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Background and purpose: In head and neck squamous cell carcinoma (HNSCC) patients, the radiation dose to
nearby organs at risk can be reduced by restricting elective neck irradiation from lymph node levels to individual
lymph nodes. However, manual delineation of every individual lymph node is time-consuming and error prone.
Therefore, automatic magnetic resonance imaging (MRI) segmentation of individual lymph nodes was developed
and tested using a convolutional neural network (CNN).

Materials and methods: In 50 HNSCC patients (UMC-Utrecht), individual lymph nodes located in lymph node
levels Ib-II-III-IV-V were manually segmented on MRI by consensus of two experts, obtaining ground truth
segmentations. A 3D CNN (nnU-Net) was trained on 40 patients and tested on 10. Evaluation metrics were Dice
Similarity Coefficient (DSC), recall, precision, and F1-score. The segmentations of the CNN was compared to
segmentations of two observers. Transfer learning was used with 20 additional patients to re-train and test the
CNN in another medical center.

Results: nnU-Net produced automatic segmentations of elective lymph nodes with median DSC: 0.72, recall: 0.76,
precision: 0.78, and F1l-score: 0.78. The CNN had higher recall compared to both observers (p = 0.002). No
difference in evaluation scores of the networks in both medical centers was found after re-training with 5 or 10
patients.

Conclusion: nnU-Net was able to automatically segment individual lymph nodes on MRI. The detection rate of
lymph nodes using nnU-Net was higher than manual segmentations. Re-training nnU-Net was required to suc-
cessfully transfer the network to the other medical center.

1. Introduction Radiotherapy for HNSCC patients generally includes a high dose to

the primary tumor and lymph nodes with macroscopic metastases, with

Radiotherapy for patients with head and neck squamous cell carci-
noma (HNSCC) is associated with dose-dependent long-term toxicity
such as dysphagia [1], xerostomia [2], hypothyroidism [3], and carotid
stenosis [4]. Our center aims to use new imaging techniques to redefine
target volumes in HNSCC patients, reducing radiotherapy toxicity
without compromising oncological outcomes.

elective neck irradiation (ENI) often added as a lower radiation dose to
lymph node levels at risk for microscopic metastases. Given that regional
recurrence rates are low in literature (1-5 %) [5,6], the ENI dose might
be too high or the elective target volumes too large [7]. Studies already
have successfully reduced the ENI dose without increasing the regional
recurrence rates [8-11].

Abbreviations: HNSCC, head and neck squamous cell carcinoma; ENI, elective neck irradiation; MRI, magnetic resonance imaging; MR-Linac, MRI Linac; CNNs,
convolutional neural networks; T2 mDixon TSE, multiple Dixon T2-weighted turbo spin echo; EORTC, European Organization for Research and Treatment of Cancer;

GPU, graphical processing unit; SPSS, Statistical Package for Social Sciences.
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The radiation dose to the surrounding tissues can be further reduced
by converting ENI target volumes from conventional lymph node levels
to individual lymph nodes within these levels. These so-called “elective
lymph nodes” are not suspected of containing overt metastases based on
histology or radiology, but there is a risk of occult metastases, war-
ranting elective treatment [5,7,12]. The MRI Linac (MR-Linac) will be
used for this new treatment concept, as elective lymph nodes of HNSCC
patients are better visualized with magnetic resonance imaging (MRI)
due its superior soft tissue contrast compared to CT [13-15]. Moreover,
day-to-day dose delivery can be closely monitored and radiotherapy
plans can be adapted if necessary. In a previous planning study
comparing the new concept with conventional treatment, significant
reductions in the mean dose of >5 Gy were achievable in the subman-
dibular gland, carotid arteries, and thyroid gland [14].

