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Abstract

The difficulties specialized phytophagous insects face in finding habitats with an appropriate host should constrain their
dispersal. Within the concept of metacommunities, this leads to the prediction that host-plant specialists should sort into
local assemblages according to the local environmental conditions, i.e. habitat conditions, whereas assemblages of host-
plant generalists should depend also on regional processes. Our study aimed at ranking the importance of local
environmental factors and species composition of the vegetation for predicting the species composition of phytophagous
moth assemblages with either a narrow or a broad host range. Our database consists of 351,506 specimens representing
820 species of nocturnal Macrolepidoptera sampled between 1980 and 2006 using light traps in 96 strict forest reserves in
southern Germany. Species were grouped as specialists or generalists according to the food plants of the larvae; specialists
use host plants belonging to one genus. We used predictive canonical correspondence and co-correspondence analyses to
rank the importance of local environmental factors, the species composition of the vegetation and the role of host plants for
predicting the species composition of host-plant specialists and generalists. The cross-validatory fit for predicting the
species composition of phytophagous moths was higher for host-plant specialists than for host-plant generalists using
environmental factors as well as the composition of the vegetation. As expected for host-plant specialists, the species
composition of the vegetation was a better predictor of the composition of these assemblages than the environmental
variables. But surprisingly, this difference for specialized insects was not due to the occurrence of their host plants. Overall,
our study supports the idea that owing to evolutionary constraints in finding a host, host-plant specialists and host-plant
generalists follow two different models of metacommunities: the species-sorting and the mass-effect model.
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Introduction

Four factors constrain the composition of local assemblages, i.e.

the co-occurrence of species of a taxon [1]: the regional species

pool, the connectivity of the habitat, local environmental filters

and local biotic interactions [2,3,4,5]. Firstly, local assemblages are

embedded in a regional setting, and the regional species pool sets

the framework for the composition of local assemblages [6,7,8].

Secondly, species of the pool are only able to arrive at a particular

habitat if the considered habitat is sufficiently connected to other

habitats occupied by the species [9]. Of course, the connectivity of

a habitat varies from species to species, depending on the mobility,

dispersal propensity and dispersal strategy. Dispersal to and from a

habitat also modifies the local abundance of species [9,10].

Thirdly, local environmental conditions act as filters, and only

arriving species able to cope with the local conditions can pass

these filters [11]. Fourthly, local biotic interactions (e.g. compe-

tition, predation, herbivory or mutualisms) determine the occur-

rence and modify the abundance of species [12]. The ranking in

importance of these factors for the composition of assemblages in a

habitat is still a matter of debate [13,14,15].

Assemblages of phytophages are only rarely structured by

competitive interactions [16]. Therefore, given a regional set of

species and a set of habitats, the environmental filters [17,18], the

host relationships and dispersal should set important constraints

for the composition of local assemblages [16,19]. Furthermore, the

dispersal of the species traits and host use may not be independent.

A considerable number of theoretical studies of dispersal have

suggested that dispersal is selected for by a temporal variability of

habitat quality, e.g. [20,21]. Furthermore, spreading of risk in

stochastic environments leads to a joint evolution of low dispersal

and habitat specialization [22]. Dispersing phytophages have the

problem of locating patches with appropriate host plants [23], and

the importance of this predicament may differ between host-plant

generalists and specialists. For specialized phytophages, it may be

more dangerous to leave a patch with suitable host plants than for

generalists. Furthermore, for insect species with adaptive host-

plant selection, the adult lifespan of females should be negatively
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correlated with the number of host plants used by the larvae; indeed,

this has been found for many species of Lepidoptera [24]. This

suggests that specialization constrains search time [25]. Overall, in

host-plant specialists there should be either a selection against high

mobility [26,27] or effective search strategies for finding habitats

with suitable hosts. Therefore specialists may also evolve to habitat

specialists. In contrast, for host-plant generalists, suitable hosts

occur almost everywhere, and finding habitat patches suitable for

reproduction is less dangerous than for specialists. Overall they may

become habitat generalists. The higher mobility and dispersal of

adult generalists (for butterflies, see [26,28,29]) allows exchange

between habitat patches with appropriate abiotic conditions, and as

a consequence, the dynamics of generalists in a patch depends not

only on processes within this patch but also on local processes in

neighbouring patches and the connectivity between patches [30].

