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Abstract

Background

Phase space is a mechanical systems approach and large-scale data representation of an

object in 3-dimensional space. Whether such techniques can be applied to predict left ven-

tricular pressures non-invasively and at the point-of-care is unknown.

Objective

This study prospectively validated a phase space machine-learned approach based on a

novel electro-mechanical pulse wave method of data collection through orthogonal voltage

gradient (OVG) and photoplethysmography (PPG) for the prediction of elevated left ventric-

ular end diastolic pressure (LVEDP).

Methods

Consecutive outpatients across 15 US-based healthcare centers with symptoms suggestive

of coronary artery disease were enrolled at the time of elective cardiac catheterization and

underwent OVG and PPG data acquisition immediately prior to angiography with signals
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paired with LVEDP (IDENTIFY; NCT #03864081). The primary objective was to validate a

ML algorithm for prediction of elevated LVEDP using a definition of�25 mmHg (study

cohort) and normal LVEDP� 12 mmHg (control cohort), using AUC as the measure of diag-

nostic accuracy. Secondary objectives included performance of the ML predictor in a pro-

pensity matched cohort (age and gender) and performance for an elevated LVEDP across a

spectrum of comparative LVEDP (<12 through 24 at 1 mmHg increments). Features were

extracted from the OVG and PPG datasets and were analyzed using machine-learning

approaches.

Results

The study cohort consisted of 684 subjects stratified into three LVEDP categories,�12

mmHg (N = 258), LVEDP 13–24 mmHg (N = 347), and LVEDP�25 mmHg (N = 79). Testing

of the ML predictor demonstrated an AUC of 0.81 (95% CI 0.76–0.86) for the prediction of

an elevated LVEDP with a sensitivity of 82% and specificity of 68%, respectively. Among a

propensity matched cohort (N = 79) the ML predictor demonstrated a similar result AUC

0.79 (95% CI: 0.72–0.8). Using a constant definition of elevated LVEDP and varying the

lower threshold across LVEDP the ML predictor demonstrated and AUC ranging from 0.79–

0.82.

Conclusion

The phase space ML analysis provides a robust prediction for an elevated LVEDP at the

point-of-care. These data suggest a potential role for an OVG and PPG derived electro-

mechanical pulse wave strategy to determine if LVEDP is elevated in patients with symp-

toms suggestive of cardiac disease.

Introduction

‘Phase space’ is a concept based on dynamical systems theory in which possible states of a

given object such as position and velocity are represented with each state corresponding to one

unique point in phase space [1]. While originating from mechanical systems, it has application

to cardiovascular physiology. In one possible application, while systolic dysfunction is charac-

terized by reduced ejection fraction, additional modalities are required to adjudicate dysfunc-

tion that is limited to diastole, with the aim of estimating left ventricular (LV) filling pressures.

Left ventricular end diastolic pressure (LVEDP) is of distinct interest. The measurement of

LVEDP, whether in the presence of reduced or preserved ejection fraction is complex and

commonly characterized by multimodality diagnostic imaging. For example, elevation in

Brain Naturetic Peptide (BNP) [2, 3] and fixed ratios based on echocardiography (spectral

Doppler and Tissue Doppler derived E/e’) [4] are used to classify if left atrial pressure is

elevated or not. Several recent studies have aimed to predict diastolic dysfunction (i.e., intra-

cardiac pressure elevation) using ML approaches, such as from CNN analysis of echocardio-

graphic beat variability [5] and clustering of echocardiographic markers to understand the

patterns of diastolic dysfunction across patients with symptomatic CVD [6]. While such devel-

opments are promising in the characterization of myocardial function, the prediction of LV
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pressure elevation as a binary classification (elevated or not elevated) across a spectrum of LV

pressures that can be used to guide downstream testing and treatment is of value.

In this context, phase space is a continuous measurement that simultaneously captures data

related to electromechanical and pulse-wave signals over successive cardiac cycles, with the

resultant biopotential plot being a large-scale data representation of myocardial function and

is unique for any given person [1]. The benefits of such an approach are that it captures signals

of myocardial function and dysfunction through high fidelity, time-series data collection that

cannot be quantified by conventional non-invasive imaging or laboratory testing modalities

[7, 8].

The physiologic findings of the failing heart that result in elevations in LV filling pressures,

LV end diastolic pressure (LVEDP) and left atrial pressure are commonly determined by elec-

trocardiographic and echocardiographic findings of atrial and ventricular remodeling [9],

functional changes in diastolic relaxation [10], and changes in flow dynamics [5]. Given a

highly heterogenous association between symptoms and the presence of cardiac dysfunction,

especially in prevalent conditions such as those with heart failure with preserved EF (HFpEF),

new modalities that leverage machine learning (ML) have emerged as potential tools to predict

diastolic properties [11, 12] and ejection fraction (EF) [13] through computational approaches

including neural network analysis of electrocardiographic intervals and wavelet transforma-

tion to predict myocardial function and relaxation.

Similarly, we have previously demonstrated the diagnostic accuracy of a ML approach to

predict obstructive coronary artery disease (>70% luminal stenosis) from a cardiac phase

space analysis. The predictive algorithm was trained and validated with tomographic, voltage-

gradient features that were paired with the degree of coronary stenosis defined at angiography

[7]. An approach such as this provided a method to collect data at the time of an outcome of

interest and provided a pathway to evaluate cardiac dysfunction at the point-of-care [8, 14,

15]. In this context, we investigated a novel ML algorithm based on electromechanical features

that was derived non-invasively from orthogonal voltage gradient (OVG) and photoplethys-

mography (PPG) to predict an elevated LVEDP among symptomatic patients referred for

cardiac catheterization, and herein report the findings from the multi-center, prospective vali-

dation cohort.