Although individual elective lymph node irradiation is promising,
the large number of target structures requiring segmentation poses a
practical challenge to its clinical adoption. With approximately 70
elective lymph nodes per patient on MRI, manual segmentation by the
radiation oncologist is time-consuming. Manual target and OAR seg-
mentation for HNSCC patients takes 2-3 h [16,17], with an estimated
additional hour for elective lymph nodes.. This extra time, along with
delineating multiple small structures might increase the risk of errors.

Automatic segmentation of elective lymph nodes could address these
issues. Recent developments in model-based [18,19], atlas-based
[20-22], and machine learning methods [23] have enabled automatic
segmentation of OARs in HNSCC patients. Deep learning networks,
including convolutional neural networks, provide the best performance
[24-27] and save time in clinical workflows [28]. Unfortunately few
MRI-based deep learning models exists for automatically segmenting the
primary tumor, elective treatment fields, and OARs in HNSSC patients
[29-32], and none are available for elective lymph nodes.

In this study, a state-of-the-art 3D convolutional neural network
(CNN) was trained and tested to automatically segment the elective and
suspect individual lymph nodes in HNSCC patients on MRI. Different
observers’ manual lymph node segmentations were compared with the
automatic segmentations of the CNN. Additionally, transfer learning was
evaluated to assess the CNN’s performance on data from another med-
ical center.
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2. Materials and methods
2.1. Study design and patient selection

MR images of 50 patients with HNSCC from the larynx, hypophar-
ynx, or oropharynx were retrospectively collected in the UMCU, the
Netherlands. For transfer learning purposes, additional MR images of 20
patients were retrospectively collected at Memorial Sloan Kettering
Cancer Centre (MSKCC), New York, USA. All patients consented to use
their imaging data (UMCU PREDICT = NL57164.041.16, UMCU UP-
GRADE = NL46354.091.15 or MSKCC = 16-1648). Patient, tumor, and
treatment characteristics are summarized in Supplementary Table 1/2.

2.2. Imaging

Individual lymph nodes and lymph node levels Ib-II-III-IV-V were
identified using multiple Dixon T2-weighted turbo spin echo (T2
mDixon TSE) MRI without using exogenous contrast [33]. Water and in-
phase images of the T2 mDixon TSE were used as input channels CNN
training. Both medical centers used different vendors, receiver coils,
echo/repetition times, slice thickness, and in-plane resolutions
(Supplementary Table 3). No 3D scan was used as the fat suppression of
these sequences is not sufficient in the lower neck.

During all imaging procedures, patients in the UMCU were immo-
bilized in a custom-made 5-point thermoplastic mask (MacroMedics) to
prevent motion and ensure reproducible patient setup. In the MSKCC, no
fixation procedures were applied.

2.3. Ground truth segmentations

All individual lymph node segmentations and lymph node level
segmentations (to select lymph nodes inside these levels) were per-
formed manually on the water-only image of the T2 mDixon TSE, as with
these images individual lymph nodes can be distinguished from the
surrounding fatty environment. The in-phase image of the T2 mDixon
TSE provided additional information for segmenting the lymph node
levels (Fig. 1). All individual lymph nodes visible in at least two
sequential transverse slices were identified and delineated. The con-
ventional lymph node levels Ib/II/1I1/IV/V were segmented according to
the guidelines published by the European Organization for Research and
Treatment of Cancer (EORTC) [34].

Fig. 1. Transverse water-only image (A) and in-phase image (B) of a T2 mDixon TSE MRI of a HNSCC patient depicting individual lymph nodes (red), lymph node
levels III (green), and level V (blue). The visibility of individual lymph nodes is better on the water image, whereas the borders of the lymph node levels are better

visible on the in-phase image.
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Fig. 2. 3D example of automatic segmentations of lymph node levels II/III/IV/V on the left side (A) and individual lymph nodes on the right side (B) in one HNSCC

patient produced by a trained neural network (nnU-Net).

One observer (FR') manually segmented individual lymph nodes and
lymph node levels. The segmentations were reviewed with one of the
dedicated HNSCC radiation oncologists in both departments (UMCU:
MR!, PD!, and CT!. MSKCC: KZ?) and if necessary adaptations were
made by consensus. The approved segmentations served as ground truth
(GD).

