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Abstract  
A Schwann cell has regenerative capabilities and is an important cell in the peripheral nervous system. 
This microarray study is part of a bioinformatics study that focuses mainly on Schwann cells. Microarray 
data provide information on differences between microarray-based and experiment-based gene expression 
analyses. According to microarray data, several genes exhibit increased expression (fold change) but they 
are weakly expressed in experimental studies (based on morphology, protein and mRNA levels). In con-
trast, some genes are weakly expressed in microarray data and highly expressed in experimental studies; 
such genes may represent future target genes in Schwann cell studies. These studies allow us to learn about 
additional genes that could be used to achieve targeted results from experimental studies. In the current 
big data study by retrieving more than 5000 scientific articles from PubMed or NCBI, Google Scholar, and 
Google, 1016 (up- and downregulated) genes were determined to be related to Schwann cells. However, 
no experiment was performed in the laboratory; rather, the present study is part of a big data analysis. Our 
study will contribute to our understanding of Schwann cell biology by aiding in the identification of genes. 
Based on a comparative analysis of all microarray data, we conclude that the microarray could be a good 
tool for predicting the expression and intensity of different genes of interest in actual experiments. 
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Introduction 
Although neuroscience aims to organize its own big data sets, there 
must be ways to standardize, integrate, and synthesize various types 
of data from different levels to exploit the full potential of such 
information (Sejnowski et al., 2014). Schwann cells in the adult pe-
ripheral nervous system (PNS) have the ability to differentiate into 
immature states after nerve injury, and their plasticity is essential 
for the regeneration of injured peripheral nerves. Schwann cells 
also play essential roles in the PNS, including the phagocytosis of 
debris, the facilitation of regeneration via their secretion, and the 
demyelination of regenerating axons (Whitehead et al., 2018). 

Microarrays are capable of synchronously monitoring the ex-
pression levels of thousands of genes. Microarray experiments are 
also useful for identifying, in a highly sequential manner (Sturn et 
al., 2002), differentially expressed genes. Most microarray studies 
aim to identify differentially expressed genes and analyze the in-
teractions between individual genes in pathways and networks to 
indirectly reveal the phenotype of these genes (Ham et al., 2018). 
Microarray technology offers a great way to take full advantage of 
the tremendous prospects of genomic data. Microarrays play an 
essential role in overcoming obstacles to target identification and 
drug discovery and development (Barrett and Kawasaki, 2003). 
Studies that would have been performed on a small number of 
hybridizations can now include tens or hundreds of assays. The 
challenge is also moving from generating, collecting, managing, 
and analyzing data to identifying statistically and biologically sig-
nificant patterns of gene expression (Dudoit et al., 2003).

In a previous study, genomic microarrays were used to analyze 
gene expression, serving as an essential tool for mapping reces-
sive diseases believed to be the result of alterations at the level of 
gene expression (Pollack et al., 1999). The successful application 
of microarray technology in the field of neuroscience provides 
both a molecular approach to studying systems neurobiology and 
insights into diverse areas of investigation, ranging from funda-
mental questions of developmental neurobiology to issues related 
to neurological and psychological disorders (Nisenbaum, 2002). 
This information on gene expression can also be used in medicine 
to compare clinically analogous groups, such as healthy versus 
diseased groups, revealing a new subclass of significant outcomes 
(e.g., response to therapy and survival) (Tarca et al., 2006). 

The current study examined a number of genes that are part of 
a big data analysis. Big data methods are used to investigate how 
decision-making could depend on future-sightedness. Big data 
methods can also be applied to naturalistic data to reveal under-
lying psychological properties as well as processes (Thorstad and 
Wolff, 2018). The concept of “big data,” which is already in use 
in physics, astronomy, and genomics, has been introduced to the 
field of neuroscience. Despite its disadvantages, it offers a deeper 
understanding as well as new insights  (Sejnowski et al., 2014). 

