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Information of residue-residue contacts is essential for understanding themechanism of protein folding, and has
been successfully applied as special topological restraints to simplify the conformational sampling in de novo
protein structure prediction. Prediction of protein residue contacts has experienced amazingly rapid progresses
recently, with prediction accuracy approaching impressively high levels in the past two years. In this work, we
introduce a second version of our residue contact predictor, DeepConPred2, which exhibits substantially im-
proved performance and sufficiently reduced running time after model re-optimization and feature updates.
When testing on the CASP12 freemodeling targets, our program reaches at least the same level of prediction ac-
curacy as the best contact predictors so far and provides information complementary to other state-of-the-art
methods in contact-assisted folding.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Protein residue contact prediction and its corresponding application,
contact-assisted protein folding, have become one of themost challeng-
ing and promising problems in structural bioinformatics, since the dem-
onstration that native contacts carry sufficient information for the
successful reconstruction of protein 3D structures [1]. Indeed, informa-
tion of residue contacts not only can be integrated into scoring functions
to improve the selection of template models [2] or refine the potential
function in protein folding simulations [3], but also can be applied as
distance constraints to improve the efficiency of conformational sam-
pling or even build tertiary structure models directly [4,5]. As expected,
residue contact prediction has become a regular category in recent crit-
ical assessment of protein structure prediction (CASP) competitions
[6,7]. Particularly, the latest CASP12 competition has reported substan-
tial advance in structure modeling that was mainly driven by the prog-
ress in residue contact prediction [8].

Prevalent sequence-based algorithms that predict residue contacts
from amino acid sequences can be roughly classified into two catego-
ries: methods based on supervised machine learning [9–18] and
methods purely based on evolutionary coupling analysis (ECA)
[19–24]. Despite the great success, pure ECA-based methods assume
that contacting residue pairs should present correlated mutations in
the long-term evolution as reflected in themultiple sequence alignment
. on behalf of Research Network of C
(MSA), but frequently become powerless for targets with limited num-
bers of homologous sequences [16,20]. In contrast, machine-learning-
based methods typically absorb all kinds of information as input fea-
tures, including the coevolutionary information estimated by ECA-
based methods, and thus have become more successful recently. In
the past one and half years, a number of methods with similar novel
ideas, including RaptorX-Contact, DNCON2 and SPOT-Contact, have
been developed, whichwere reported to achieve the prediction powers
that remarkably surpass the best models in the latest CASP12 competi-
tion. RaptorX-Contact uses two concatenated deep residual network
(ResNet)models to effectively utilize both 1D information like sequence
profile as well as predicted secondary structures and 2D information
like coevolutionary information as well as pairwise statistical potentials
for contact prediction [10]. DNCON2 is made up of several deep
convolutional neural network (CNN) blocks, where five CNN blocks
are trained to produce preliminary predictions at different thresholds
of residue distances and one additional CNN block is used to combine
these preliminary results to produce the final contact prediction [11].
SPOT-Contact adopts a deep hybrid network: prepared inputs are fed
into a ResNet model, and the outputs are further processed by a 2D-
Bidirectional-ResLSTMmodel [18].

Our previous contact predictor DeepConPred [17] could reach com-
parable performance to top methods in the CASP12 competition. In this
work, we introduce a second version of this predictor, DeepConPred2.
After re-optimizing the model architecture and updating features, the
new version exhibits substantially improved performance (e.g.,
prediction accuracy for the top L/5 predicted contacts rises from
44.0% to 69.6% for the CASP12 targets), and reaches a level comparable
omputational and Structural Biotechnology. This is an open access article under the CC BY
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to the other state-of-the-art methods including RaptorX-Contact,
DNCON2 and SPOT-Contact. On the other hand, the new version was
implemented with GPU acceleration, and thus the running time has
been sufficiently reduced, especially for large protein targets. Finally,
we developed a user friendly online server of DeepConPred2 to provide
service for the prediction of residue contact maps.

2. Methods

The flow chart of DeepConPred2 is shown in Fig. 1. Similar to the
previous version, DeepConPred2 could be divided to three stages/mod-
ules. In the first module, a deep belief network (DBN) model was
adopted to predict contacts between secondary structure elements
(SSEs). In the second module, results of the first module as well as
other features were fed to DBN models to predict the residue contacts.
The previous version only focused on contacts between long-range (se-
quence separation ≥ 24) residue pairs. Here, in this new version, we de-
veloped additional DBNmodels to process themedium- (12 ≤ sequence
separation ≤ 23) and short-range (6 ≤ sequence separation ≤ 11) residue
pairs. In the third module, prediction results of all three categories of
contacts from the secondmodule aswell as the coevolutionary informa-
tionwere combined to further refine the predicted residue contactmap.
Particularly, in the new version, we substituted the DBNmodelwith the
ResNet [25,26] model that has shown great successes in contact
prediction.