2.4. Training convolutional neural networks

In this study nnU-Net [35] served as state-of-the-art CNN based on
deep learning principles. nnU-Net won several segmentation challenges
so far [35] and comes with the advantage that it has automatic task-
dependent hyper-parameter optimization.

Two different CNNs were developed, one for segmenting the lymph
node levels and one for the individual lymph nodes. For each patient
lymph node levels were predicted by the CNN and manually checked by
the radiation oncologist. The confirmed level segmentations were used
as boundaries during post-processing to select the required lymph nodes.
Both elective and metastatic individual lymph nodes were included as
GT segmentations.

The UMCU images and GT segmentations of 40 patients were used as
training cases (UMCU train set). A graphical processing unit Tesla P100
(NVIDIA Corporation) with 16 GB of memory was used for training. All
pre-processing, training, and post-processing steps are described in
Supplementary file 1. To evaluate the potential of transfer learning for
reducing the anticipated performance decline when applying the
network in a different medical center, we re-trained the CNN with a
limited dataset comprising images and ground truth segmentations of
ten MSKCC patients (MSKCC training set). The pre-trained weights of
the networks based on the UMCU dataset were transferred to the new
model prior to retraining with MSKCC data. The learning rate of the
networks was reduced to 1 x 107 to prevent the pre-trained weights
from being lost in the first epochs. This process was repeated using five
and ten MSKCC image sets to assess the impact of retraining dataset size.

2.5. Testing networks

2.5.1. Evaluation metrics to compare network performances

The UMCU images and GT segmentations of the ten remaining pa-
tients (UMCU test set) were used to evaluate both networks. Evaluation
metrics for the lymph node levels included the Dice Similarity Coeffi-
cient (DSC) and the 95th percentile Hausdorff distance in mm (HD95)

1 Observers in the UMC-Utrecht: FR= Floris C.J. Reinders, MR= Mischa de
Ridder, PD= Patricia A.H. Doornaert, CT= Chris H.J. Terhaard.
2 Observer in MSKCC: KZ = Kaveh Zakeri.

[36]. For individual lymph nodes, additional evaluation metrics were
recall (i.e., sensitivity or true positive rate), precision (i.e., positive
predictive value), and Fl-score (combination of recall and precision),
which all were measured per lymph node [37]. HD95 was omitted to
evaluate individual lymph node segmentations since false positive and
false negative predictions disproportionally increased this metric.

True positive lymph nodes were defined as isolated predictions that
intersected with GT segmentations, while false positive lymph nodes
were defined as isolated predictions that did not cross GT segmentations.
In the case of individual elective lymph node irradiation, obtaining a
network with a high recall score is especially important so that no lymph
nodes will be missed during treatment. DSC for individual lymph nodes
was only evaluated on true positive predictions, as false positive lymph
nodes disproportionally increased this metric.

To evaluate the performance of the CNN in MSKCC, baseline results
were first produced by applying the UMCU CNN directly to ten MSKCC
images (MSKCC test set) without applying transfer learning. After the
CNNs were re-trained with five and ten MSKCC patients, the models
were tested on the MSKCC test set.

2.5.2. Observer performance of individual lymph nodes segmentations

To determine the additional value of the CNN in the clinic, the per-
formance of UMCU observers with manual segmentations was compared
to the output of the CNN. To examine the performance of different ob-
servers, the individual lymph nodes on one side of the neck of ten pa-
tients (UMCU test set) were independently re-segmented by two
observers (MR! and PD'). The segmentations of the two observers and
the CNN predictions were compared with the UMCU GT segmentations
using the same evaluation metrics described in 2.6.1.

Additionally, an interobserver analysis was performed by comparing
the DSC scores from segmentations of observer 1 and 2 with the DSC
scores from nnU-Net and the ground truth using a Wilcoxon matched-
pair signed rank test.