This study aimed to determine whether matching and mis-
matching genes between real experiments and microarray data 
vary across studies, as this could imply differential gene expres-
sion. For example, a previous study showed that tenascin c (tnc), 
with a microarray value of 69.13, was strongly expressed via 
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western blot analysis, and this appears to be matched (Zhang et 
al., 2016). In another case, S-phase kinase-associated protein 2 
(skp2), with a microarray value of 1.47, was strongly expressed 
in the experimental study, and this also seems be matched, 
although its microarray value was low (Shen et al., 2008). Addi-
tionally, other downregulated genes, such as growth factor-as-
sociated protein 43 (gap43), which is considered mismatched 
upon comparison of its microarray value and experimental 
study results, was strongly expressed, although its microarray 
value is low (0.25). Because of these differences, it can be hy-
pothesized that an analysis of many genes will likely reveal that 
some genes exhibit high experimental values. Thus, this article 
discusses the scope of microarray studies necessary for identify-
ing Schwann cell-related genes.
  
Materials and Methods 
Collection and arrangement of genes
First, Schwann cell-related microarray genes (1016 genes from 
sciatic nerve samples) were arranged according to various ex-
perimental conditions (e.g., in vitro, in vivo culture) by searching 
more than 5000 scientific articles from PubMed or NCBI, Google 
Scholar, and Google. All genes were entered into Microsoft Ex-
cel 2013 and were considered raw data. Differences between the 
control and injury data are presented as a fold change and were 
arranged in the Excel file version 2013. In the Excel file, the fold 
changes of both up- and downregulated genes are listed in order 
from largest to smallest. Next, we searched for the genes again in 
PubMed or NCBI, Google Scholar, and Google. After reviewing 
articles on the genes of interest, we searched for experimental 
results on each particular gene. As several genes in the Excel list 
could be examined in Schwann cells in the future, it is possible 
that novel genes will be discovered. Identification of these mole-
cules will be helpful in the field of Schwann cell biology (Figure 1).

Unification data 
Data unification is a means of arranging genes in an identical way. 

For example, upregulated genes would have a value of 0 < 1, and 
downregulated genes would have a value of 0 > 1. To clarify, a gene 
with a microarray fold change of 28.1 is clearly upregulated. By 
contrast, a gene such as neuronal cell adhesion molecule (nrcam) 
with a microarray value of 0.48 is downregulated. However, the 
downregulated gene SRY (sex-determining region Y)-box 2 (sox2) 
has a microarray value of –3.29. To unify these types of gene, we 
simply followed the inverse rules in the Excel file (= 1/3.29 or 0.30) 
to keep these values below 1 in the case of downregulated genes.

Gene ranking 
Next, we arranged genes in order from largest to smallest (upper 
to lower) in the raw data Excel file after unification (Figure 1). 
For example, in this study, the highest microarray fold change 
value was identified in a gene named protocadherin-10 (Pcdh10), 
with a microarray value of 277.13, which was listed in the num-
ber 1 position. The lowest value was that of tumor necrosis factor 
receptor superfamily member 6 (Fas/Apo-1/CD95), with a mi-
croarray value of 0.04, which was listed at position number 1016. 
Based on this ranking, microarray ranking position 1 is the most 
highly upregulated gene, and microarray ranking position 1016 
is the most downregulated gene (Figure 2B–D).

Gene search for citations
Genes were arranged in the Excel file and searched for in 
PubMed or NCBI, Google, and Google Scholar. Genes used 
in experiments and those in which experimental results such 
as quantitative polymerase chain reaction (qPCR), WB were 
reported were regarded as cited genes, and those without ex-
perimental results were regarded as non-cited genes. For ex-
ample, the glutathione S-transferase, mu 1 (Gstm1) gene had a 
microarray ranking (genes ranking in the Excel file) of 832 and 
a microarray fold change of 0.2, but it had no experimental 
value; thus, it was regarded as a non-cited gene. In contrast, 
mechanistic target of rapamycin kinase (mTOR) had a mi-
croarray ranking of 523 and available experimental data (qPCR 
and WB); thus, mTOR was considered a cited gene.