Results

Study population

Overall, 1,023 study subjects were consecutively enrolled (Fig 1). After exclusions, the final

study cohort consisted of 684 subjects with paired signals to LVEDP measurements and strati-

fied into three LVEDP categories,�12 mmHg (N = 258), LVEDP 13–24 mmHg (N = 347),

and LVEDP�25 mmHg (N = 79). Histogram of LVEDP in the study population can be found

in Fig 2. Signals were acquired by trained nursing staff in a hospital-based setting (catheteriza-

tion holding, cardiac unit, or observation area) in 671 (98.1%) or a physician’s clinic in 13

(1.9%), within 7-days prior to angiography [630 (92%) on the same-day; 54 (8%) from 1–7

days].

Demographics characteristics for the overall population, study cohort as well as LVEDP

groups are listed in Table 1. Within the study cohort, the mean age was 63 years and 45% were

women. One third of the population had diabetes with greater than 70% with hypertension

and/or hyperlipidemia. The mean EF was 60% with 93% (N = 186) with preserved EF >50%.

38% had obstructive CAD at angiography. Multivariate clinical predictors of an elevated

LVEDP can be found in S1 File.
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Fig 1. Flow of subjects in the study.

https://doi.org/10.1371/journal.pone.0277300.g001
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Permutation feature importance and exemplar features

A permutation analysis was performed to determine feature importance in LVEDP elevation

prediction, and the top 30 most contributive features were grouped by family (S2 File). The

most contributive signal-based feature family was PPG indicators, followed by OVG spectral

and phase space analysis. The most contributive feature within the PPG indicator family was

the maximum of the PPG pulse base (S3 File). Fig 3 illustrates four exemplar features included

in the machine-learned predictor, including the atrial depolarization duration, PPG pulse

base, and ventricular repolarization. Detailed descriptions of the other features of importance

can be found in S3 File.

Primary outcome—Performance of the machine-learned predictor

All results (primary and secondary) used the ensembled model as a single assessment of algo-

rithm performance on the blinded validation cohort. Testing of the machine-learned predictor

as a continuous measurement demonstrated an AUC of 0.81 (95% CI 0.76–0.86) for algorith-

mic performance (Fig 4) and corresponded to a sensitivity and specificity of 82% (95% CI: 72–

90%) and 68% (95% CI: 61–72%), respectively. S4 File contains the 2x2 cross tabulation for the

prediction of an elevated LVEDP based on the sensitivity and specificity determined from the

primary analysis.

Fig 2. Histogram of study population LVEDP.

https://doi.org/10.1371/journal.pone.0277300.g002
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Table 1. Demographics.

Characteristic Overall Study

Population

Development

+ Validation

N = 1,956

Development

Cohort

N = 1,272

Validation

Cohort

N = 684

p-value

Development

vs. Validation

Study Cohort:

LVEDP�12 or

LVEDP�25

N = 337

LVEDP�12

N = 258

LVEDP�25

N = 79

LVEDP

13–24

N = 347

p-value

LVEDP

�12 vs

�25

Clinical

Variables

Age (years)

Mean ± STD 52 ± 19 46 ± 20 63 ± 10 <0.001 63 ± 11 64 ± 10 61 ± 12 62 ± 10 0.04

� 60 years (%) 880 (45%) 445 (35%) 321 (47%) <0.001 172 (51%) 137 (53%) 34 (43%) 153 (44%) 0.13

Range 18–91 18–88 30–91 30–90 36–90 30–83 31–91

Ejection Fraction

Measured (%) 978 (50%) 560 (44%) 428 (63%) - - 199 (59%) 157 (61%) 43 (54%) 229 (66%) 0.60

Mean ± STD 59 ± 8 59 ± 8 60 ± 7 - - 60 ± 7 60 ± 6 59 ± 10 60 ± 8 0.56

>50% 892 (91%) 501 (90%) 391 (91%) - - 186 (93%) 148 (94%) 38 (90%) 205 (90%) 0.81

� 50% 90 (9%) 53 (10%) 37 (9%) - - 13 (7%) 9 (6%) 4 (10%) 24 (10%) 0.81

� 40% 40 (4%) 27 (5%) 13 (3%) - - 6 (3%) 3 (2%) 3 (7%) 7 (3%) 0.31

� 30% 19 (2%) 13 (2%) 6 (1%) - - 3 (2%) 1 (1%) 2 (5%) 3 (1%) 0.29

Women (%) 911 (47%) 612 (48%) 299 (44%) 0.070 152 (45%) 101 (39%) 51 (65%) 147 (42%) <0.001

History of

Hypertension (%)

1014 (52%) 519 (41%) 495 (72%) <0.001 244 (72%) 184 (71%) 60 (76%) 251 (72%) 0.51

History of

Hyperlipidemia

(%)

1005 (51%) 512 (40%) 493 (72%) <0.001 246 (73%) 194 (75%) 52 (66%) 247 (71%) 0.12

History of

Diabetes (%)

