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Abstract: Myelin phagocytosis by macrophages has been an essential feature of demyelinating
diseases in the central and peripheral nervous systems, including Guillain–Barré syndrome (GBS),
chronic inflammatory demyelinating polyneuropathy (CIDP), and multiple sclerosis (MS). The dis-
covery of autoantibodies, including anti-ganglioside GM1 antibodies in the axonal form of GBS,
anti-neurofascin 155 and anti-contactin 1 antibodies in typical and distal forms of CIDP, and anti-
aquaporin 4 antibodies in neuromyelitis optica, contributed to the understanding of the disease pro-
cess in a subpopulation of patients conventionally diagnosed with demyelinating diseases. However,
patients with these antibodies are now considered to have independent disease entities, including
acute motor axonal neuropathy, nodopathy or paranodopathy, and neuromyelitis optica spectrum
disorder, because primary lesions in these diseases are distinct from those in conventional demyelinat-
ing diseases. Therefore, the mechanisms underlying demyelination caused by macrophages remain
unclear. Electron microscopy studies revealed that macrophages destroy myelin as if they are the
principal players in the demyelination process. Recent studies suggest that macrophages seem to
select specific sites of myelinated fibers, including the nodes of Ranvier, paranodes, and internodes,
for the initiation of demyelination in individual cases, indicating that specific components localized
to these sites play an important role in the behavior of macrophages that initiate myelin phagocytosis.
Along with the search for autoantibodies, the ultrastructural characterization of myelin phagocytosis
by macrophages is a crucial step in understanding the pathophysiology of demyelinating diseases
and for the future development of targeted therapies.

Keywords: demyelination; electron microscopy; macrophage; paranode; pathogenesis; pathology;
Schwann cell; the node of Ranvier; treatment

1. Introduction

Macrophages play an important role, not only in normal immune system mainte-
nance, but also in pathological conditions. Myelin phagocytosis by macrophages has
been an essential feature of demyelinating diseases in the central and peripheral nervous
systems, including Guillain–Barré syndrome (GBS), chronic inflammatory demyelinating
polyneuropathy (CIDP), and multiple sclerosis (MS) [1–5]. Particularly, early ultrastructural
studies, using biopsy specimens from patients with GBS and CIDP, have demonstrated
the stripping of morphologically normal myelin lamellae by cytoplasmic processes of
macrophages [1,6]. These macrophages caused researchers to assume that they are active
players in the disease process, rather than mere scavengers of unnecessary materials. The
discovery of autoantibodies directed against the constituents of the nervous system, by later
researchers, contributed to the understanding of the disease process in a subpopulation of
patients diagnosed with these diseases. For example, a concept that molecular mimicry
between gangliosides located at the axolemma and the surface epitopes of exogenous
pathogens induces the production of anti-ganglioside antibodies has been established
in the axonal form of GBS [7]. Recent studies revealed that IgG4 autoantibodies against
paranodal junction proteins found in a subpopulation of patients diagnosed with CIDP
cause aberrant nerve conduction owing to paranodal dissection [8,9]. Regarding diseases
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of the central nervous system, anti-aquaporin 4 (AQP4) antibodies were found to be pos-
itive in patients with neuromyelitic optica [10]. However, lesions in the nervous system
caused by these antibodies are distinct from those of conventional demyelination caused
by macrophages [8,11,12]. Hence, the mechanisms underlying demyelination owing to
myelin phagocytosis by macrophages remain unclear.

In this article, the mechanisms of demyelinating diseases are described by focusing on
the role of macrophages and autoantibodies.

2. Role of Macrophages and Autoantibodies in Demyelinating Diseases
2.1. GBS

GBS is an acute polyneuropathy, which typically occurs following infection [13]. This
disease was initially considered to be a demyelinating neuropathy, called acute inflam-
matory demyelinating polyneuropathy (AIDP), because a previous report demonstrated
demyelinating lesions owing to myelin phagocytosis by macrophages [1]. Later studies
revealed the presence of an axonal counterpart without the macrophage-associated de-
myelination as another form of GBS [11,14,15]. This axonal form of GBS is called acute
motor axonal neuropathy (AMAN) or acute motor sensory axonal neuropathy depending
on the absence or presence of sensory involvement [11]. The concept of molecular mimicry
was established through studies on AMAN with anti-ganglioside GM1 antibodies that
occurred after a Campylobacter jejuni infection [13]. The widely accepted theories are that
the attachment of IgG autoantibodies to GM1, which is localized to the axolemma of motor
fibers, and subsequent activation of complement cascades result in motor dysfunction in
patients with AMAN [13,16,17]. Although the autopsy specimens revealed the presence of
macrophages in the periaxonal space, macrophage-associated demyelinating lesions were
not found in patients with AMAN [11].