2.6. Statistical analysis

Due to the small sample size, non-parametric testing was applied.
Therefore, descriptive evaluation variables were reported as median
with an interquartile range (IQR). Interobserver differences were
analyzed with the Friedman test. The UMCU and MSKCC evaluation
scores were compared with the Mann-Whitney U test. All statistical
testing was performed with Statistical Package for Social Sciences (SPSS)
version 25, IBM, New York, USA. The alpha level of statistical signifi-
cance was set at 0.05. The Bonferroni correction was applied for mul-
tiple tests on the two metric scores across all five lymph node levels
(alpha level = 0.05/10 = 0.005) and the four metric scores for lymph
nodes (alpha level = 0.05/4 = 0.0125).
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Fig. 3. Performance of automatic segmentations of and lymph node levels Ib-V
(A) and individual lymph nodes (B) produced by a trained neural network
(nnU-Net) for 10 HNSCC patients (UMCU test-set). The performance metrics for
the lymph node levels included DSC and Hausdorff Distance 95th percentile
(HD95), for the individual lymph nodes this was dice (DSC), Recall, Precision,
and F1-score. Boxes represent the first, second, and third quartile whereas the
whiskers represent the 95 percentile of all values. The dots represent outliers
above or below the 2.5-97.5 percentile.
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3. Results
3.1. Ground truth segmentations UMCU and MSKCC database

In total, 2851 and 890 lymph nodes were segmented in UMCU and
MSKCC database images. The median number of segmented individual
lymph nodes per patient was 56 (IQR = 46-68) in the UMCU database
and 43 (IQR = 32-53) in the MSKCC database. After post-processing,
lymph nodes or groups of lymph nodes had a mean volume of 0.16
em® (IQR = 0.09-0.33) in the UMCU database and 0.17 c¢cm® (IQR =
0.01-0.32) in the MSKCC database.

3.2. Automatic lymph node level segmentations UMCU

Lymph node levels Ib-II-III-IV-V were predicted by nnU-Net with a
median DSC score of 0.84/0.81/0.73/0.75/0.76 and HD95 of 4.1/4.1/
5.4/6.7/5.7 mm (Fig. 2/3A and Supplementary Table 4).

3.3. Automatic individual lymph node segmentation UMCU

Individual lymph node segmentations in the UMCU dataset using
nnU-Net resulted a median DSC score of 0.72, recall of 0.76, precision of
0.78, and F1-Score of 0.78 (Fig. 2/3B and Supplementary Table 5). Fig. 4
shows a comparison of ground truth labels with predictions of lymph
node levels and elective lymph nodes in one patient.

3.4. Transfer learning of the CNN

The nnU-Net trained with UMCU training set generated lower ac-
curacies on the MSKCC test set than on the UMCU test set regarding DSC
(0.57 vs. 0.72, p = 0.002) and recall (0.56 vs. 0.76, p = 0.007). No
differences were found for precision (0.79 vs. 0.78, p = 0.837) and F1
score (0.67 vs. 0.78, p = 0.019). Re-training nnU-Net with 10 patients
from the MSKCC re-training set improved segmentation results such that
no differences were found between the MSKCC and UMCU test set for all
evaluation scores (Fig. 5/Supplementary Table 6). Although not statis-
tically significant, there was a trend of a lower DSC, recall, and F1-score
and higher precision for the segmentations obtained with the adapted
nnU-Net (5 or 10 patients in the training set) compared to the UMCU test
results. The size of the re-training set (5 or 10 patients) did not signifi-
cantly impact the results of DSC (0.64 vs. 0.64, p = 0.796), recall (0.62

[] False negative lymph nodes
I True positive lymph nodes
I False positive lymph nodes
[ |

Il | Lymph node levels |-V

[ |

Fig. 4. Ground truth labels (white) and automatic nnU-Net predictions (red) of lymph nodes on consecutive transversal MRI slices from one patient showing true
positives voxels (pink), false positives voxels (red), and false negatives voxels (white). Ground truth segmentations of lymph node levels I-V are displayed as an

overlay mask (blue/purple/turquoise).
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vs. 0.64, p = 0.493), precision (0.85 vs. 0.85, p = 0.853), and F1-scores
(0.78 vs. 0.82, p = 0.592).