460 (24%) 246 (19%) 214 (31%) <0.001 102 (30%) 75 (29%) 27 (34%) 112 (32%) 0.48

Smoker� (%) 728 (37%) 376 (30%) 352 (51%) <0.001 178 (53%) 139 (54%) 39 (49%) 174 (50%) 0.54

Body Mass Index

Mean ± STD 30 ± 7 29 ± 7 32 ± 7 <0.001 32 ± 7 30 ± 6 37 ± 8 32 ± 6 <0.001

� 30 (%) 899 (46%) 520 (41%) 379 (55%) <0.001 176 (52%) 111 (43%) 65 (82%) 203 (59%) <0.001

<30 1056 (54%) 751 (59%) 305 (45%) <0.001 161 (48%) 147 (57%) 14 (18%) 144 (41%) <0.001

Race/Ethnicity

Caucasian (%) 1440 (74%) 861 (68%) 579 (85%) <0.001 280 (83%) 221 (86%) 59 (75%) 299 (86%) 0

Black or African

American (%)

396 (20%) 315 (25%) 81 (12%) <0.001 44 (13%) 27 (10%) 17 (22%) 37 (11%) 0

Other Races (%) 120 (6%) 96 (8%) 24 (4%) <0.001 13 (4%) 10 (4%) 3 (4%) 11 (3%) 0

Symptoms

Chest Pain

During Exercise

577 (29%) 384 (30%) 384 (56%) <0.001 193 (57%) 147 (57%) 46 (58%) 191 (55%) 0.95

Chest Pain at

Rest

404 (21%) 266 (21%) 282 (41%) <0.001 138 (41%) 99 (38%) 39 (49%) 144 (41%) 0.11

Dyspnea

During Exercise

646 (33%) 438 (34%) 426 (62%) <0.001 208 (62%) 153 (59%) 55 (70%) 218 (63%) 0.13

Dyspnea at

Rest

199 (10%) 127 (10%) 145 (21%) <0.001 72 (21%) 49 (19%) 23 (29%) 73 (21%) 0.08

Medications

ACE inhibitor† 378 (19%) 185 (15%) 193 (28%) <0.001 92 (27%) 72 (28%) 20 (25%) 101 (29%) 0.76

ARB† 302 (15%) 148 (12%) 154 (23%) <0.001 77 (23%) 55 (21%) 22 (28%) 77 (22%) 0.29

Diuretic†† 323 (17%) 187 (15%) 136 (20%) 0.004 65 (19%) 36 (14%) 29 (37%) 71 (20%) <0.001

Calcium

Channel Blocker†
313 (16%) 163 (13%) 150 (22%) <0.001 70 (21%) 48 (19%) 22 (28%) 80 (23%) 0.11

Beta Blocker 563 (29%) 286 (22%) 277 (40%) <0.001 142 (42%) 102 (40%) 40 (51%) 135 (39%) 0.11

(Continued)
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Secondary outcomes

Predictive performance for an elevated LVEDP among a propensity matched cohort.

Among a propensity-matched cohort (N = 79 pairs of study subjects) between elevated and

non-elevated LVEDP based on age and gender (S5 File), the machine-learned predictor dem-

onstrated a similar result to the primary analysis for the prediction of an elevated LVEDP,

AUC 0.79 (95% CI: 0.72–0.86, Fig 5).

Determine the predictive performance for an elevated LVEDP across a spectrum of

comparative LVEDP thresholds. Using a constant elevated definition of LVEDP � 25

mmHg and varying the definition of non-elevated across LVEDP values (in 1 mmHg incre-

ments), the machine-learned predictor demonstrated an AUC ranging from 0.79–0.82 (Fig

6a) with corresponding specificity between 59%-69% (using the constant, predefined ele-

vated LVEDP threshold yielding a sensitivity of 82%). Fig 6b illustrates the effect of varying

both the definitions of LVEDP elevation and non-elevated, demonstrating a consistent per-

formance, based on AUC, for the prediction of an elevated LVEDP at a threshold value of 25

mmHg.

Sub-group performance. Among the predefined sub-groups, the machine-learned pre-

dictor demonstrated an adequate diagnostic accuracy between group stratifications (Fig 7).

While the predictive accuracy for an elevated LVEDP was similar among cohorts with obstruc-

tive and non-obstructive (p = 0.31), there was a statistically significant difference with greater

predictive accuracy among cohorts with preserved EF compared to low EF (p = 0.03).

Table 1. (Continued)

Characteristic Overall Study

Population

Development

+ Validation

N = 1,956

Development

Cohort

N = 1,272

Validation

Cohort

N = 684

p-value

Development

vs. Validation

Study Cohort:

LVEDP�12 or

LVEDP�25

N = 337

LVEDP�12

N = 258

LVEDP�25

N = 79

LVEDP

13–24

N = 347

p-value

LVEDP

�12 vs

�25

Aldosterone

Receptor

Antagonist

9 (0%) 0 (0%) 9 (1%) <0.001 4 (1%) 3 (1%) 1 (1%) 5 (1%) 1.00

Statins 791 (40%) 388 (31%) 403 (59%) <0.001 200 (59%) 158 (61%) 42 (53%) 203 (59%) 0.25

Angiographic

Findings

Presence of

obstructive CAD^
497 (36%) 253 (36%) 244 (36%) - - 129 (38%) 110 (43%) 19 (24%) 115 (33%) 0.005

Hemodynamic

Variables

LVEDP

Mean ± STD 16 ± 7 (N = 1380) 16 ± 7

(N = 696)