2.1. Datasets

We merged the training set and test set used in the study by Xiong
et al. [17] as our new training set. Specifically, all proteins in the training
set of this work came from the SCOPe 2.05 version [27]. After redun-
dancy elimination with a cutoff of 20% sequence identity, only one
Fig. 1. The schematic layout of DeepConPred2. Three modules
protein was retained from each superfamily to guarantee the correct
representation of fold topology. Finally, our training set contained
3443 protein domains.

We prepared an independent test set of 77 protein domains that
belonged to novel superfamilies. Specifically, we extracted protein do-
mains newly released in the SCOPe 2.07 version [28] (in comparison
to the SCOPe 2.05 version) and kept domains that were longer than
50 residues and did not containmultiple structures ormissing backbone
atoms. After removing redundancy from the training set with a cutoff of
20% sequence identity, we extracted the shortest protein domain from
each new superfamily to compose the test set.

Besides the independent test set, we adopted the CASP11 and
CASP12 protein sets as additional testing sets to objectively evaluate
the performance of our new model against the previous version.
When comparing our model with other state-of-the-art methods, we
mainly made the evaluation on 22 CASP12 free modeling (FM) targets,
the hardest targets in de novo protein structure prediction, and then ex-
tended the evaluation to all CASP12 targets, including additional 31
template-based modeling (TBM) ones.
2.2. The First Module

We updated some input features in the first module. Specifically, we
adopted Spider3 [29] secondary structure predictions to replace the
SSpro [30] results used previously, and adopted CCMpred [19] to calcu-
late the coevolutionary information instead of the previous plmDCA
[21]. The overall architecture of the DBN model was changed from the
previous hourglass shape to a more balanced 133–400–400–400–3,
where 133 is the dimension of input feature vectors and 3 is the output
dimension including the corresponding probabilities of parallel contact,
anti-parallel contact and non-contact for each SSE pair.
are framed with dashed lines and marked with red italic.
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2.3. The Second Module

Our previous version only processes long-range residue pairs. In the
new version, we developed two additional DBN models to predict the
contacts between short- and medium-range residue pairs. The short-,
medium- and long-range models read in very similar features. How-
ever, we updated some features such as coevolutionary information
(from CCMpred instead of plmDCA), predicted secondary structure
and solvent accessibility (both from Spider3 instead of the previous
SSpro and ACCpro [30]), and some statistical information. The overall
architecture of all DNB models was adjusted to d-800-700-600-2,
where d is the dimension of input feature vectors and was set to 416,
480 and 478 for short-, medium- and long-range models, respectively.
We adopted all samples for the training of short- and medium-range
DBN models. For the long-range prediction, however, the total amount
of samples was extremely huge, mainly dominated by negative ones.
So we retained all positive samples but down-sampled the negative
ones to keep their ratio to roughly 1:1. To avoid overtraining, we ad-
justed theweights for positive and negative samples in the loss function
to keep fidelity of its origin proportion in model training. The original
positive-negative ratio of our training set is around 1:50. In practice,
we developed three models with relative weights of 1:40, 1:50 and
1:60 in the loss function. The average of these three models were then
taken as the results of long-range prediction in the second module.

2.4. The Third Module

In the third module, we optimized five ResNet models with slight
variation of architecture and finally took the ensemble average of
these models as the final prediction (Table 1). The input features of
each ResNet model include outcomes of the second module, position
of the target residue pair in the overall contact map, secondary struc-
tural information predicted from Spider3 and coevolutionary informa-
tion provided by CCMpred. During the training of each ResNet model,
we treated all samples in each individual protein as a mini-batch and
thus the input pairwise features had the dimension of L × L × 9,
where L is the length of the protein and 9 can be interpreted as the num-
ber of features for one pixel on the contact map (i.e. the target residue
pair).We adopted 64 3 × 3 2D convolution filters for each convolutional
layer. The convolution stride was set as 1 and the zero-padding pattern
was set as ‘same’ tomake featuremaps of all layers have the same shape
as the original input (i.e. L × L). Leaky rectified linear unit (leaky-ReLU)
activation function was used for non-linear transformation. The depth
of our ResNet models varied from 50 to 80. By stacking many residual
blocks, our networks could capture interdependency of residue pairs
of very long range even though we used a small filter size.

Due to the limitation of memory usage when training the ResNet
models, length of training input proteins was limited to no N400. For
each of the 128 protein domains that exceed this limit, we randomly
chose 4 overlapping 400 × 400 subplots as input.