These arguments suggest that the dispersal strategy and thus the

linkage between patches with its implications on the ecological

processes within local assemblages depend — owing to a trade-off

between dispersal and specialization — on diet specialization

[26,31,32].

The metacommunity concept [10,33] is a powerful tool to

understand assemblages in their regional setting, particularly along

environmental gradients [33,34]. Leibold et al. [10] introduced

four simplified paradigms of metacommunities (the neutral, the

patch-dynamics, the species-sorting and the mass-effect para-

digms). The species-sorting paradigm assumes that patches are

heterogeneous in some environmental factors. Species assemble in

local communities according to the local environmental factors and

niche characteristics, and the strength of dispersal is insuf-

ficient to alter distributions. In contrast, the mass-effect paradigm

implies that owing to dispersal, species are present in source and sink

habitats, and the composition of local assemblages is more or less

independent of local environmental factors [10]. These two models

are of course extremes. However, generalists should fit more to the

mass-effect paradigm, whereas specialists should fit more to the

species-sorting paradigm. Concentrating on the issue of the

dispersal strategies of specialists and generalists, we hypothesize

that local assemblages of specialists should be easier to predict from

local environmental factors than local assemblages of generalists.

Local factors can be measured by environmental variables

but also by the species composition of the vegetation [35]. The

vegetation may even be a far better predictor of insect assemblages

than environmental factors or measures of vegetation structure [35].

Clearly, for associations of specialized insects and host plants, the

species composition of the vegetation sets a frame for the occurrence

of these insects, and we expect that besides habitat conditions also

host-plant relationships drive the relationship between the species

composition of assemblages of specialized insects and of plants

[35,36,37,38]. However, we expect the host-plant generalists and

specialists to differ in the ranking of the importance of environ-

mental factors versus host relationships for the composition of whole

assemblages of phytophages. Two statistical methods for such an

analysis — predictive co-correspondence analysis and predictive

canonical correspondence analysis — have been developed by Ter

Braak & Schaffers [39]. We used these two methods to test the

following hypotheses concerning the predictability of local species

assemblages of specialists and generalists:

1. We expect that the predictability of assemblages of phytoph-

agous insects by local environmental factors is higher for host-

plant specialists than for host-plant generalists.

2. For host-plant specialists, the predictability of assemblages of

phytophagous insects from the assemblage of host plants

exceeds the predictability from environmental factors.

Materials and Methods

Sampling of moths
Since 1978, authorities in Bavaria, Germany, have stopped

logging in 154 remnants of natural forests, and programs have

been launched to monitor assemblages of organisms in these

forests (e.g. [40]). Insects were collected with light traps in 114 of

these strict forest reserves in Bavaria between 1980 and 2006

(Fig. 1; see [40]). All nocturnal Macrolepidoptera were identified

to the species level, and are, referred to as moths for simplicity (for

raw data see Tab. S2, S3, S4).

Some reserves were sampled only during one night, and other

reserves were sampled up to 38 times over up to 8 years (Table

S1). Although the sampling effort among the reserves varied

considerably, we decided for the present analyses to pool all trap

nights for each site for a reliable estimate of the relative

abundance of species. Differences in sampling effort are common

in studies of invertebrates on larger scales, and pose problems for

the analyses [41]. A plot of species richness versus sampled

individuals showed a curvilinear relationship with a decrease in the

slope at around 500 individuals (Fig. S1a). Using two methods to

extrapolate the total number of species, we found that for reserves

where fewer than 500 individuals were sampled, the ratio of

sampled to expected species varied considerably (Fig. S1c).

Therefore, for the present analyses, we selected reserves with a

minimum of 500 sampled individuals. Furthermore, when we used

the number of trapping nights to check for insufficiently sampled

reserves, we found that our decision to use only reserves with at least

500 sampled individuals also removed sites with few trapping nights

(Fig. S1e, f). This selection boiled our primary data set down to 96

reserves with 820 species (Fig. 1). The mean percentage of

unsampled species in these reserves was only 18% (range 1–33%;

Fig. S1c,f).

It has also been repeatedly shown that abundances of moths can

fluctuate considerably with time [42]. However, the influence of

such variations on measures of diversity for our data set was low.

We divided the total time span into periods of five years (see Fig.