16 ± 7 - - 14 ± 9 9 ± 3 29 ± 4 18 ± 3 <0.001

Range 0–45 0–45 0–38 0–38 0–12 25–38 13–24

LVSP

Mean ± STD 129 ± 24

(N = 1002)

130 ± 24

(N = 395)

129 ± 24

(N = 607)

- - 126 ± 25

(N = 283)

119 ± 21

(N = 208)

143 ± 25

(N = 75)

132 ± 23

(N = 324)

<0.001

Range 15–221 40–221 15–209 22–209 22–209 88–196 15–208

Ejection fraction measured and reported by ventriculography at the time of angiography

�past or present smoker
†including combination medications
††Avalide, Dyazide, Furosemide, Hydrochlorothiazide, Maxzide, Triamterene

^at least one coronary lesion with a stenosis of �70% and/or FFR<0.8 and/or iFR <0.89 on angiography

https://doi.org/10.1371/journal.pone.0277300.t001
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Fig 3. Exemplar features. a) the variation in the atrial depolarization duration is a feature extracted from the OVG signal in the time domain, b)

quantification of the atrial depolarization vector in phase space, c) quantification of PPG pulse base amplitude and d) ventricular repolarization in band-

pass filtered phase space.

https://doi.org/10.1371/journal.pone.0277300.g003
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Safety and adverse events

Testing of the machine-learned model within the pre-specified safety analysis among a healthy

cohort without CV disease, at a threshold sensitivity of 82% reported in the primary analysis,

demonstrated a specificity of 95% (95% CI: 90–97%). The corresponding 2x2 tabulation and

AUC can be found in S4 File.

Fig 4. Performance of the machine-learned predictor.

https://doi.org/10.1371/journal.pone.0277300.g004

Fig 5. Performance of the machine-learned model when propensity matching based on age and gender.

https://doi.org/10.1371/journal.pone.0277300.g005
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No adverse events related to device use were reported during the study.

Bayesian analysis and simulations for net reclassification index between

BNP and the machine-learned predictor

A Bayesian analysis of the post-test probability of an elevated LVEDP based on a range of pre-

test probabilities and distributed according to the machine learned predictor, and the two

Fig 6. Performance while varying the definition of LVEDP elevation and non-elevation. a) the definition of elevation is held constant at

�25mmHg, while the definition of non-elevation is varied from�12mmHg to�24mmHg, and the ROC curves assessed for each scenario. b)

the definition of both elevation and non-elevation are varied from�13-25mmHg and�12-24mmHg, respectively, and the corresponding

AUCs represented as a heatmap.

https://doi.org/10.1371/journal.pone.0277300.g006

Fig 7. Subgroup analyses of the performance of the machine-learned predictor.

https://doi.org/10.1371/journal.pone.0277300.g007
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simulated BNP performances in a matching population–a BNP threshold of 150 pg/ml and a

BNP threshold of 50 pg/ml—are illustrated in Fig 8a–8c; respectively. Using the approximate

values of the constraining statistics for the two BNP data sets (non-cardiac symptoms and

obese HFpEF, see Methods), the simulation yielded an AUC of 0.69 (95% CI: 0.61–0.71) for

BNP prediction of an elevated LVEDP with the corresponding sensitivity, specificity, positive

and negative likelihood ratios for the thresholds of a BNP of 150 and 50 pg/ml reported within

Fig 8. The NRI of the ML predictor using a posterior probability of a BNP at a threshold of 150

and 50 pg/ml was 0.24 (95% CI: 0.18–0.30) and 0.38 (95% CI: 0.33–0.44), respectively.

Discussion

There is a growing need for new methods to measure LV filling pressures. Recent studies

have used ML approaches that analyze echocardiography data to predict diastolic dysfunc-

tion [5, 6]. While the prospect for discovery is promising, the application of any new analytic

technique requires robust methodologies for validation. In this context we employed a trial

design of prospective validation [16] within a multicenter study. Prospective data collection

permitted the validation dataset to be blinded from the training dataset. This is important

because blinding may limit common biases such as spectrum bias and measurement bias

between training and validation datasets, and to balance clinical characteristics between both

datasets [14]. Towards mitigating bias, we recruited a diverse cohort of patients across multi-

ple healthcare centers and geographies and aimed to enroll study subjects that are represen-

tative of a real-world population with a clustering of cardiac risk factors, and various

ethnicities. Overall, half of the participants recruited were women, nearly 50% with a

BMI� 30 (mean of 36) and greater than 90% with preserved EF (mean EF of 61%), a triad of

findings where an accurate assessment of LV filling pressures by conventional testing such as

BNP [17] and echocardiography [4, 18] have marginal accuracy and vary significantly across

those with symptoms of HF. This is particularly true in HFpEF given the heterogeneity of

myocardial dysfunction (i.e. ischemic vs non-ischemic etiologies), the cardiopulmonary

response to increased afterload and/or preload [19] and the phasic changes in left atrial func-

tion that are variable across individuals [9]. Our observations of a high incidence (34%) of an

elevated LVEDP among symptomatic patients referred to angiography for the evaluation of

ischemic heart disease; however, did not have evidence of obstructive CAD is equally impor-

tant as it may reflect the underdiagnosis of HF in an ambulatory cohort, and those referred

for further cardiovascular testing.