2.5. Evaluation

All parameters were optimized using 5-fold cross validation on the
training set. In this process,we adopted the F1-score for all available res-
idue pairs to evaluate individual models. The F1-score is defined as the
Table 1
ResNet models in the third module.

Number of layers Activation F1-score

Model 1 50 Pre-activation 0.5419
Model 2 60 Pre-activation 0.5527
Model 3 70 Pre-activation 0.5495
Model 4 80 Pre-activation 0.5561
Model 5 80 Post-activation 0.5508
Ensemble Average of above 5 models 0.5711
harmonic mean of Precision and Recall:

F1‐score ¼ 2� Precision� Recall
Precisionþ Recall

ð1Þ

where Precision and Recall evaluate the proportions of true positives
within all positive predictions andwithin all true samples, respectively:

Precision ¼ TruePositives
TruePositivesþ FalsePositives

Recall ¼ TruePositives
TruePositivesþ FalseNegatives

ð2Þ

After model training, performance of the algorithm was then inde-
pendently evaluated on three testing sets: the independent test set,
CASP11 set and CASP12 set. According to standard CASP definition
[31], residues with Euclidean distance between two Cβ atoms falling
within 8.0 Å were considered to be in contact. Following the CASP rou-
tine, we chose the precisions (Eq. 2) for the top L/10, L/5, L/2 and L pre-
dicted residue pairs as the main evaluators, where L is the length of the
protein.

In this work, we compared our method with three state-of-the-art
algorithms, DNCON2, RaptorX-Contact and SPOT-Contact. The compar-
ison was first performed on 22 CASP12 FM targets that have available
structure information. Prediction results of DNCON2 (http://sysbio.
rnet.missouri.edu/dncon2/), RaptorX-Contact (http://raptorx.uchicago.
edu/ContactMap/) and SPOT-Contact (http://sparks-lab.org/jack/
server/SPOT-Contact/) were obtained from their web servers in July
2018, respectively. Then, we extended the comparison to the overall
53 CASP12 targets that have available structure information, including
additional 31 TBM ones. Results of additional targets were received on
October 5th, 2018 from the online servers of RaptorX-Contact and
SPOT-Contact. The server of DNCON2 was unavailable for new predic-
tions at that time for some reasons. Thus,we had to use the latest down-
loadable results of the CASP12 test posted on the website, which only
contained 35 targets.

To evaluate the contribution of contact predictors in protein struc-
ture prediction,wemodeled the structures of the 22 CASP12 FMprotein
targets (and then extended to all available CASP12 targets) using the
top 2L contacts predicted by DeepConPred2, DNCON2, RaptorX-
Contact and SPOT-Contact, respectively. Here, we adopted the
CONFOLD program [4] to proceed the ab initio folding without using
any additional force fields. Specifically, the top 2L predicted residue
pairs were restrained between 3.5 and 8 Å, whereas all other parame-
ters were taken as the default values. The best model (with the lowest
root-mean-square-distance (RMSD) to the native structure) among
the top 5 ones as reported by CONFOLDwas taken as the representative
structural model of each target for various contact predictors.

3. Results and Discussion

3.1. Training and Cross Validation

In the first and second modules, we only retained the best DBN
models based on F1-scores in the 5-fold cross validation. In the third
module, however, we constructed ResNet models with various levels
of depths. In the final prediction, ensemble average of these models
was adopted to further improve the performance (Table 1).

Average ensemble is also used in RaptorX-Contact and SPOT-Contact
[10,18], which allows predictors to reduce the influence of generaliza-
tion on their own training sets. Because of the variation of architectures,
parameters initializations, data feeding and other factors, each network
in the ensemble captures a slightly different pattern. Ensemble averag-
ing makes use of the complementarity of these patterns and thus could

http://sysbio.rnet.missouri.edu/dncon2/
http://sysbio.rnet.missouri.edu/dncon2/
http://raptorx.uchicago.edu/ContactMap/
http://raptorx.uchicago.edu/ContactMap/
http://sparks-lab.org/jack/server/SPOT-Contact/
http://sparks-lab.org/jack/server/SPOT-Contact/


Table 3
Performance evaluation on the CASP11 set.

Range Version L/10 L/5 L/2 L

Short New 0.8345 0.7479 0.5680 0.3978
Old – – – –

Medium New 0.7881 0.7314 0.6135 0.4617
Old – – – –

Long New 0.7315 0.7126 0.6619 0.5695
Old 0.5306 0.4335 0.3813 0.2935
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improve the performance. The following equation provides illustration:

G ¼ 1
T

X
t

gt

E Err gð Þð Þ ¼ 1
T

X
t

Err gtð Þ ¼ 1
T

X
t

gt− fð Þ2
� �

¼ 1
T

X
t

gt−Gð Þ2
� �

þ G− fð Þ2≥ G− fð Þ2 ¼ Err Gð Þ

ð3Þ

where E, gt, G, f and Err represent expectation, the t-th model in the en-
semble, ensemble average, the truth ground (label) andmodel error, re-
spectively. In this work, F1-score of the ensemble (0.5711) surpasses all
individual models.