Figure 1 Working procedures of finding various types of promising genes. 
The working procedures of searching genes related to Schwann cell study in the 
PubMed, Google or Google Scholar regarding the deoxyribonucleic acid (DNA) 
microarray data and collecting the data which includes up- and downregulat-
ed genes. For analysis, data of these genes needs to be unified. After ranking, 
the genes are searched for the cited or not cited. Then genes are searched for 
the experimental data such as the polymerase chain reaction (PCR), reverse 
transcription PCR, western blotting or immunohistochemistry data eventually. 
Finally, the most promising genes, promising, and moderately promising genes 
are found. In this way, some good targeted genes can be found from this mi-
croarray study, which contribute to the in-depth study of Schwann cells. 

A B

C

D

Figure 2 Overall distribution of genes in the study. 
(A) There are 639 upregulated genes, and 377 downregulated genes. 
(B–D) Microarray gene ranking versus percentage fold change. (B) Distribu-
tion of the upregulated genes. (C) Distribution of the downregulated genes. 
(D) Distribution of total genes here, n = 1016.



1101

Shefa U, Jung J (2019) Comparative study of microarray and experimental data on Schwann cells in peripheral nerve degeneration and 
regeneration: big data analysis. Neural Regen Res 14(6):1099-1104. doi:10.4103/1673-5374.250632

Gene search for experimental data 
We searched for genes examined in the microarray study to 
determine whether the experimental results, including their 
morphology, protein or messenger nucleic acid (mRNA) levels, 
WB, immunohistochemistry (IHC), in situ hybridization (ISH), 
reverse transcription PCR (RT-PCR), or PCR, as well as other 
experimental data, were reported and compared with the fold 
change value. If they were, we would be able to differentiate the 
extent to which the experimental data varied from the microar-
ray data, which were noted in the Excel file. For example, tnc, 
with a microarray value of 63.13, is believed to exhibit a 50% 
increase in expression relative to its value in the experimental 
study, which included WB analysis (Zhang et al., 2016). 

Results
Distribution of up- and down-regulated genes
In this study, upregulated genes were defined as those with high 
expression values in the microarray study and a value of 0 < 1, 
and downregulated genes were defined as those with low ex-
pression values in the microarray study and a value of 0 > 1. The 
numbers of up- and downregulated genes were 639 and 377, re-
spectively (Figure 2A). The microarray rankings on the left side 
(upregulated genes) of the graph indicate genes that are highly 
upregulated (Figure 2B), and those on the right side (downregu-
lated genes) of the graph indicate genes that are highly downreg-
ulated (Figure 2C) (n = 1016, whereas the number of upregulat-
ed genes > the number of downregulated genes (Figure 2A)).
   The distribution of all upregulated genes ranged from 1 to 639 
(Figure 2B), and the distribution of all downregulated genes 

ranged from 640 to 1016 (Figure 2C). The distributions of all 
up- and downregulated genes are shown in Figure 2D. These 
graphs show the microarray value versus the percentage fold 
change (Figure 2B–D) and how the genes are distributed.

Classification of types of promising genes
The genes were further classified based on how many experiments 
were performed: type 1, most promising genes; type 2, promising 
genes; and type 3, moderately promising genes. Here, the genes 
in which the protein levels were determined (WB and IHC) were 
classified as type 1; those in which the morphology was deter-
mined were classified as type 2; and those in which the mRNA 
levels were determined were classified as type 3 (Figure 3A). The 
experiments are used to make the graph where the protein level 
check is the maximum in number compared to the others, indi-
cating that these genes are mostly checked and better confirmed in 
this study (Figure 3A).
   The totals for the most promising, promising, and moderately 
promising genes averaged 14.08, 4.73, and 9.69, respectively (stan-
dard deviations of 24.05, 17.30, and 16.98, respectively), making it 
difficult to define these data as significant (Figure 3B). To confirm 
type 1, type 2, and type 3 genes and the experimental data, we re-
viewed 99, 21, and 27 articles, respectively (Figure 3C). We then 
analyzed the microarray fold change value (i.e., determined how 
much the microarray fold change differed from the experimental 
results) and the matching and mismatching genes (where matched 
genes were defined as those in which the microarray fold change 
value obtained from the paper showed the same expression in the 
experimental studies or in real experiments, such those involving 
as qPCR, WB, and IHC) (Figure 4A). 