Our hypothesis that electromechanical pulse wave features predict myocardial dysfunction

is an extension of the hypothesis that the progression from normal myocardial mechanics to

pathologic atrial and ventricular remodeling is a result of rising LV filling pressure. Whereas

atrial enlargement and ventricular remodeling from alternations in myocardial tension and

strain can be considered mechanical features of a pressure loaded left ventricle [20], we postu-

late that a high dimensional dataset captured from voltage gradients and photoplethysmogra-

phy can accurately represent myocardial electromechanical function. In support of this

argument, wavelet transformation and the mathematical conversion of an ECG into a normal-

ized energy distribution (depicted by a color spectrum of myocardial energy) has recently

emerged as a computational modeling and ML method for the prediction of diastolic dysfunc-

tion. Potter [11] and Sengupta [12], paired ECG data with echocardiographic data of diastolic

abnormalities such as E/e’> 14, left atrial enlargement, and abnormal LA volume index among

398 and 188 patients at risk of HF, respectively. Using supervised and unsupervised ML

including random forest classifiers on 250–650 wavelet features, testing of the ML algorithm

on a validation data set demonstrated a high diagnostic accuracy (AUC 0.83–0.91) for the
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Fig 8. Relationship between pre-test (prior) probability and post-test (posterior) probabilities. a) the machine-

learned predictor, b) BNP when greater than 150pg/ml, or c) BNP when greater than 50pg/ml. A positive test is shown

in red, and a negative test in green. The diagonal dashed black line represents no change from the pre-test to post-test

probability. The vertical dashed black lines represent intermediate to high pre-test probabilities (vertical dashed lines at

30%, 50% and 70%) from left to right. The post-test probabilities were calculated based on a varying pre-test

probability, and constant sensitivity, specificity, and corresponding likelihood ratios.

https://doi.org/10.1371/journal.pone.0277300.g008
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prediction of diastolic dysfunction, with a diagnostic performance that was greater than clini-

cal prediction alone.

The present study extends Potter and Sengupta’s results to a time-series, electromechanical

and perfusion dataset with training and validation on direct LVEDP measurements. Within

our dataset, in an LV with normal EF that is under high pressure [10], electromechanical fea-

tures such as variation in atrial depolarization duration, ventricular repolarization in phase

space plausibly represents physiologic findings of elevated left atrial pressure [9] and lusitropic

changes of diastolic relaxation [11, 12]; respectively. PPG derived feature and the measurement

of the pulse wave base may represent a systolic time interval of isovolumetric contraction as

this nadir point in the pulse-wave is associated with the lowest photoabsorption immediately

prior to onset of systole; a time point of interest that has been associated with HF [21]. Our

method of high frequency data capture analyzed in phase space and the corresponding electro-

mechanical features are unique in any given study subject. Once all features are evaluated from

a patient’s signal, the machine-learned model processes the feature values to yield a continuous

score representing the risk of LVEDP elevation. In contrast to BNP or echocardiography

which use a threshold or binary values of elevated or non-elevated LV pressures, the high num-

ber of features used in this analysis creates a unique signature of LVEDP that is specific to that

individual at the N-of-1 level.

One pertinent question leading from the present analysis, is how our results are translated

within the continuum of diagnostic tests to determine the presence of elevated LV pressure

among symptomatic patients, particularly those with preserved EF. Several point-of-care diag-

nostic tests are available to diagnose acute HF including chest radiography, BNP/NT-pro-

BNP, handheld echocardiography/lung ultrasound, and bioimpedance [22]. Various studies

evaluating such point-of-care tests have largely concluded that lung ultrasound and echocardi-

ography have utility to differentiate HF symptoms from non-HF symptoms [22]. While useful,

these tests require trained individuals to acquire and interpret cardiopulmonary images and

can have limited diagnostic accuracy as they are dependent on patient characteristics such as

body habitus and the user experience with, point-of-care imaging devices. Our findings of

high diagnostic accuracy for prediction of elevated LVEDP when compared to a range of non-

elevated LVEDP such as normal (�12 mmHg) and mid-range (13–24 mmHg) is potentially

valuable for 2 main reasons: 1) it supports that our method for data capture and analysis of

electromechanical data is robust and that our features are those data representations associated

with elevated LVEDP; and 2) that LVEDP at a threshold of�25 mmHg is representative of an

elevation that is clinically relevant as our study population was derived from symptomatic

patients requiring cardiac catheterization. The latter is important in the setting of high-risk HF

patients such as those at risk for HF re-hospitalizations. If we assume that such patients have,

at minimum, a 50% (intermediate) to 70% (high) pre-test probability of an elevated LVEDP,

when used sequentially with BNP, our Bayesian simulation demonstrate that the ML predictor

reclassifies a BNP of> 150 pg/ml (NRI of 0.24) from 59–77% to a post-test probability of 79–

90%, with the greatest reclassification margin within the intermediate (30–50%) pre-test prob-

ability group. Such results may have clinical utility to more accurately triage HF patients at the

point-of-care for further testing and to identify patients with HFpEF.

Limitations

We identified 14% (36/258) of subjects with non-elevated LVEDP were taking a diuretic at the

time of enrollment that may have impacted the performance of the ML predictor. When com-

pared to overall study population the specificity was similar within this cohort (68% vs 64%,

p = 0.57) and when the analysis was re-run when excluding this cohort, there was no difference
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in overall specificity. While we contend that diuretics are an important factor when consider-

ing the measurement and prediction of LVEDP, the small number of subjects in this group

does not permit us to determine its impact on performance within the study population as

presented.