In the case of lymph node levels, similar results were obtained, with
no differences in evaluation scores (DSC/HD95) for all levels (except
level V) between the UMCU and MSKCC test set after re-training the
CNN with 5 or 10 MSKCC patients (Supplementary file 2).

3.5. Observers vs. CNN performance of individual lymph node
segmentations

In the UMCU test set, nnU-Net produced segmentations with higher
recall (p = 0.002) and F1 score (p = 0.012) compared to two indepen-
dent radiation oncologists. No differences were found regarding DSC (p
= 0.018) and precision (p = 0.138) (Fig. 6/Supplementary Table 7). The
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Fig. 5. Performance automatic segmentations of individual lymph nodes produced by a trained neural network (nnU-Net) in 10 HNSCC patients of the UMCU test-set
(green) and the MSKCC test-set (purple) regarding dice (DSC), Recall, Precision, and F1 score. The evaluation on the MSKCC test-set was done with the same network
without re-training (R0), re-training with an additional five (R5) and ten patients (R10). Boxes represent the first, second, and third quartiles, whereas the whiskers

represent the 95 percentile of all values. The dots represent outliers above or below the 2.5-97.5 percentile. Significant p-values of testing evaluation scores are
marked with * (p < 0.0125).
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Fig. 6. Performance of individual lymph node segmentations produced by nnU-Net compared to two independent radiation oncologists regarding dice (DSC), Recall,
Precision, and F1 score. The nnU-Net (nnU) scores are in green, and the observer’s (Obs1/2) scores are in red. Boxes represent the first, second, and third quartiles,

whereas the whiskers represent the 95 percentile of all values. The dots represent outliers above or below the 2.5-97.5 percentile. Significant p-values of testing
evaluation scores are marked with * (p < 0.0125).
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comparison of the segmentations of observer 1 and observer 2 resulted
in a median DSC of 0.57 which was lower but not significantly different
from nnU-Net segmentations (Supplementary Table 7). The number of
segmented lymph nodes per patient varied across segmentations of the
ground truth, observer 1/2, and nnU-Net with differences up to 12
lymph nodes (Supplementary Table 8).

4. Discussion

This study found that using a 3D CNN (nnU-Net) for automatic in-
dividual lymph node segmentation in HNSCC patients on MRI led to
better recall and F1-scores than manual segmentation, supporting in-
dividual elective lymph node irradiation with potential OAR sparing.
However, similar results could not be achieved in another medical
center without retraining the CNN.

DSC scores of lymph node level segmentations aligned with the
limited literature on MRI-based automatic segmentations of these
structures [38,39]. Prior MRI studies focused on lymph node levels II
and III, while this study included levels Ib-V.

While some studies examined CT-based neural networks to distin-
guish between pathological and benign cervical lymph nodes in HNSCC
patients [40-45], only one developed [46] a CT-based CNN for auto-
matic individual lymph node detection and segmentation. That model
had similar recall (0.77 vs. 0.76), but higher precision (0.98 vs. 0.78)
and F1 score (0.86 vs. 0.78). However, our metrics may have been
negatively affected since MRI typically detects more small lymph nodes
than CT [14], which are harder to predict by a CNN [47]. Additionally,
our MRI had a larger slice thickness (3/5/6 vs. 2 mm), providing less
contextual information during training. For the purpose of irradiating
elective lymph nodes it is of utmost importance to detect as many lymph
nodes as possible which is comparable with this other study.