Conversely, an association between specific autoantibodies with the occurrence of
macrophage-associated demyelination in AIDP has not been clearly demonstrated. How-
ever, the presence of antecedent infections in patients with AIDP is similar to that in
patients with AMAN, which indicates similar immunological processes [18]. An associa-
tion between antibodies against moesin, which is expressed in the microvilli of Schwann
cells at the nodes of Ranvier, and AIDP has been suggested after cytomegalovirus infec-
tion [19]. An increased occurrence of AIDP after the Zika virus infection has also been
demonstrated [20]. Although an association between a specific anti-ganglioside antibody
and Zika virus-related GBS has not been demonstrated [21], peptide sharing was suggested
among proteins of the Zika virus, cytomegalovirus, and the human peripheral nervous
system [22,23]. Recently, a conflicting discussion on the association between SARS-CoV2
infection (i.e., COVID-19) and AIDP has become a topic of research [24–26].

2.2. CIDP

CIDP has been a chronic counterpart of AIDP because similar macrophage-associated
demyelination was reported as a pathological hallmark [2,4]. In contrast to AIDP, this
disease is rarely accompanied by antecedent infections. CIDP was initially defined as
neuropathy with a diffuse weakness of the limbs [2,27]. This classic form of CIDP was
designated as “typical CIDP” in the criteria proposed by the European Federation of
Neurological Societies and Peripheral Nerve Society (EFNS/PNS) and it is now frequently
used in daily practice [28]. In addition to the typical CIDP, the EFNS/PNS criteria define
five forms of “atypical CIDP”, which comprised multifocal acquired demyelinating sensory
and motor (MADSAM), distal acquired demyelinating symmetric (DADS), pure sensory,
pure motor, and focal subtypes [28]. Macrophage-associated demyelination was found
not only in a typical CIDP but also in major atypical CIDP subtypes, including MADSAM,
DADS, and pure sensory subtypes—although it is not found in all patients [29].

Recent studies demonstrated the presence of autoantibodies against paranodal junc-
tion components, including neurofascin 155 and contactin 1, in some patients diagnosed
with typical CIDP and DADS [8,30–34]. In patients with these antibodies, aberrant
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nerve conduction is caused by the detachment of paranodal myelin terminal loops from
the axolemma resulting from the deposition of autoantibodies to the paranodal junc-
tions [4,8,35,36]. Unlike AMAN, the deposition of complements is not found at the paran-
odes because the immunoglobulin subclass of these antibodies is IgG4 [8]. Because classical
demyelinating lesions associated with macrophages are not observed in patients with these
antibodies, the concept of nodopathy or paranodopathy has recently been proposed for
these patients [9,34]. However, patients with these antibodies constitute a minority in
the total CIDP population [8,32,33]. The mechanisms underlying macrophage-associated
demyelination remain to be elucidated.

2.3. MS and Related Diseases

MS is an inflammatory demyelinating disease of the central nervous system [3,37].
Based on the mode of progression, this disease is classified into four types: clinically
isolated syndrome, relapsing remitting MS, primary progressive MS, and secondary pro-
gressive MS [38]. Although MS has traditionally been considered a disease mediated by
T cells, particularly CD4-positive T cells reactive to myelin antigens [39], a recent study
regarding the efficacy of rituximab, a chimeric monoclonal antibody to CD20, in patients
with relapsing remitting MS suggested that B cells also play an important role in the
pathogenesis of this disease [40]. In actual fact, the presence of oligoclonal IgG bands in
the cerebrospinal fluid and deposition of IgG in active lesions have long been known as
hallmarks of this disease [3]. Additionally, increasing evidence suggests that macrophages
derived from circulating monocytes and resident macroglia play a pivotal role in the patho-
genesis of MS [41,42]. Autopsy specimens from patients with MS revealed macrophages
containing myelin debris in active lesions [43].

