [57]. There is a mechanical connection between CTGF and enhanced
aerobic glycolysis.

Furthermore, areas of fibroblastic foci in IPF are not just “passive” scar tissue but
represent the “active” regions and the source of the upregulation of glycolytic pathways,
resulting in the transformation of myofibroblast and ECM deposition [57]. Fibrotic foci in
the honeycomb area are considered sites of ongoing lung injury with fibroproliferation,
and fibroblasts and myofibroblasts are responsible for ECM deposition [132]. A high rate
of aerobic glycolysis in fibrotic foci would influence myofibroblast differentiation and ECM
production [133]. Emerging evidence revealed that the expression of CTGF was high and
was involved in the appearance of the fibroblastic foci [134]. Moreover, glucose uptake
in fibrotic foci was associated with glucose transporter-1 (GLUT-1) [133,134]. GLUT-1
mediates mesangial cell glucose flux, which leads to the activation of angiotensin II (Ang
II), TGF-β, CTGF, and VEGF [135]. CTGF binds to integrin αvβ3, activating the FAK–
Src–NF-κB p65 signaling axis, which results in the upregulation of GLUT3-mediated cell
proliferation, migration, and glucose metabolism [136].

CTGF expression is an essential mediator of ECM protein expression in response to
hyperglycemia [137]. Under a hyperglycemic environment, potent pro-fibrotic factors such
as TGF-β and CTGF will modulate ECM production [138]. TGF-β1 and CTGF were also
elevated in a mouse model of dermal fibrosis induced by the injection of bleomycin [139].
TGF-β signaling via CTGF enhances the glycolysis rate in human lung fibroblasts. TGF-
β1 treatment increases glycolysis, glycolytic capacity, and oxygen consumption in WI-38
human lung fibroblasts [140].

Mesangial cells, which may acquire myofibroblast characteristics, were shown to
increase the expression of TGF-β1 and CTGF when exposed to high levels of glucose [141].
Indeed, the expression of TGF-β1, SMAD3, SMAD7, and CTGF was upregulated signifi-
cantly in high glucose concentrations of kidney fibrosis [142].

The overexpression of CTGF in IPF lungs is associated with the upregulation of aerobic
glycolysis in cells in driving myofibroblast differentiation. Additionally, CTGF regulates
glucose uptake in fibrotic foci as a fuel to maintain ECM accumulation and fibrotic lesions.
The IPF lung resident cell complexity reflected metabolic reprogramming upon fibrosis. The
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fibroblast changes tend to benefit the upregulation of glycolytic pathways, while alveolar
epithelial cells shift towards a shift in lipid metabolism [101]. Indeed, mitochondrial fusion
and lipid metabolism are tightly linked to regulating cell-injury-associated AEC2 aberrant
response [104].

4.2.2. Lipid Metabolism

The majority of lipids stored in the human body are triglycerides, cholesterol, free fatty
acids (FFA), and plasma membranes. The dysregulation of the lipid and FFA metabolism
plays an essential role in the pathogenesis of IPF. However, its precise role in the pathol-
ogy of IPF remains unclear. Alterations in lipid metabolism have been identified in IPF
patients and animal models of lung fibrosis. Lipid metabolism is associated with glucose
metabolism, as acetyl-CoA can be converted into lipids. A metabolomic study in IPF lung
tissues showed an accumulation of FFA (palmitoleate, caproate, and myristate) and de-
clined carnitine shuttle (palmitoylcarnitine, hexanoylcarnitine, and octanoylcarnitine) [124].
Additionally, a lipidomic study in IPF patients found the representation of eight types of
lipid species (fatty acid, glycerolipid, saccharolipid, polyketide, sphingolipid, sterol lipids,
prenol lipid, and glycerophospholipid) in IPF plasma [143].