S2), and we estimated the additive between-period component of

b-diversity for various measures of diversity (Fig. S2). We are

aware of the discussions associated with additive partitioning of

diversity [43,44,45]. Nevertheless, this analysis showed clearly that

the between-period component of b-diversity was much lower

than other components (for details, see Fig. S2).

We grouped the species into two categories — specialists and

generalists — using the compilation of host plants in Central

Europe (see [40]; Table S3). We considered species as specialists

when their larvae feed on species of one plant genus (Fig. 2). All

other species, including species feeding on fungi, bryophytes,

lichens (all of which feed on several genera) and detritus, were

classified as generalists. Furthermore, we restricted our analyses to

moth species occurring in more than five reserves (see Fig. 2),

which resulted in 571 moth species, 79 of which were specialists

(see Table S2 for raw data).

Environmental predictors

(1) We arranged the variables used to predict the composition of

assemblages into two sets: environmental data and the

composition of the vegetation (see Tables S3 and S4 for raw

data). The environmental data set comprised 18 variables

characterizing climate and soil conditions. Variables charac-

terizing the climate were scores of a correlation-based

principal component analysis of 19 bioclimatic variables

available in an open source atlas [46]. We used the first three

axes for further analyses, accounting for 89% of the total
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variability. Additionally, we used the mean altitude of each

reserve [47] to characterize the macroclimatic conditions.

From vegetation relevés (see below), we calculated mean

Ellenberg indicator values for light (L), temperature (T),

moisture (F), soil reaction (R), nitrogen (N), and continental

climate (K) [48]. These values indirectly characterize both soil

and microclimatic conditions [48]. Furthermore, we included

a second-order trend surface to consider geographic space

using the Gauss-Krüger coordinates.

(2) Vegetation data were extracted from the unpublished database

of the Bavarian State Institute for Forestry. We considered

vegetation data collected only within the same time frame as the

insect data. In this database, cover abundance of species is

recorded on a modified Braun-Blanquet scale, with ‘+’ coding

for ,1% cover scale. For further analyses, we recoded this rank

scale as follows: r recoded to 0.05%, + to 0.5%, 1a to 2%, 1 and

2 m to 3%, 1b to 4%, 2a to 10%, 2 to 15%, 2b to 20%, 3a to

31%, 3 to 38%, 3b to 44%, 4 to 63%, and 5 to 83%. The

sampling effort for plants differed among reserves and ranged

from 1 to 137 relevés (mean = 10). We found no correlation of

species richness with the number of relevés (see Fig. S3).

Therefore, we used all available information and we construct-

ed for each sampled reserve a matrix of all plant species

recorded during the relevés. For the final analysis, we scored

the presence and absence of plant species that occurred in at

least 5 reserves (cf. [35]).

Figure 1. Distribution of the 154 strict forest reserves in Bavaria. The histogram shows the distribution of the area covered by each reserve
(ha). The 96 reserves included in the analyses are shown as black dots; the reserves not included in the analyses are shown as grey dots. Grey shading
indicates forested area. Lines indicate borders between the forest ecoregions used in Fig. S3.
doi:10.1371/journal.pone.0025986.g001
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Predicting the composition of moth assemblages
To predict the composition of the assemblages of generalist and

specialist moths or of any other subdivision of our data set, we used

a predictive version of direct gradient analysis and predictive co-

correspondence analysis [35,39]. To check for the influence of

common species on our analysis, we compared the predictive

power of our models using the raw data with results of three

different types of transformations or standardizations: log(x+1)

transformation, square-root transformation, and a standardization

based on the total number of individuals sampled on each site

(relative abundance). When relative abundance is analysed with a

co-correspondence analysis, all sites have equal weight. In

contrast, for the raw data, sites with lower abundances have

lower weight. The square-root and log-transformed data give more

emphasis to the less frequent moths than the untransformed data

set.

We tested the significance of axes and terms using functions

available in the packages vegan for canonical correspondence

analysis and cocorresp for co-correspondence analysis, both available

in R. As a yardstick of the predictive power of the different

analyses, we used ‘‘leave-one-out’’ cross-validation (see [39])

because there were many more predictor plant species than sites

and the response data (moth species across sites) can be fitted

without error by taking as many axes as sites. Thereby, the

number of relevant axes is the number of axes that minimizes the

squared prediction error. We followed the method of [39] and

reported the cross-validatory fit as 100 (1 2 sspn/spp0) for n = 1 to

25 axes, where sspa is the sum of squared prediction error using n

axes, and spp0 is the sum of the squared prediction errors if rows

and columns of the response matrix are independent. The

maximum number of axes evaluated was set arbitrarily to 25;

this had no influence on our conclusions. The cross-validatory fit

may even become negative, which indicates that the prediction

using the mean abundance of species is already better than the

predictive co-correspondence analysis or canonical correspon-

dence analysis models. The significance of differences in the cross-

validatory fit of two different sets of predictors on a response set

was tested by a randomization test following van der Voet [49].