Whether neuromyelitis optica (also known as Devic’s disease), that preferentially
affects the optic nerve and spinal cord, is a subtype of MS or an independent disease
entity has been a controversy for a long time [44]. The discovery of disease-specific
antibodies against AQP4 in the sera from patients with neuromyelitis optica resulted in
significant progress regarding this concern [10]. Because AQP4 is expressed in astrocyte foot
processes at the blood–brain barrier [45], pathological findings of AQP4 are characterized
by perivascular lesions accompanied by deposition of IgG and complement [12]. Compared
with demyelinating lesions found in conventional MS, the myelinated fibers are relatively
preserved in these lesions [12]. Based on these findings, neuromyelitis optica is now
regarded as a primary astrocytopathy and is distinct from MS. As anti-AQP4 antibodies
are found to be associated with not only lesions in the optic nerves and spinal cord, but
also those in other sites of the central nervous system, the concept of neuromyelitis optica
spectrum disorder (NMOSD) has been proposed [46].

3. Morphology of Macrophages in Demyelination

Ultrastructural studies using nerve biopsy specimens obtained from patients with the
demyelinating form of GBS (i.e., AIDP) and those with CIDP have demonstrated putative
chronological sequence in the progression of demyelination resulting from myelin phago-
cytosis by macrophages [4,5]. Generally, the morphology and behavior of macrophages
participating in the demyelination process seem to be similar between AIDP and CIDP [4,5].
Various stages of demyelination may be seen in a single specimen (Figure 1), particularly
in specimens from patients with CIDP [4].

Although resident macrophages are present in the peripheral nervous system, blood-
derived macrophages that enter the endoneurium under the guidance of adhesion molecules,
such as ICAM-1, VCAM-1, and ELAM-1, can also participate in the demyelination pro-
cess [47–50]. Morphological distinction between these macrophages has not been clearly
established despite their functional differences [51]. Macrophages approach the myelinated
fibers and extend their cytoplasmic processes to enter the basement membrane tube sur-
rounding the myelinated fibers (Figure 2) [4]. A recent review by Park et al. suggested that
the entry sites of macrophages are limited to where myelin lamellae are partially degener-
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ated or separated from Schwann cell cytoplasm [52]. Along with invading the basement
membrane tube, the cytoplasm of macrophages apposed to myelin initiates degradation of
the myelin lamellae. Macrophages seem to peel off layers of myelin using their cytoplasmic
processes (Figure 3) [4,5]. Unraveling and disruption of the myelin lamellae apposed to the
cytoplasm of macrophages are also frequently observed [4,5,53].

Cells 2021, 10, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. Representative electron microscopy photograph of demyelination caused by myelin phagocytosis by macro-
phages. A cross section of a sural nerve biopsy specimen obtained from a patient with AIDP. Various stages of demye-
lination are observed. The arrow indicates a myelinated fiber surrounded by the cytoplasm of macrophage containing 
myelin debris. Bold black circles indicated by white asterisks are myelin. The arrowhead indicates a macrophage that 
completed demyelination. Demyelinated axons are indicated by black asterisks. Uranyl acetate and lead citrate staining. 
Scale bar = 2 m. 
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membrane tube surrounding the myelinated fibers (Figure 2) [4]. A recent review by Park 
et al. suggested that the entry sites of macrophages are limited to where myelin lamellae 
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Figure 1. Representative electron microscopy photograph of demyelination caused by myelin phagocytosis by macrophages.
A cross section of a sural nerve biopsy specimen obtained from a patient with AIDP. Various stages of demyelination
are observed. The arrow indicates a myelinated fiber surrounded by the cytoplasm of macrophage containing myelin
debris. Bold black circles indicated by white asterisks are myelin. The arrowhead indicates a macrophage that completed
demyelination. Demyelinated axons are indicated by black asterisks. Uranyl acetate and lead citrate staining. Scale
bar = 2 µm.
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Figure 2. A macrophage invading the basement membrane tube surrounding the myelinated fiber. A cross section of a 
sural nerve biopsy specimen obtained from a patient with AIDP. A macrophage whose nucleus is indicated by a black 
asterisk is invading the basement membrane tube that normally surrounds myelinated fibers. Along with the invasion 

Figure 2. A macrophage invading the basement membrane tube surrounding the myelinated fiber. A cross section of a sural
nerve biopsy specimen obtained from a patient with AIDP. A macrophage whose nucleus is indicated by a black asterisk is
invading the basement membrane tube that normally surrounds myelinated fibers. Along with the invasion into the basement
membrane tube, the cytoplasm of macrophages apposed to myelin initiates degradation of myelin (white asterisks). Note
that the cytoplasm of this macrophage located outside the basement membrane tube does not contain myelin debris. A
high-powered view of the region in the box in (A) is shown in (B). Basement membranes surrounding myelinated fibers are
indicated by arrowheads. Uranyl acetate and lead citrate staining. Scale bars = 2 µm (A) and 0.5 µm (B).
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basement membrane tube (Figure 5) [5,59]. Therefore, hydrolases released from macro-
phages may be involved in myelin lesions, including unraveling, disruption, and vesic-
ular dissolution. 