Aberrations to the metabolism of lysophospholipids contribute to pulmonary fibrosis.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are bioactive lysophos-
pholipids that are involved in the differentiation of fibroblasts to myofibroblasts and EMT
pathways [144]. Additionally, LPA and SP1 promote TGF-β activation, prevent apoptosis
in fibroblasts, induce epithelial apoptosis, and increase vascular permeability [104].

The role of CTGF in lysophospholipid-driven fibrosis is enigmatic. CTGF was shown
to be required for S1P-induced endothelial cell migration and angiogenesis [145]. Therefore,
the inhibition of S1P induces the impaired expression of CTGF, leading to the amelioration
of fibrosis [146]. The knockout of S1P3 receptor signaling significantly decreased CTGF
levels and attenuated inflammation and fibrosis in a bleomycin-induced lung injury mice
model [147]. There are various ways that the CTGF-mediated lysophospholipids signaling
pathway is induced by several transcription activators. S1P agonists via receptors S1PR1
and S1PR3 were shown to cause a robust stimulation of ECM synthesis and expression of
CTGF in normal human lung fibroblasts [148]. Cheng et al. showed that S1P promoted hep-
atocellular carcinoma (HCC) cell proliferation by upregulating CTGF expression through
S1P2-mediated YAP activation [149]. TGF-β2-dependent upregulation requires S1P5 to
induce pro-fibrotic CTGF [150]. S1P induced pro-fibrotic marker gene expression, including
CTGF, via SMAD-independent pathways [151].

Furthermore, the newest study in this field demonstrated that the SphK1–S1P sig-
naling axis is emerging as a critical player in developing IPF through the Hippo–YAP1
pathway [152]. The activation of LPA1 on mesothelial cells induced the expression of CTGF,
driving fibroblast proliferation [153]. In response to LPA, CTGF was involved in the cre-
ation of ECM-produced fibroblasts via the integrin–focal adhesion kinase (FAK) signaling
pathway [154]. Again, Yu et al. demonstrated that LPA augmented CTGF expression in
osteoblasts via the activation of protein kinase C (PKC) and protein kinase A (PKA) [155].
The signaling molecules of CTGF in cross-talk and integration with transcription factors
rely on the cell type and the physiological or pathological process involved.

The role of FFA is not well-described yet, although the levels of long-chain and
medium-chain fatty acids are increased in IPF patients. Alterations in the FFA metabolism
contribute to epithelial ER stress, apoptosis, EMT, secretion with pro-fibrotic signaling,
and M2 polarization [156]. The elevation levels of FFAs may affect pulmonary fibrosis by
regulating the TGF-β1-induced activation and proliferation of fibroblasts [157]. Through
an in vivo study, Deng et al. demonstrated the role of CTGF in mediating YAP1 and
suppressing FFA-induced apoptosis [158]. Previously, high-glucose and palmitate-elevated
CTGF mRNA led to induced apoptosis and/or hypertrophy in cardiac myocytes via
tyrosine kinase A (TrkA) [159]. It has been shown that CTGF could act as the downstream
factor of several transcription factors.
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Apart from lipid and fatty acids, lipid mediators are also involved in the pathogenesis
of IPF by regulating the exhibition of pro- and anti-fibrotic effects in IPF. Lipid mediators are
a class of bioactive lipids that are derived from phospholipids, sphingolipids, and polyun-
saturated fatty acids and can be divided into pro-inflammatory/anti-fibrotic lipid mediators
(such as prostaglandins and leukotrienes) and specialized pro-resolving/pro-fibrotic lipid
mediators (SPMs) (including lipoxins, resolvins, maresins, and protectins) [160]. Regardless
of the cell types involved, lipid mediators play roles in the activation of myofibroblasts, the
deposition of ECM, and the remodeling of lung architecture and fibrosis [161].