The data matrices of specialist and generalist differed considerably

in dimension (79 and 492 taxa, respectively), which additionally

hampered the comparison between specialists and generalists.

Therefore, we randomly selected 79 species from the list of

generalists and calculated the cross-validatory fit for n = 1 to 25

axes (100 random draws).

To test our third hypothesis — the influence of host plants on

the predictability of specialists — we used two approaches. Firstly,

we calculated a number of co-correspondence analyses, one for

each moth. For moth k, we deleted its host plants from the data

and re-computed the cross-validatory fit. This analysis then does

not include the host-plant associations of species k. We then

averaged the fit across the 79 species of specialists. If the moth/

host plant association drives the results of the co-correspondence

analysis, we would expect a considerable decrease in the cross-

validatory fit. Secondly, we compared the explained variance of

the regression of a moth species on its host plants with regressions

of randomly drawn plant species. The conceptual difficulty is that

co-correspondence analysis treats the data as compositional;

therefore, we need to do a regression of percentages in which one

moth percentage is against all others, and one host percentage is

against all others. This kind of regression can be done with co-

correspondence analyses with two species in both the response and

predictor matrix (response matrix: moth 2 all other moths; response

matrix: host plant(s) 2 all other plants). We first calculated the mean

explained variance across all specialists for the real data and then

compared this value to the mean with randomly drawn plant

species. For this, for each moth species, we randomly selected from

the plant matrix a plant species or several plant species, depending

on the original number of host species occurring in our sites, and

calculated the mean as for the original data. This procedure was

repeated 100 times to generate a distribution of the explained

variance, ignoring host–moth associations.

Results

Across the 96 reserves (Fig. 1), we sampled 351,506 specimens

representing 820 species of moths, from which 571 occurred in at

least 5 sites. The samples were dominated by oligophagous species

with larvae feeding on herbs, followed by oligophagous species

with larvae feeding on trees and shrubs (Fig. 2). Of the 820 species,

we classified 691 as generalists and 129 as specialists (Fig. 2; 492

generalists and 79 specialists occurred in at least 5 reserves). As

expected, mean abundance (the sum of all sampled individuals) of

generalists occurring on at least 5 reserves was higher than the

mean abundance across specialists (geometric mean general-

ists = 6058; mean specialists = 3517). Nevertheless, the overlap

between specialists and generalists was large (Fig. S1b), and an

Anova of log-transformed data indicated only marginal signifi-

cance (p = 0.06; note that this test ignores phylogenetic relatedness

and is therefore only approximate). The distribution which was

measured as the number of reserves in which a species was

recorded, increased with abundance (Fig. S1b). After correcting

for abundance we found no difference in the occupancy between

generalists and specialists (p.0.5).

Irrespective of the transformation or standardization, we always

found a higher cross-validatory fit for the prediction of specialists

than for generalists when we used the local environmental factors

(Fig. 3). Nevertheless, the difference in the cross-validatory fit

between generalists and specialists differed between transforma-

tions, with the lowest differences for the raw data and the log-

transformed data. Furthermore, for these two transformations, the

differences were due to the size of the matrices (see Fig. 3, cf. black

lines and red symbols): more than 5% of the randomly reduced

Figure 2. Number of species of nocturnal Macrolepidoptera
occurring in Bavaria with different levels of specialization with
respect to the host plant of the larvae (monophagous: 1 plant
genus; oligophagous: 2–3 plant genera; polyphagous: more
than 3 plant genera). Black bars indicate groups classified as
specialists in the present study.
doi:10.1371/journal.pone.0025986.g002
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data sets of generalists showed a cross-validatory fit similar to that

of the specialists.