Our study population is intrinsically limited by the recruitment methodology, which was

subjects referred to left heart catheterization for assessment of obstructive CAD using coronary

angiography, and specifically the subgroup where the treating physician chose to measure the

LVEDP. We employed this study methodology to ensure that subjects had a catheterization-

confirmed elevated LVEDP, but at the limitation of subjects referred for the evaluation of

obstructive CAD. While this may introduce sample bias, we found significant CAD in only

38% of the overall study cohort, a higher incidence of obstructive CAD was observed in sub-

jects with non-elevated LVEDP compared to those with elevated LVEDP (43% vs 24%). Upon

subgroup analysis, there was difference in algorithmic performance among those with or with-

out obstructive CAD.

Overfitting, and conversely generalizability, are critical aspects of machine learning and

when a large number of features are used for model development. The use of an ensemble, as

is the case, does not increase the likelihood of overfitting but rather mitigates it by reducing

the dependence on a single model. The methods employed to avoid overfitting could include

the use of cross-validation within the development data, using simple models with regulariza-

tion and penalty terms, and testing the performance of the model on unseen data (doing so

only once). With respect to the models in particular, first, each model is exposed to an average

of 149 features (with a range of 89–194, S10 File). Second, the model hyperparameters were

conservatively designed to mitigate the possibility of overfitting (S10 File). For example, four

of the models were Random Forest, which intrinsically limit overfitting by only allowing each

component tree access to the square root of the total number of features, and by bootstrap

sampling training subjects so that every component tree only has access to a subset of the

entire training set. Overfitting was additionally controlled through the use of the maximum

tree depth hyperparameter. Deep trees with many splits increase the likelihood of overfitting,

and therefore the depth was limited to 3–7. Other model types (Elastic Net and XGBoost) were

also designed conservatively. Finally, the ultimate test of overfitting is the performance on

unseen blinded data, which yielded an AUC of 0.81. In conclusion, through the analysis of the

algorithm, and the performance on unseen blinded data, overfitting did not occur.

Conclusions

We validated a machine learning algorithm of electromechanical pulse wave features to predict

an elevated LVEDP among symptomatic patients with a precise measurement of LVEDP.

Such techniques to quantify intracardiac pressure with machine learning on large datasets

acquired with a portable digital device provides a new method to determine the presence or

absence of HF. These data suggest a potential role for a novel OVG and PPG derived electro-

mechanical diagnostic test for the prediction of an elevated LVEDP at the point-of-care.

Methods

Trial design

Enrollment in the overall IDENTIFY trial began on December 10th 2018 with 3,486 partici-

pants consecutively enrolled as of April 2021 and was primarily executed to develop a

machine-learned predictor to determine the presence of obstructive coronary artery disease

(CAD) defined at cardiac catheterization. A cohort analysis (N = 606) using a phase-space ML

approach to predict CAD using the same inclusion/exclusion criteria as in this present study
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has been previous published [7]. The present results are reported according to STARD guide-

lines [23] (S6 File). The study was approved by a centralized IRB (Western IRB #20183107,

now known as WIRB-Copernicus Group). It was initially released on clinicaltrials.gov on Jan-

uary 1st 2019 (NCT #03864081), and was performed at 15 healthcare institutions in the United

States (S7 File). A preliminary analysis of the LVEDP development cohort was presented at the

2020 Scientific Sessions of the American College of Cardiology [24].

Study population—Development and validation data

Data sources. The data sources for the study population included patients who were

referred for angiography at the discretion of their treating physicians and for the evaluation of

symptoms suggestive of CAD. Patients provided written informed consent to participate in the

study. Inclusion and exclusion criteria have been previously published [7] and can be found in

S8 File.

Development and validation groups. The study population was derived from a pooled

individual patient-level analysis stratified by unique time points and into development and val-

idation cohorts. The development cohort was comprised of symptomatic patients referred to

cardiac catheterization for the evaluation of CAD and consecutively enrolled between April

2017 –December 2017 (N = 696) and included asymptomatic individuals without CVD

(N = 576). A separate validation cohort prospectively consecutively enrolled symptomatic

patients referred to cardiac catheterization between March 2019 –November 2019 (N = 1,023).

The data sources for the development and validation cohorts were separate with no data from

the validation group used for development. Therefore, the validation group is considered

blinded.

Primary and secondary study objectives

The primary objective was to develop and validate an ML algorithm for the prediction of an

elevated LVEDP� 25 mmHg. LVEDP was measured invasively at the time of cardiac catheter-

ization using conventional techniques for left ventricular pressure assessments. For the pri-

mary objective, an analysis using threshold of LVEDP of 25 mmHg (study cohort) was chosen

and compared to individuals with a normal LVEDP defined as� 12 mmHg (control cohort).

These thresholds were selected to reflect those LVEDP measurements that are likely to be suffi-

ciently high to result in symptoms (elevated LVEDP) or absence of symptoms (normal

LVEDP), as they relate to a spectrum of symptoms among CV patients undergoing angiogra-

phy, and those with obstructive and non-obstructive CAD [25, 26].

Secondary objectives included those analyses to refine the primary objective within the fol-

lowing 5 categories:

1. Performance of the machine-learned predictor for an elevated LVEDP� 25 mmHg among

a propensity-matched cohort (scoring using age and gender).