In this study, a median of 56 lymph nodes (IQR = 46-68) were
segmented on MRI, lower than the 34-46 lymph nodes found in several
pathology studies [48-51]. However, we excluded lymph nodes only
visible in one transverse MRI slice, and small lymph nodes may have
been missed due to 3 mm slice thickness.

After re-training the CNN with only 10 patients, no distinct differ-
ences were found between evaluation metrics of individual lymph nodes
and most lymph node level segmentations of the MSKCC and UMCU test
set. A small re-training set of 5-10 patients can significantly improve
segmentation results, enabling automatic lymph node detection in
medical centers worldwide with limited recourses.

Individual lymph node segmentations from the re-trained CNN on
the MSKCC images showed a trend of lower DSC, recall, and F1-score.
Moreover, level-V segmentations showed worse DSC and HD95. One
reason for lower performance scores may be that four patients in the
MSKCC database had post-radiotherapy images, resulting in smaller, less
visible lymph nodes, which were included due to data scarcity. Addi-
tionally, the larger slice thickness in the MSKCC dataset may have hin-
dered the detection of small lymph nodes. The poorer performance in
predicting level V in the MSKCC test set might be caused by the different
scanning setups using a head coil instead of flex coils without immobi-
lization mask, which might have resulted in lower signal quality in the
lower neck. Since increasing the re-training set from 5 to 10 patients did
not significantly improve results, aligning scanning protocols between
medical centers should be the first focus in enhancing the outcomes for
MSKCC use of automatic individual lymph node segmentation. None-
theless, a larger re-training set would be beneficial, and repeating the
experiment with more patients would be worthwhile.

Comparing independent observers’ and CNN segmentations revealed
no significant difference in DSC and precision, but the CNN had higher
recall and Fl-scores. Radiation oncologists might have missed lymph
nodes due to time constraints, while the CNN’s higher detection rate
ensures more thorough assessments. Future studies should explore its
potential to improve efficiency and reduce oncologists’ workload.

The interobserver analysis of lymph node segmentations showed a
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trend of lower DSC scores between observer 1 and 2 compared to nnU-
Net, indicating difficulties in identifying correct structures. This likely
caused variations in the number of segmented lymph nodes among the
observers, nnU-Net, and the ground truth, particularly with smaller
lymph nodes. Since small elective lymph nodes (<4 mm) pose a low risk
of occult metastasis but have high selection variability, they are
excluded in the feasibility study for individual elective lymph node
irradiation.

Our study has several limitations. The most important is the rela-
tively small dataset used to train the CNNs, still the UMCU dataset in-
cludes over 2800 lymph nodes. Another limitation is that the GT was
defined by two experts, allowing for interobserver variation. Addition-
ally, the scan quality of the multi-slice T2 weighted mDixon TSE scans
was suboptimal in the cranial and caudal regions, making it difficult to
distinguish small lymph nodes from other structures, particularly in
levels IV and V. Improving MRI quality might decrease interobserver
variability of individual lymph node segmentations and enhance CNN
performance.

Future work will explore the influence of automatic lymph node
segmentations on the dosimetric evaluation of our new treatment
concept. Also, observing the intra-observer variation of the primary
observer (FR) could provide insights into the challenges of segmenting
individual lymph nodes. For transfer learning, future studies could
incrementally increase the training group by one patient to determine
the number needed for acceptable performance. A bootstrap process
using multiple random re-training sets could also yield more robust
results.

The CNN developed in this study is currently being used in the
feasibility study, where the first patients are currently being treated with
individual elective lymph node irradiation on the MR-linac [52].

This is the first study describing the automatic segmentation of in-
dividual lymph nodes in HNSCC patients on MRI using state-of-the-art
CNNs. Notably, nnU-Net had a higher detection rate of lymph nodes
than manual segmentations, supporting the implementation of individ-
ual elective lymph node irradiation with improved sparing of OARs.
Retraining was required when applying the model to images from
another scanner with a different acquisition protocol, highlighting a
common challenge in automatic segmentation on MRI due to varying
acquisition parameters.
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