In contrast, for all transformations, the predictability of

assemblages of specialists according to the composition of the

vegetation was higher than the predictability of assemblages of

generalists (Fig. 4). When we used the vegetation as the predictor

matrix, the lowest difference in the predictability was found for log-

transformed data; therefore, in all further analyses, we used the log-

transformed data as a conservative approach. When we compared

the two predictor sets for specialists and generalists, the composition

of the vegetation always had a higher cross-validatory fit than the

environmental data set (Fig. 5). However, for generalists, the

difference in the maximum cross-validatory fits using plant species

and environmental data was not significant (p = 0.9), whereas for

specialists, the predictive power of plant species was significantly

higher than the predictive power of the environmental data

(p = 0.02). When we used log-transformed data, these differences

between specialists and generalists was also consistent across the five

periods of around five years (Fig. S4, Table S5).

The division of our moth assemblages according to generalists

versus specialists is only one possibility. Other possible criteria for

categorizing the assemblages include abundance, taxonomy and

host life form (Table 1). For rare species with a restricted

distribution (occupancy ,29 reserves, the median of all occupancy

values), we found a lower predictability than for common, more

widespread species. However, the difference was low (Table 1).

When we compared moth families (noctuids versus geometrids) as

well as subsets generated according to the host life form, we again

found only small differences in the predictability of the respective

pairs of assemblages. But note that these comparisons are only

suggestive as the predictability depends on the species within each

matrix (see above).

The cross-validatory fit for specialists according to the

composition of the vegetation, however, was not specifically due

to the occurrence of host plants. We obtained similar mean cross-

validatory fits of the predictive correspondence analyses when the

host species of each moth was successively removed (green lines in

Fig. 4b). Also, the mean explained variance of the single-species

co-correspondence analysis of host-plant specialists was in the

range expected for a randomly selected plant or plants as

predictors (Fig. 6).

Discussion

Our knowledge of insect assemblages living on a single plant

species has made considerable progress through the use of

compilations of faunal lists (older literature reviewed in [16]); see

also [50,51]. Despite these efforts, patterns of insect assemblages

beyond a single plant species are still poorly understood

[52,53,54]. Many studies have used species richness as a measure

of a-diversity (e.g. [55]) and correlated species richness of

phytophages with species richness of plants. The rationale behind

such tests is that more plant species provide more hosts, and

therefore more specialists can live in a habitat with many plant

species, thereby increasing the overall species richness. The results

of empirical tests, however, have been mixed [56,57,58]. Although

species richness is a popular measure in community ecology, this

variable ignores the species identity, host plant relationships as well

as the potential of regional processes influencing local species

richness (for example, the positive relationship between regional

and local species richness [59].

Studies comparing species turnover between assemblages of

insects have used either a measure of b-diversity or one of the

many ordination techniques (e.g. [54,60,61]; Fig. S2). Again, b-

diversity is an anonymous measure that ignores the species

identity. Ordination techniques, in contrast, offer the possibility to

consider species identity and abundance [39]. Until recently,

nearly all of the studies on the diversity of phytophagous insects

Figure 3. Cross-validatory fit of the raw data set of the composition of moth species and of three types of transformed data using
local environmental factors as the predictor. The fit is plotted against the number of ordination axes. The blue symbols show the fit for
specialists, the red symbols show the fit for generalists. Black lines are 100 assemblages with 79 randomly selected generalists, used as a comparison
to specialists when the same number of species of specialists and generalists are used.
doi:10.1371/journal.pone.0025986.g003
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did not attempt to predict species composition within a habitat

patch. In most of the published studies, canonical correspondence

analysis or redundancy analyses were used to search for patterns in

the compositions of assemblages (e.g. [60]). Such analyses do not

really show whether the relationships have predictive power,

especially if there are many independent variables. Using pre-

dictive co-correspondence analysis and canonical correspondence

analysis, we were able to show that the quantitative composition of

insect assemblages can be predicted by environmental factors as

well as by the composition of plant communities. Furthermore, we

found that the predictability differed between insect assemblages of

host-plant specialists and generalists. Finally, we suggest that these

results can be understood using the metacommunity concept.

Cross-validation is thereby a powerful tool to estimate the

predictive power and to compare the predictive power of various

data sets (see Table 1). At a first glance, the cross-validatory fit of

the models seems to be very low. However, as discussed by

Schaffers et al. [35], the cross-validatory fit as used in our study is

simply another yardstick, which may even become negative when

the predictions generated by the model are less accurate than those

that arise from using the mean species composition of assemblages

across sites.