2. Performance of the machine-learned predictor for an elevated LVEDP across a spectrum of

comparative LVEDP thresholds (<12 through 24 at 1 mmHg increments).

3. Sub-group performance stratified by age (<60 vs.�60), gender, comorbidities, EF (<50%

vs�50%), CAD status determined at angiography [obstructive CAD (defined as�1 lesion

with a stenosis of 70%; or�1 lesion with a fractional flow reserve of�0.80; or�1 lesion

with an instantaneous wave-free ratio of�0.89) vs non-obstructive CAD], ethnicity, and

enrollment site (stratified by number of study subjects enrolled N�50 vs N<50).
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4. Safety analysis and predictive accuracy of the machine-learned predictor using a healthy

control cohort to determine the specificity and negative predictive value of the algorithm,

and;

5. Bayesian analysis to determine the post-test (i.e., posterior) probability of the machine-

learned predictor based on varying the pre-test probability (i.e., low, intermediate, and high

prior probability of elevated LV filling pressures) among symptomatic patients.

Acquisition system description

The acquisition system (CorVista Capture™ device) simultaneously collects two modalities of

time series data: orthogonal voltage gradient (OVG) data, representing cardiac electro-

mechanical activity analyzed in phase space, and photoplethysmography (PPG) data represent-

ing blood volume changes as a measurement of distal perfusion.

Consecutive study subjects underwent signal acquisition immediately prior to angiography

or within seven days prior to the procedure. In addition to OVG and PPG data, the device also

captured patient-specific metadata (gender, age, height and weight). Signal data was acquired

for 3.5 minutes.

Raw data collection

The OVG signal is collected using electrodes attached to the skin (S9 File). Specifically, the sig-

nal is acquired at 8kHz (i.e., 8,000 samples per second, with each consecutive pair of samples

separated by 0.000125 seconds) from seven electrodes at an amplitude resolution of 0.024

microvolts. The signal originates from three bipolar pairs of electrodes collecting data from the

coronal, sagittal and transverse planes, and the seventh electrode acting as the reference. See S9

File for further details. Similar to existing signal collection methods, the OVG measures the bio-

potential at the surface of the skin caused by cardiac electrical activity. While the OVG signal

acquisition resembles ECG, it differs with greater sampling frequency (conventional ECG sam-

pling frequency of 500-2000Hz) by a factor of 4–16 and provides broader spatial information

due to the orthogonal lead configuration and vectors along different planes of the body [27, 28].

The OVG biopotential data is represented within a three-dimensional phase space, where

the parameters of the phase space are defined by the three bipolar orthogonal acquisition chan-

nels. Specifically, the amplitudes of three voltage gradient data points from the three channels

form a three-dimensional coordinate within the phase space. As the signal processes through

time, it traces a phase space trajectory. The PPG signal contains red and infrared light compo-

nents, both collected at 500Hz via a finger clip sensor. The pulse wave is captured as the

absorption of light in the tissue varies based on changes in cardiac activity.

Development & validation approach for the machine learning predictor

Development and validation of a machine learning predictor occurred in two distinct phases.

In the first phase, the machine learning predictor was trained using the development dataset.

Upon completion, the machine-learned predictor was finalized such that no further modifica-

tions were permitted. Then, in the second phase, the machine learning predictor was tested in

the blinded validation cohort and the performance was assessed.

Signal processing and development of the machine-learned predictor

The sequence for processing a patient’s data to generate the ML prediction occurred in four

steps.
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Step 1: Confirmation of signal quality. As an initial processing stage, the signal was con-

firmed to have adequate quality to proceed through the next three steps. Signal quality acts to

check for the presence of noise generated by common sources in a clinical environment. The

signal quality assessment has been previously published [8], and will be summarized herein.

The OVG signal is examined for the presence of powerline noise, which is the electrical noise

at the frequency at which alternating current (AC) power is delivered (i.e., to electrical outlets,

etc.); specifically, this is 60 cycles per second (Hz) in North America. The OVG signal is also

examined for high-frequency noise. A SNR of 57 was considered acceptable for powerline

noise, and of 19 for high frequency noise. The PPG signal is examined for sensor saturation,

which can occur when the light emitted from the LED on one side of the finger clip directly

enters the sensor on the opposite site of the clip without transiting the finger. The light is

strong because it isn’t attenuated by the finger, and therefore an optical value is registered that

exceeds the maximum measurable value. Excessive occurrence of this situation reduces the

physiological information in the signal, and results in a prompt to attempt to reacquire the sig-

nal. SNR is not applicable to this score because the occurrence is transient.

Step 2: OVG and PPG feature extraction. After signal quality assessment, features were

extracted from the signal. We defined a feature as a characteristic of the data that is automati-

cally measurable on any acquired signal. A spectrum of feature domains of signal characteriza-

tion were used in the present analysis and include the dynamics of the OVG and PPG signals

in isolation; the synchronization dynamics of the OVG and PPG signals, the spectral proper-

ties of each signal modality; deviations of the OVG signal from subject-specific models; both

conventional time-domain features and variations of those features; phase space features; PPG

pulse-wave indicators; and approximation of a patient’s respiration waveform (see S3 File).

For example, the variation in the atrial depolarization duration is a feature extracted from the

OVG signal in the time domain. Specifically, the duration of the atrial depolarization is mea-

sured on each cardiac cycle which forms a distribution of durations across the length of data

acquisition. The standard deviation of this distribution is then calculated to represent the vari-

ation in the atrial depolarization duration. Examples of other features can be found following

in S3 File.