Figure 3. Stripping of the myelin lamellae by a cytoplasmic process of the macrophage. A cross section of a sural nerve
biopsy specimen obtained from a patient with AIDP. Cytoplasmic processes of the macrophage indicated by arrows peel off
the myelin layers. A basement membrane surrounding the myelinated fibers is indicated by arrowheads. Uranyl acetate
and lead citrate staining. Scale bar = 0.5 µm.

Vesicular dissolution of the myelin has been reported as another important lesion
associated with demyelinating diseases, including AIDP and MS (Figure 4) [1,54–58]. Most
studies describing this finding used autopsy specimens [54–58]. One of these studies used
specimens from patients with AIDP, which demonstrated that the vesicular dissolution
occurred where complements were deposited but macrophages were absent [56]. Therefore,
this finding might be an early morphological change occurring before a macrophage
invasion into the basement membrane tube of the myelinated fibers. However, similar
findings also seem to be closely associated with macrophages invading the basement
membrane tube (Figure 5) [5,59]. Therefore, hydrolases released from macrophages may be
involved in myelin lesions, including unraveling, disruption, and vesicular dissolution.
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AIDP. Vesicular dissolution of the myelin is seen in a space between the myelin lamellae indicated by asterisks. Vesicles 
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Figure 4. Vesicular dissolution of myelin. A cross section of a sural nerve biopsy specimen obtained from a patient with
AIDP. Vesicular dissolution of the myelin is seen in a space between the myelin lamellae indicated by asterisks. Vesicles
seem to be formed by the separation of the major dense lines (arrowheads). A process of macrophage indicated by an
arrow seems to be invading a gap created by the dissolution of myelin lamellae. Uranyl acetate and lead citrate staining.
Scale bar = 0.2 µm.

Despite these findings resulting in the breakdown of compacted myelin lamellae,
the uncompacted Schwann cell cytoplasm located outside the myelin lamellae remains
intact [4]. Once the myelin breakdown is completed, macrophages containing myelin
debris penetrate the basement membrane again to escape to the outer space (Figure 6) [4,5].

A similar demyelination process has also been reported in studies of experimental
allergic neuritis, which is an experimental model of GBS or CIDP [60,61], and experimental
allergic encephalomyelitis: a model of MS [62–64].
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Figure 5. A demyelinated axon. A cross section of a sural nerve biopsy specimen obtained from a patient with AIDP. A
demyelinated axon indicated by an asterisk is surrounded by a space filled with vesicular dissolution of the myelin. The
cytoplasm of a macrophage indicated by an arrow is also within the basement membrane tube. Uranyl acetate and lead
citrate staining. Scale bar = 1 µm.
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Figure 6. A macrophage escaping from the basement membrane tube surrounding the myelinated fiber. A cross section of a
sural nerve biopsy specimen obtained from a patient with AIDP. The sites at which the basement membrane was disrupted
are indicated by arrowheads. The nucleus of this macrophage is located outside of the basement membrane tube. Note that
an axon located within the basement membrane tube is completely demyelinated. A demyelinated axon and a macrophage
nucleus are indicated by a black asterisk and a white asterisk, respectively. Uranyl acetate and lead citrate staining. Scale
bar = 2 µm.

4. What Attracts Macrophages to Myelin?

Unlike that on anti-ganglioside GM1 antibodies in AMAN, anti-neurofascin 155 an-
tibodies in nodopathy or paranodopathy, and anti-AQP4 antibodies in NMOSD, knowl-
edge of the relationship between specific autoantibodies and demyelination caused by
macrophages is still limited. An association between antibodies against moesin, which is
expressed at the microvilli of the Schwann cells at the nodes of Ranvier, and AIDP following
cytomegalovirus infection has been suggested [19]. Gliomedin, galactocerebroside, and
ganglioside LM1 have also been suggested as target antigens in AIDP [65–68]. Although
recent emerging infectious diseases, including Zika virus infection and COVID-19, are
reported to be associated with AIDP rather than AMAN [20,26], causative autoantibod-
ies associated with these viruses have not been detected to date. Regarding CIDP, sural
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nerve biopsy specimens from a patient with antibodies to LM1 ganglioside, which is
abundant in myelin, revealed complement deposition on myelin and demyelination by
macrophages [69]. However, patients with anti-LM1 antibodies constitute only a minority
of the total CIDP population [70]. Recent studies revealed that antibodies to myelin oligo-
dendrocyte glycoprotein (MOG), expressed in the outermost layer of the myelin sheath,
were found in some of the patients with NMOSD negative for anti-AQP4 antibodies [71].
The location of the target antigen suggests myelin damage, which is distinct from astro-
cyte damage in NMOSD positive for anti-AQP4 antibodies [12]. However, patients with
conventional MS are typically negative for anti-MOG antibodies [72].