A problem of many studies analysing assemblages of plants and

particularly animals along large spatial scales is sampling [62].

Figure 4. Cross-validatory fit of the raw data set of the composition of moth species and of three types of transformed data using
the composition of the vegetation as the predictor. The fit is plotted against the number of ordination axes. The blue symbols show the fit for
specialists, the red for generalists. Black lines are 100 assemblages with 79 randomly selected generalists, used as a comparison to specialists when
the same number of species of specialists and generalists are used. The green line in (b) presents the mean cross-validatory fit of the correspondence
analyses in which the host species of each moth was successively removed.
doi:10.1371/journal.pone.0025986.g004

Figure 5. Cross-validatory fit of the log(x+1) transformed data of moth (a) generalists and (b) specialists plotted against the
number of ordination axes for two sets of predictor variables: composition of the vegetation (squares) using co-correspondence
analysis, and environmental variables (circles) using predictive canonical correspondence analysis. The filled symbols indicate
significant axes according to permutation tests. For differences in the cross-validatory fit between data sets, we permuted residuals between data
sets.
doi:10.1371/journal.pone.0025986.g005
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Time constraints do not always allow sampling in all years at all

selected sites. This often leads to the situation that only few sites

are available for statistical analysis [60]. In our case, we decided to

sum the data across trapping nights, even though trapping varied

considerably across sites and years. However, when we separated

our data set into periods of around five years, the results appeared

to be robust, although not always significant. This is in part due to

low samples sizes within certain time periods. Overall, we are

confident that our results are not influenced by the sampling of

sites (Figs. S2 and S3). Furthermore, Table 1 shows that occur-

rence as well as abundance has some impact on the cross-

validatory fit: as expected by common sense, the cross-validatory

fit for rare species is lower than that for common species. Note that

host-plant specialists are on average less abundant than host-plant

generalists, but the cross-validatory fit for the specialists is even

larger than for generalists. Therefore, the observed difference in

the cross-validatory fit between generalists and specialists is even a

conservative estimate.

In line with arguments concerning the evolution of habitat

specialization and dispersal, we found that local environmental

factors are more important for the predictability of specialists than

for the predictability of generalists. Komonen et al. [26] found

clear evidence that the mobility of butterflies with a narrow host

range is lower than the mobility of butterflies with a wide host

range. These authors argue that dispersal is risky for the specialists

because of the problem of spotting habitats with suitable hosts, and

therefore specialists should show a low dispersal rate. If the

dispersal to and from a habitat is low, the abundance of species

depends on local factors, which increases the predictability of the

species according to the local habitat conditions as long as habitat

conditions are fairly stable. This suggests that assemblages of host-

plant specialists may resemble metacommunities, where species

sort according to the habitat conditions [10]. Note that we

analysed adult moths and therefore the dispersing life stage.

However, we are not sure whether all individuals recorded during

trapping reproduced in the sampled reserve. Some individuals

from other areas may have been attracted by the general habitat

conditions. If suitable host plants are lacking, these individuals are

expected to leave the habitat patch.

Host plants have different life spans, and dynamics of host

availability may differ considerably between species using herbs

(short-lived hosts, high variability of host availability with patches)

and those using trees (long-lived hosts, low variability of host

availability with patches). If one considers that host plants are

habitats [16] and habitats are the template for the evolution of

dispersal [63], one might expect a higher propensity for dispersal in

species using short-lived habitats compared to species using long-

lived habitats [64]. Therefore, following our line of arguments

within the introduction, we would expect a higher predictability for

moth species using long-lived hosts than for those using short-lived

hosts. However, we did not find this pattern, which suggests that

host specialization is more important than host type for predicting

local assemblages of moths. Nevertheless, the reasons for this result

are far from clear and may suggest that the observed difference

between host-plant generalists and specialists is not only based on

dispersal that evolved in response to the spatial predictability of host

plants.

Furthermore, it is not self-evident whether the environmental

variables we used in our analysis are really relevant for the

distribution and abundance of insect species (see also [65]). In

analyses of insect communities along road verges, Schaffers et al.

[35] found that the composition of plant communities was a much

better predictor of insect and spider assemblages than environ-

mental variables or variables characterizing vegetation structure.