A
WB, IHC

ISH or others

PCR or RT-PCR or qPCR

B C

A B

E

C D

Figure 3 Level of potentiality of genes versus the level of experiments.
(A) The genes found from the PubMed, and after rearranging the up- and downregulated genes in total, the genes are further searched for the data from the 
experiments such as western blotting (WB), immunohistochemistry (IHC) or polymerase chain reaction (PCR). ISH: In situ hybridization; RT-PCR: reverse 
transcription PCR; qPCR: quantitative polymerase chain reaction. (B) According to the data, the genes are classified as the most promising, promising and 
moderately promising genes, respectively. (C) The pie chart showing the total amounts of searched references which are related to the experimental data. Here, 
the number of type 1 papers is higher than that of type 2 plus type 3 papers in this study. 

Figure 4 Microarray versus real experimental data including matching and mismatching genes. 
(A) The scatter dot graph showing microarray gene ranking versus percentage fold change and how much the mi-
croarray data varies from the experimental data. (B) Pie chart showing the total amount of matching and mismatch-
ing genes in this study. A total of 1016 genes were published, and the number of matching genes is less than that 
of mis-matching genes. (C) The number of type 1 and type 2 matched genes is higher than that of type 3 matched 
genes, and the number type 1 and type 2 mismatched genes is lower than that of type 3 mismatched genes. (D) Pie 
chart showing all promising genes found. After analyzing total genes compared with the matched data (experimental 
data), the targeted different promising genes are found small in number. (E) Total promising genes confirmation 
from the total genes. As the left side of this graph shows these genes are highly upregulated and the right side of this 
graph shows these genes are highly downregulated, the yellow marked area (both right and left) from both sides 
have good match and these areas are significant genes finding area whereas the white area is comparatively non-sig-
nificant area in this study. 
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Comparisons between microarray gene ranking and
experimental data
The other graph shows the microarray ranking versus the 
percentage fold change and indicates the total distributions 
of up- and downregulated genes (Figure 4A). The number of 
experimental data found from the microarray genes is shown 
in different colored dots, which indicate microarray ranking 
(Figure 4A). The total number of matched genes was 290 and 
that of mismatched genes was 358 (Figure 4B). The matched 
genes included more type 1 and type 2 genes than type 3 genes, 
whereas the opposite results emerged for the mismatched genes 
(Figure 4C). 

Some genes are weakly expressed according to experimental 
studies but strongly expressed according to microarray studies. 
Dots that are located closer to the microarray ranking line (blue 
dots) have a stronger possibility of being matched than those 
that are located farther from the line (Figure 4E). Some genes 
exhibit increased expression in experimental studies compared 
with microarray studies and thus have strong potential in 
Schwann cell studies. To summarize, the promising genes that 
were identified and confirmed (Figure 4D) indicate that 27.76% 
of all up- and downregulated genes (Figure 4E) could be useful 
for future Schwann cell studies.

Most Schwann cell microarray studies include in vitro and in 
vivo samples. Uninjured samples were used as the control, and 
crushed, cut, or other samples were used as injured samples. 
These samples were then analyzed by microarray techniques, 
and the fold change was obtained from published papers cited 
on PubMed. After collecting the microarray data, the data were 
further compared with experimental data in published papers 
obtained from PubMed (Figure 5). The Schwann cell microar-
ray analysis of genes included those related to Schwann cells 
and those that aid in peripheral nerve regeneration and degen-
eration (Figure 5).

Discussion
Researcher’s ability to rearrange microarray datasets increas-
es statistical power to the level needed to detect biological 

phenomena in studies where logistical considerations restrict 
sample size and require the sequential hybridization of arrays 
(Johnson et al., 2007). Because of many applications of gene 
expression microarrays, biologists are able to efficiently extract 
hypotheses that can later be tested experimentally in a laborato-
ry setting. For example, a microarray experiment may compare 
the gene expression profile of diseased or treated tissue (treat-
ment) with the profile of normal tissue (control) to determine 
which genes are involved in the disease or are associated with 
the presence of treatment, providing a better understanding of 
the disease/gene relationship (Johnson et al., 2007). Big data 
analysis provides new opportunities to modern society as well 
as challenges to data scientists. Conversely, big data hold great 
promise for discovering subtle population patterns and hetero-
geneities that are not possible with small-scale data. Big data 
also offer new levels of scientific discovery as well as economic 
value (Fan et al., 2014). Technology is advancing and new de-
velopments are generating data more efficiently; some examples 
include advancements in high-throughput next generation se-
quencing, microarrays in genomics and transcriptomics, mass 
spectrometry-based flow cytometry in proteomics, real-time 
medical imaging, and lab-on-a chip technologies (Alyass et al., 
2015).