However, the role of prostaglandin-driven fibrosis is a mystery. The expression
of prostaglandin E2 (PGE2) in the BAL and lung tissue of IPF patients was low [162].
Additionally, PGE2 blocked TGFβ1-stimulated CTGF through c-Jun NH2-terminal kinase
(JNK) [163] and Akt and Ca2+/calmodulin-dependent protein kinase-II (CaMK-II) [164].
By contrast, prostaglandin F2α (PGF2α) stimulated fibroblasts’ proliferation and collagen
production independently of TGFβ1-stimulated CTGF [165].

4.2.3. Glutamine Metabolism

The exact role of glutamine in myofibroblasts is unclear. However, emerging evidence
shows aberrant glutamate, glutamine, and aspartate metabolisms in IPF. Enhanced gly-
colytic flux alone cannot fulfill the high metabolic demands of fibroblasts; hence, high
levels of glutamine ensure sources of carbon and nitrogen to support cell growth [166].
The metabolic process by which glutamine is converted to glutamate by glutaminase
(glutaminolysis) is required for TGF-β-induced collagen protein production in lung fibrob-
lasts [167]. Glutaminolysis sustains the proliferation of the myofibroblast cell mass needed
for energy metabolism and anabolism via YAP signaling [168]. The CTGF pathway was
shown to be involved in glutamine regulation via glutamine synthetase (GS) [169].

In addition to cell proliferation, glutamine–glutamate metabolism regulates cell differ-
entiation and apoptosis. The glutamine metabolism was shown to be involved in CTGF-
induced cell differentiation in neural and retina cells [170,171]. Weiss et al. demonstrated
that the glutamatergic synapse controlled apoptosis and the degeneration of different
retinal cells induced by CTGF [172]. Furthermore, glutaminolysis promotes the apoptosis
resistance of IPF fibroblasts through the epigenetic regulation of XIAP and survival [173].

4.3. CTGF Promotes Mitochondria–Metabolic-Dysfunction-Related Cellular Senescence

It is already known that both cellular senescence and mitochondrial dysfunction have
been defined as classical hallmarks of the aging process. However, their relationship in the
development of IPF has not been made clear. Mounting evidence shows that mitochondrial
dysfunction includes increasing ROS production, decreasing mitochondrial biogenesis, and
impairing mitochondrial mitophagy, potentially impacting fibrotic processes. In addition,
the cellular-senescence-associated apoptosis paradox contributes to the development of
pulmonary fibrosis. Wiley et al. showed that mitochondrial dysfunction might induce
cellular senescence via mitochondrial-dysfunction-associated senescence (MiDAS) [174].
Furthermore, mitochondria in senescent cells release damage-associated molecular patterns
(DAMPs), which could promote the SASP [175].

CTGF is a SASP factor. We assume that CTGF may bridge mitochondrial-dysfunction-
associated cellular senescence in IPF. Senescent IPF lung epithelial cells, fibroblasts, and
myofibroblasts secrete CTGF as a pro-inflammatory SASP to induce senescence-associated
fibrotic effects in surrounding cells. In epithelial cells, SASP is associated with gradual
apoptotic cell loss in both the initiation and progression of fibrosis [96]. A recent study
also showed that a CTGF-associated aberrant ECM contributes to fibrosis by inducing
senescence [176]. Additionally, the overexpression of CTGF-induced cellular senescence
in human airway epithelial cells was associated with the severity of airway obstruction
among patients with smoking-induced COPD [177].