Based on the abovementioned results, the mechanism underlying demyelination, re-
sulting from myelin phagocytosis by macrophages, remains an enigma from the viewpoint
of autoantibodies. A recent electron microscopy study using longitudinal sections of biopsy
specimens from patients with AIDP suggested that macrophages seemed to select specific
sites of myelinated fibers, including the nodes of Ranvier, paranodes, and internodes, for
the initiation of demyelination in individual cases [5]. The sites of complement deposition
corresponded to the distribution of macrophages in that study, suggesting the presence
of undiscovered autoantibodies directed against the components of myelinated fibers in
AIDP [5]. The efficacy of eculizumab, a humanized monoclonal antibody to complement
component 5, for not only AMAN, but also AIDP, supports this view [73]. Similar selec-
tivity of the sites at which macrophages initiate myelin phagocytosis was also reported
in CIDP [4]. However, the pathogenesis of CIDP might be more complex than that of
AIDP, considering the heterogeneity of its clinical features and its response to immunother-
apies [9]. The mechanisms of demyelination in MS are also considered complex, involving
both innate and adoptive (i.e., humoral and cellular) immunities [37,41]. Additionally,
it has been gradually established that macrophages not only contribute to the initiation
and development of demyelination by boosting inflammatory events, but they also play a
protective role by suppressing inflammation, eliminating debris, and promoting repair [74].
Particularly, immunoregulatory M2 macrophages are considered to be predominant during
the recovery and repair process [75]. Further studies focusing on the mechanisms leading
to myelin phagocytosis by macrophages are required to elucidate the pathogenesis of
demyelinating diseases.

5. Summary and Conclusions

Myelin phagocytosis by macrophages has traditionally been considered an essential
feature of demyelinating diseases of the central and peripheral nervous systems, including
GBS, CIDP, and MS [1–5]. The discovery of autoantibodies directed against the constituents
of the nervous system contributed to the understanding of the disease process in a subpop-
ulation of patients conventionally diagnosed with these diseases. For example, a concept
that molecular mimicry between gangliosides located at the axolemma and the surface
epitopes of exogenous pathogens induces the production of anti-ganglioside antibodies has
been established in the axonal form of GBS, called AMAN [7,13]. In patients with AMAN,
the attachment of autoantibodies to ganglioside GM1 localized to the axolemma of motor
fibers and subsequent activation of complement cascades result in the conduction failure of
the motor nerve fibers [13,16,17]. In a subpopulation of patients with CIDP, autoantibodies
against paranodal junction components, including neurofascin 155 and contactin 1, cause
aberrant nerve conduction, owing to the detachment of paranodal myelin terminal loops
from the axolemma [8]. As demyelinating lesions associated with macrophages are not
found in patients with these antibodies, the concept of nodopathy or paranodopathy has
recently been proposed [9,34]. Moreover, NMOSD associated with anti-AQP4 antibod-
ies is now considered a disease entity distinct from MS because astrocytes, rather than
oligodendrocytes, are primarily affected [12].

Despite the discovery of these antibodies, the mechanisms underlying demyelination
owing to myelin phagocytosis by macrophages remain unclear. Ultrastructural studies
revealed that macrophages strip morphologically intact myelin lamellae by their cyto-
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plasmic processes as if they are principal players in the demyelination process [4,5]. Un-
raveling, disruption, and vesicular dissolution of the myelin lamellae are also frequently
observed where the cytoplasm of macrophages is present [5], as if hydrolases released from
macrophages may also be involved. Recent electron microscopy studies using longitudinal
sections of biopsy specimens from patients with AIDP and those with CIDP suggested
that macrophages seemed to select specific sites of myelinated fibers, including the nodes
of Ranvier, paranodes, and internodes, for the initiation of demyelination in individual
cases [4,5]. Hence, specific components localized to these sites may play an important
role in the behavior of macrophages that initiate myelin phagocytosis. Along with the
search for autoantibodies, the ultrastructural characterization of myelin phagocytosis by
macrophages is a crucial step in understanding the pathophysiology of demyelinating
diseases and for the future development of targeted therapies.
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