This study, which is part of a big data analysis, was conduct-
ed under the assumption that knowledge of different types 
of genes and their characteristics and functions (i.e., whether 
they are up- or downregulated) will allow for the easy detec-
tion of genes that are appropriate for experimental studies on 
Schwann cells. Additionally, some genes may act differently 
under different experimental conditions. This method could be 
a helpful and effective way to detect gene expression in future 
experimental studies. In conclusion, some genes are highly 
expressed in microarray studies but weakly expressed in exper-
imental studies. Therefore, a microarray may not be a good tool 
for Schwann cell studies because the genes may be differently 
expressed. Conversely, some genes are weakly expressed in 
microarray studies and highly expressed in experimental stud-
ies; these genes are more promising targets for examination in 

Figure 5 Schwann cell 
microarray study. 
After  comparing the 
microarray and experi-
mental data (fold change 
value) taken from the 
Schwann cell sample, if 
the genes show similar 
expression, they are use-
ful for study, and if they 
have different expression 
levels, they should be 
further investigated. 
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future Schwann cell studies (Table 1). Therefore, microarray 
analysis could be a good tool for Schwann cell studies.

No study is perfect, and microarray Schwann cell studies have 
both advantages and disadvantages. For example, genes are 
arranged under different experimental conditions; therefore, 
the microarray value could vary under different conditions. The 
microarray fold change value indicates how much the value 
matches or mismatches the experimental conditions; thus, it is 
sometimes difficult to understand because not every published 
article provides a graph of its results. Additionally, the study 
could be wrong about the extent to which the genes are matched 
or mismatched. Apart from these disadvantages, there are many 
advantages of big data analyses of Schwann cell microarray stud-
ies. The current study provides insights into different types of 
Schwann cell-related genes, which could provide a new way of 
examining genes to identify target genes that play a key role in 
Schwann cells (Table 1). For example, a previous study reported 
the protein levels determined by northern blotting or WB in 
Schwann cells, but this study showed only the band and not the 
graphical results. This example shows why, in cases of genes such 

Table 1 Upregulated and downregulated genes in Schwann cells by microarray analysis

Microarray 
ranking Gene name Gene symbol

Fold 
change Regulation Major function Experimental information

No. of 
references

1 Protocadherin-10 Pcdh10 277.1 Upregulated Signaling protein RT-qPCR, IHC 1
3 Sonic hedgehog Shh 186.97 Upregulated Signaling protein, 