Moreover, the metabolic dysregulation of glucose, lipid, and glutamate is associated
with senescence [178]. The overexpression of CTGF in IPF lungs is associated with the
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upregulation of aerobic glycolysis, aberrations to the metabolism of lysophospholipids,
and glutaminolysis. Capparelli et al. demonstrated that the overexpression of CTGF
was associated with the induction of glycolysis, mitophagy, and senescence phenotypes.
A schematic of CTGF-regulated metabolic dysregulation and mitochondria dysfunction,
which contribute to cellular senescence and the subsequent development of diseases, is
depicted in Figure 2.
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Figure 2. CTGF-regulated metabolic dysregulation and mitochondria dysfunction contribute to
cellular senescence. CTGF drives metabolic- and mitochondria-dysfunction-associated mitophagy
and contributes to cellular senescence. Briefly, CTGF expression in IPF cells leads to ROS production,
metabolism disturbance, and paradoxical apoptosis, leading to mitophagy induction. Autophagy
drives the onset of senescence. Senescent IPF lung epithelial cells, fibroblasts, and myofibroblasts se-
crete CTGF as pro-inflammatory SASP to induce senescence-associated fibrotic effects in surrounding
cells via paracrine and autocrine signaling. Oxidative stress, autophagy, and senescence may also
contribute to CTGF-induced fibrosis and ECM remodeling.

5. Conclusions and Future Perspectives

While research on remarkably different biological processes that might initiate in-
flammation and sustain pulmonary fibrosis is developing, much more work is required to
hamper the progressivity of this disease. There is no definite cure for IPF. Two anti-fibrotic
drugs that can delay the decline in lung function and improve quality of life have been
approved to treat IPF—namely, nintedanib and pirfenidone. The pro-fibrotic properties of
CTGF describe its ability to strengthen fibrogenic responses to other factors, such as TGF-β.
Despite the complex signaling of CTGF that depends on the cell type and intricate nature
of lung fibrosis, targeting CTGF regulation could be regarded as a targeted therapeutic for
IPF. Strategies for hindering the fibrogenic actions of CTGF could be applied via pharmaco-
logical inhibitors, neutralizing antibodies, antisense oligonucleotides, or small interfering
RNA (siRNA) [179].

The administration of FG-3019 (pamrevlumab), an anti-CTGF monoclonal antibody,
was shown to suppress TGF-β1-induced fibroblast proliferation and myofibroblast differ-
entiation and mesothelial to mesenchymal transition in IPF [180]. A phase 2, randomized,
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double-blind, placebo-controlled PRAISE trial for pamrevlumab, an anti-connective tissue
growth factor therapy for idiopathic pulmonary fibrosis, showed optimal tolerability and
comparable efficacy to current anti-fibrotic drugs and a reduction in the progression of
fibrotic changes [181]. Discovering new pathways, including epigenetic mechanisms, such
as the micro-RNA (mi-RNA) family, are essential in regulating CTGF and could be an
attractive target treatment for IPF.

As this review highlights, CTGF drives the mechanism of aberrant response associated
with an injury that may act directly or indirectly on matrix metabolism. The metabolic
plasticity of resident cells allows metabolic reprogramming to maintain the high demands
of the fibrotic process. Alveolar epithelial/fibroblast-derived CTGF acts as a mediator
in linking signaling pathways of bidirectional EMT cross-talk and promotes fibroblasts’
proliferation. It has been demonstrated that CTGF regulates ROS production and alters
mitophagy, which drives an imbalance of mitochondrial dynamics and apoptosis. The loss
of mitochondrial control causes AECs to become sensitive to apoptosis, but myofibroblasts
become apoptosis-resistant. Additionally, the high expression of CTGF is related to the
dysregulation of macrophage polarization.

Furthermore, specific signaling pathways in senescence-associated mitochondrial
dysfunction involve CTGF stimulation that alters cellular metabolism. In cellular senes-
cence, large amounts of CTGF production might provoke cellular metabolic-dysregulation-
associated fibrosis. CTGF regulates glucose uptake in fibrotic foci to maintain ECM accu-
mulation and fibrotic lesions, while alveolar epithelial cells, which are responsible for lipid
metabolism and surfactant production, change lipid metabolism. In summary, CTGF is one
of the best-studied pro-fibrotic factors that mediate other growth factors in the pathogenesis
of pulmonary fibrosis in a downstream manner. CTGF precedes a signaling pathway from
external and/or internal stimuli that mediate metabolic dysregulation and mitochondria
dysfunction, which contributes to cellular senescence and leads to fibrotic processes.
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