Table 1. Cross-validatory fit of co-correspondence models for various subsets of our matrix of moth abundances (species
occurring in at least 5 reserves) across 96 forest reserves in Bavaria (see Fig. 1).

Matrices of Difference in cross-validatory fit

Host specialisation generalists specialists

13.1 (492) 19.6 (79) 6.5

Taxonomy noctuids geometrids

13.8 (228) 15.1 (239) 1.4

Abundance rare common

rare species occurring in ,29 reserves 10.4 (290) 14.2 (281) 3.8

Host life form tree herb

13.4 (253) 14.4 (318) 1.0

In brackets we give the number of moth species in the matrix. Note that the largest difference in the cross-validatory fit appears for a subdivision of the original matrix
into specialist and generalists.
doi:10.1371/journal.pone.0025986.t001

Figure 6. Mean explained variance (%) of single species co-
correspondence analyses of 79 host-plant specialists (black
line) compared to the mean explained variance expected from
co-correspondence analyses with a randomly selected plant or
plants as predictors. Each bar represents 100 runs.
doi:10.1371/journal.pone.0025986.g006
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In contrast to phytophages, spiders are not directly dependent on

plant species, which suggests that the composition of the vegetation

is a powerful surrogate for complex local habitat conditions that

are not captured by the available environmental measurements

[35]. In line with these results, we found that the difference

between the predictability of host-plant specialists and generalists

according to the local composition of the vegetation was consistent

across transformations.

This difference in the predictability of host-plant specialists and

generalists according to the composition of the vegetation may

have a trivial explanation. In contrast to host-plant generalists,

host-plant specialists need a particular host plant or a few host

plants [19,37]. This would explain the outperformance of the

predictability of assemblages of host-plant specialist according to

the composition of the vegetation compared to their predictability

according to environmental factors (our second hypothesis stated in

the Introduction). However, our more-detailed analyses suggested

that this difference in the predictability of host-plant specialists

according to environmental factors and the composition of the

vegetation is not due to host-plant relationships, which contradicts

our third hypothesis. Assemblages of host-plant specialists reacted

differently than generalists to the environmental factors mirrored by

the vegetation in that host-plant specialists seemed to be also habitat

specialists. The species composition of the vegetation is thereby only

a detailed mirror of the variation of environmental conditions

within and between sites. Finally, the above arguments lead to the

speculation that dispersing individuals first check the general habitat

conditions and then check for the occurrence of the host plant. This

is in line with studies on pierid butterflies, in which host-plant

affiliations are strongly influenced by habitat characteristics [66].

Furthermore, a lower propensity of dispersal in phytophages with a

narrow host range might lead to a lower level of gene flow compared

to generalists [67]. Gene flow not only is important for the

maintenance of genetic diversity [68,69], but also disturbs the

evolution of local adaptations. Therefore, host-plant specialists may

be able to evolve adaptations to the habitat ([66]; for a general

discussion of ecological specialization see [70]).

Our result that the predictability of assemblages differs between

host-plant generalists and specialists is also in line with findings

from species distribution models [71]. Several syntheses of such

models have shown that the distributions of specialists are easier to

predict than the distribution of generalists (e.g. [72,73]). Most of

these species distribution models considered only presence/absence

data, whereas our approach predicts the quantitative composition of

the assemblages. Furthermore, most species distribution models use

environmental data, and species are divided into specialists and

generalists according to the environment, which introduces some

circularity. In contrast, we defined specialists and generalists

according to independent host-plant information, and we predicted

the occurrence and relative abundance of species.

During the long history of vegetation studies, much evidence

has accumulated that the species composition of the vegetation

mirrors complex habitat conditions [48]. We and others [35]

found that the species composition of the vegetation is a good

predictor of the composition of animal communities. Overall this

supports the widespread use of the vegetation to map specific

habitats and to establish networks of protected areas [74]. For

example, within the framework of Natura 2000 in Europe, areas

are selected according to floristic criteria and classifications of the

vegetation [75]. In addition to the advantages of sampling the

vegetation, the integrative nature of plant assemblages forms a

general umbrella for conservation planning, although specialized

groups of organisms, e.g. species living in dead wood, need special

attention [76].