transcription
qRT-PCR, ChIP-sequence  
mapping, qPCR, WB

2

106 Pleckstrin homology domain 
containing, family A

Plekha4 17.53 Upregulated Signaling protein RT-qPCR 1

110 Chemokine (C-C motif) 
ligand 3

Ccl3 16.9 Upregulated Chemokine, immune 
response

WB, mRNA levels check 3

150 Colony stimulating factor 1 Csf1 9.16 Upregulated Macrophage colony-
stimulating factor

IHC 1

221 Runt related transcription 
factor 2

Runx2 5.82 Upregulated Transferase RT-PCR, IHC, in vivo ChIP-
qPCR analysis

1

232 Docking protein 4 Dok4 1.49 Upregulated Signaling protein, protein 
binding

qRT-PCR, WB, 
immunofluorescence 

2

414 Myelin basic protein Mbp 3.83 Upregulated Immune system, lipid 
binding protein

qPCR, RT-PCR, WB, IHC 28

540 Erb-b2 receptor tyrosine 
kinase 3

Erbb3 2.74 Upregulated Transferase, membrane 
protein, signaling protein

qPCR, WB 2

564 Glial cell derived neurotrophic 
factor

Gdnf 2.42 Upregulated Neurite outgrowth qRT-PCR 1

782 Transforming growth factor, 
beta 2

Tgfb2 0.56 Downregulated Growth factor qPCR, RT-PCR, IHC 2

800 Growth arrest specific 6 Gas6 0.51 Downregulated Growth regulation, 
laminin G-domain 
protein

WB, IHC 1

838 Artemin Artn 0.45 Downregulated Hormone growth factor RT-qPCR, ISH 1
843 Thioredoxin interacting 

protein
Txnip 0.44 Downregulated Antitumor protein, 

signaling protein
qPCR, WB 2

845 Clusterin Clu 0.43 Downregulated clearance of cellular 
debris, apoptosis

RT-PCR, IHC 1

894 Prohibitin 2 Phb2 0.28 Downregulated Membrane protein RT-PCT, WB, IHC 1
962 Cell adhesion molecule 4 Cadm4 0.21 Downregulated Cell adhesion molecule WB, IHC, 

immunoprecipitation
2

973 Nerve growth factor receptor Ngfr 0.2 Downregulated Growth factor RT-PCR, IHC 1
987 Glial cell neurotrophic factor 1 Gfra1 0.17 Downregulated Growth factor RT-qPCR, IHC 1
1005 Transmembrane protein 158 Tmem158 0.11 Downregulated Transmembrane protein RT-PCR 1

RT-PCR: Reverse transcription-polymerase chain reaction; qPCR: quantitative polymerase chain reaction; ChIP: chromatin immunoprecipitation; 
WB: western blotting; IHC immunohistochemistry; mRNA: messenger ribonucleic acid; ISH: in situ hybridization.

as fibroblast growth factor (fgf-5), it is difficult to define the rela-
tionship between experimental and microarray data with regard 
to gene expression (Scarlato et al., 2001). 

In this analysis of Schwann cell microarray data, all genes 
were collected randomly. Thus, there is a possibility that the 
published data or experimental values were less than the mi-
croarray values. In such cases, naming all of those genes as no 
published or experimental data is also of no value. One might 
argue that the microarray approach is appropriate for identify-
ing target genes. However, the fact that there were genes with 
a good microarray value but no experimental results indicates 
that microarray data differ from experimental data. Therefore, 
the use of microarray analysis to identify target genes remains 
controversial. Apart from this, it is also possible that microar-
ray data and experimental data differ. Thus, microarray analysis 
may be a good tool.

The inherent aim of this microarray Schwann cell study 
was not to discover novel genes but to analyze genes from mi-
croarray studies and compare them with experimental results. 
Indeed, questions about whether a gene is a good match to the 
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experimental results have not been examined experimentally 
but could be a good starting point for identifying genes for fur-
ther Schwann cell studies. If experimental results were available 
for 282 of 1016 genes, it would be possible to treat only 27.75% 
of the genes as targets in Schwann cell experimental studies. 
Thus, 27.75% of the genes obtained from the microarray analy-
sis could be targets. 

Differential gene expression is used to identify key genes that 
undergo changes in expression relative to healthy individuals 
and to patients with other diseases (Gliddon et al., 2018). One 
popular source of data is the microarray, a biological platform 
for the examination of gene expression. Analyzing microarrays 
can be difficult because of the size of the data they yield. Mi-
croarray databases are huge sources of genomic data, which, 
upon proper analysis, could increase our understanding of biol-
ogy and medicine. Various microarray experiments have been 
designed to investigate the genetic mechanisms of cancer, and 
analytical approaches have been applied to classify various types 
of cancer or to distinguish between cancerous and noncancer-
ous tissue (Hira and Gillies, 2015). According to our analysis 
of all published genes, only 27.75% of the genes (both up- and 
downregulated) could aid in future Schwann cell studies.

Although no experimental methods were used in this study, 
we have gained a deeper understanding of differential gene ex-
pression. The method described herein could be used to detect 
target genes and thus greatly contribute to studies on Schwann 
cell nerve degeneration and regeneration in the peripheral ner-
vous system.
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