The OVG data represents the entirety of the electrical biopotential signals plotted on axes

corresponding to the signal amplitude in millivolts of each channel, where ventricular depolar-

ization and repolarization, and atrial depolarization, appear visually as loops. While this OVG

data may appear similar across different people, it is unique for a given individual, therefore

generating unique feature vectors in the high-dimensional feature space.

Step 3: Outlier detection. Mathematically outlying subjects were identified based on the

signal’s feature values using the Isolation Forest algorithm [29]. Excluding outlying data

ensures that the algorithm is not exposed to any data that is significantly differently than the

development data.

Step 4: Machine learned model optimization. 13 machine-learned models optimized to

return high values for elevated LVEDP and low values for non-elevated LVEDP were evaluated

given the features as input. Each model was trained individually by varying the subjects, fea-

tures and thresholds. The models also varied, from Random Forest [30], Extreme Gradient

Boosting [31] and Elastic Net [32]. See S10 File for a description of the algorithm, data, and

hyperparameters for each model, as well as an explanatory figure for Extreme Gradient Boost-

ing. Each of the 13 models were individually performant based on stratified 5-fold cross-vali-

dation repeated for 100 iterations (to vary the train/test folds) within the development data

(S11 File), but represent unique analyses of LVEDP assessment. To capture the diversity of

each model in a final single prediction, which is intended to eliminate the bias associated

with the selection of a single model and thus reduce the likelihood over overfitting on the
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development data, the 13 model were amalgamated into a single predictive ensemble. The

ensemble, composed of an average of the normalized outputs from the constituent models, is

intended to on-average outperform any model that we may have selected from the pool of 13

when applied to new data [33].

Statistical analysis

Analyses were performed to determine the diagnostic performance of the machine learned

predictor used as a continuous measurement (independent variable) on the prediction of

LVEDP (dependent variable) adjudicated as elevated (�25mmHg) or normal (�12mmHg). A

threshold was then established on the continuous measurement to yield a binary output, after

which standard techniques were used to calculate sensitivity, specificity, negative and positive

predictive values with each study subject categorized as either a true negative, true positive,

false negative, and false positive. R 3.5.2 was used for statistical calculations, including 95%

CIs, relevant statistical tests, ROC-AUCs, and propensity matching between the elevated

LVEDP and control cohort. CIs were calculated using De Long’s method for AUC, and Clop-

per Pearson for sensitivity and specificity. Comparisons between ROC-AUCs were computed

with DeLong’s test. Independent clinical predictors for an elevated LVEDP were calculated

using multivariable logistic regression analyses. Permutation analysis was used to determine

feature contribution within the machine learning model [30].

A simulation of BNP performance was performed using the known distributions of mea-

sured BNP values [2, 3], and specifically the estimated minimums, 25th percentiles, medians,

75th percentiles and maximums [2, 3] Specifically, the performance of BNP, as a commonly

used point-of-care test for the prediction of heart failure, was explored using published studies

that included patients with similar clinical characteristics to those in the present study (symp-

toms suggestive of decompensated HF [3], those with HFpEF, and those with obesity [2]) and

to compare the post-test probability of the machine-learned predictor vs BNP. This simulation

was then used to explore the sequential prediction of an elevated LVEDP [2] and non-elevated

LVEDP [3] (i.e. dyspnea due to non-cardiac causes) using the BNP post-test (i.e., posterior)

probability as the pre-test (i.e., prior) probability for the machine-learned predictor. Therefore,

to propose how the present results may be used in clinical practice, the sequence of this analy-

sis is the following: pre-test probability! BNP post-test probability used as the machine-

learned posterior probability!machine-learned predictor post-test probability! prediction

of elevated LVEDP; and to determine a net reclassification index (NRI) within this sequence

[34].

The simulation of BNP performance was performed using the distributions of measured

BNP values in two relevant publications cohorts [2, 3], specifically the estimated minimums,

25th percentiles, medians, 75th percentiles and maximums using boxplots. The approximate

values of the constraining statistics for the two BNP datasets are as follows: 0ng/mL minimum

for both datasets, 25th percentile of 75ng/mL for the non-cardiac etiology dataset and 250ng/

mL for the obese HFpEF dataset, respective medians of 190ng/ML and 250ng/mL, 75th per-

centiles of 475ng/mL and 750ng/mL, and maximums of 1075ng/mL and 5000ng/mL.

These statistics were used as constraints to generate a simulated distribution of BNP for

each of the cohorts, matching the number of subjects in the non-elevated and elevated LVEDP

groups in the present work (258 subjects in the non-cardiac etiology group and 79 subjects in

the obese HFpEF group). The performance of BNP was then assessed using this simulated

data, from which AUC can be calculated, and thresholds of 50pg/mL and 150pg/mL were

applied to calculate any statistics requiring a binary result (i.e., test-negative or test-positive to

calculate sensitivity, specificity, PPV, NPV, likelihood ratios). The simulation was repeated for
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1000 iterations with the values of the performance statistics averaged and confidence intervals

calculated using the distribution of the statistics over the iterations (i.e., values at 2.5th and

97.5th percentiles). The simulation result was analyzed using a Bayesian methodology and to

calculate the NRI for the ML predictor based on published methods [34].
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