The metacommunity concept is a conceptual tool for under-

standing the theoretical underpinning of species assemblages to

design powerful experiments (e.g. [12,77]). This concept also forms

a solid basis to understand the statistical patterns of insect

assemblages across space or environmental gradients [78]. The test

we provided differs from the framework suggested by [33] in that

we infer the metacommunity structure not from certain charac-

teristics of the community matrix (e.g. coherence, turnover,

boundary clumping), but by using independent data on local

environmental factors to predict assemblages. Yet caution is

warranted: Firstly, the different metacommunity paradigms are

only simplified conceptual models, and real assemblages sort in

between these extremes. Nevertheless, the metacommunity concept

expands earlier efforts to understand local assemblages by setting

these assemblages into a regional context. Secondly, we only

inferred the importance of regional processes (dispersal) from

differences in local patterns of species assemblages. Therefore

independent information on the propensity of dispersal or dispersal

strategies of generalists and specialists is sorely needed to scrutinize

our conclusions from a set of observational data (for an example

with spiders see [79]).

Supporting Information

Figure S1 (a) Scatter plot of species versus number of individuals

collected for each of the 114 reserves. The line indicates the

minimum of 500 individuals, which was selected for including a

reserve. (b) Scatter plot of occupancy (number of reserves in which

a species was recorded) versus number of sampled individuals of

820 moth species sampled in in our final selected 96 strict forest

reserves in Bavaria. The line indicates the species occurring in less

than 5 sites. Note the log transformation of the x-axis. (c) The

number of species observed versus the number of species expected

in 114 reserves. The latter was calculated as the mean of the two

variants Chao (unbiased variant) and ACE of extrapolated

richness in estimateR in the package vegan. The vertical line

indicates the cutpoint of 500 individuals, which was selected for

including a reserve in the final analysis. (d) The ratio of observed/

expected species versus the observed species of 114 reserves. (e)

Species versus number of trapping nights; reserves marked by

black dots were removed in the final analysis. (f) Observed/

expected species versus trapping nights; reserves marked by black

dots were again removed in the final analysis (e).

(TIF)

Figure S2 Percentage of moth species richness (Rich-
ness) and community diversity (Simpson, Shannon)
explained by the alpha and beta components of diversity
on four spatial and temporal scales: reserves within one
period of <5 years (periods: 1980–1989, 1985–1889, 1990–
1994, 1995–1999, 2000–2006), between periods, between
reserves, and between ecoregions (Fig. 1). The components

were determined by additive partitioning of diversity using the

function adipart within the package vegan (www.R-project.org). For

each diversity measure, we calculated the components for

generalists and specialists separately. Note that the beta-diversity

components were always larger for specialists than for generalists.

Further note that the diversity component between periods was

generally low. Only species occurring in at least 5 reserves (the same

as used in the main analysis) were included in the partitioning.

(TIF)

Figure S3 Scatter plot of plant species versus number of
relevés and histogram of plant relevés in the final 96
reserves. Note that lowest number of plant species occur in sites
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with several relevés. Such sites are acidic beech plant communities,

naturally poor in plant species.

(TIF)

Figure S4 Cross-validatory fits for the prediction of
assemblages of moth generalists (red) and specialists
[blue; data log(x+1)-transformed] plotted against the
number of ordination axes used for prediction of
assemblages for periods of <5 years using only reserves
that were sample for at least 2 nights per period. We used

two sets of predictor variables: composition of the vegetation using

co-correspondence analysis, and environmental variables using

predictive canonical correspondence analysis as in Fig. 6. Note

that the results presented within the manuscript for the pooled

data remain the same for all time periods (see also Table S2),

although the number of reserves sampled within a period

decreased (maximal decrease down to 14 reserves).

(TIF)

Table S1 Distribution of nights of light trapping in the
96 forest reserves that entered the analysis.
(DOC)

Table S2 Data of 571 moths used in the analyses.
(XLS)

Table S3 Environmental raw data used for calculating
the climate PCA scores and altitude, as well as
coordinates.
(XLS)

Table S4 Presence/absence data of plants occurring in
at least 5 reserves used for calculating the Ellenberg
indicator values and as predictor data set.

(XLS)

Table S5 Maximum cross-validatory fit of the log(x+1)
transformed matrix of moth assemblages for host-plant
generalists and specialists using two sets of predictor
variables (environmental variables and plant species
composition) for periods of <5 years (see Fig. S4). The P-

value presents a test of the difference in the predictability of the

various assemblages by the two data sets (see Material and

Methods).

(DOC)
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