3.2. Evaluation in the Testing Sets

We evaluated the performance of DeepConPred2 over the previous
version on three testing sets. The previous version can only predict con-
tacts of long-range residue pairs while the new version has no such
limits. As shown in Tables 2–4, the new version performsmarkedly bet-
ter than the previous one on all three testing sets, regardless of the
amount of top predicted contacts that are chosen for evaluation. For ex-
ample, the precision of top L/5 predicted long-range residue pairs
reaches 40.61%, 43.35% and 44.00% on the independent test set,
CASP11 set and CASP12 set respectively for the old version, but rises
to 70.67%, 71.26% and 69.60% respectively in the new version. Balanced
performance of our new programon the three testing sets also supports
robustness of this method for different kinds of targets.

Generally, in comparison to the old version, the new version mainly
includes modifications on three facets: A) updates of input features and
architecture fine-tuning of the DBNmodels in the first and secondmod-
ule; B) consideration of short- and medium-range predictions in the
second module; and C) adoption of ResNet in the third module. We
roughly estimated their contributions to the performance improvement
for long-range residue contacts on the independent test set. As shown in
Table S1, modification A brings the largest improvement in prediction
accuracy (by ~16 percentage points), followed by modification C,
which contributes by ~10 percentage points, while modification B only
makes a minor contribution.

Moreover, the new version greatly reduces the noise levels in the
predicted residue contact maps. For an example target, the previous
version generates a contact map with serious palisade noises that
cover useful contact information (Fig. 2a). In our new version, palisade
noises are effectively removed by the use of weighted loss function
and ensemble trick in the secondmodule (Fig. S1) and predicted values
are rescaled to fit its real probability through the ultra-deep ResNet in
the third module (Fig. 2b), which jointly make the outcome closer to
its native form (Fig. 2c).

In addition to the substantial improvement in prediction accuracy
and map quality, the new version was implemented using the
TensorFlow framework [32] with GPU acceleration. We also tested the
running time of the new version over the previous one on 101 CASP11
protein targets. Despite the extra computational expenses for the addi-
tional models (e.g., short- andmedium-range DBNmodels andmultiple
models for ensemble averaging), the new version still runs faster than
the previous one, especially for large proteins (Fig. 3). For example, at
Table 2
Performance evaluation on the independent test set.

Range Version L/10 L/5 L/2 L

Short New 0.7539 0.6667 0.5134 0.3622
Old – – – –

Medium New 0.6926 0.6176 0.4871 0.3806
Old – – – –

Long New 0.7411 0.7067 0.6294 0.5378
Old 0.5517 0.4061 0.3414 0.2993
target length of 456, our new version takes 104 s less than the old
one, which corresponds to a speed-up by 28.6% (from 364.6 s to
260.3 s).

To provide convenient service for residue contact prediction,we also
constructed aweb server of DeepConPred2. Users could submit the pro-
tein sequence on the website and approach the prediction results later
by email notification. Meanwhile, program for local execution is also
provided for free download.

3.3. Comparison With Other Cutting-Edge Methods

Wefirst compare ourmethodwith three state-of-the-art algorithms,
DNCON2, RaptorX-Contact and SPOT-Contact, on 22 CASP12 FM targets.
As shown in Table 5, DeepConPred2 outperforms DNCON2 in all catego-
ries (e.g., long-range top L/5 precision: 57.56% vs. 53.49%). When com-
pared with RaptorX-Contact, DeepConPred2 shows similar
performance for long-range contacts. For example, the long-range top
L, L/2 and L/5 precisions of DeepConPred2 vs. RaptorX-Contact are
41.27% vs. 39.50%, 49.16% vs. 51.15% and 57.56% vs. 58.55%, respectively.
As for short- and medium-range contacts, DeepConPred2 exhibits an
advantage to RaptorX-Contact. For medium-range contacts, the top L,
L/2 and L/5 precisions of DeepConPred2 vs. RaptorX-Contact are
30.78% vs. 23.64%, 42.63% vs. 36.08% and 56.87% vs. 53.41%, respectively,
while for short-range contacts, they are 31.90% vs. 22.57%, 44.34% vs.
35.83% and 58.49% vs. 57.20%, respectively. DeepConPred2 is slightly
prevailed by SPOT-Contact (e.g., the long-range top L, L/2 and L/5 preci-
sions of DeepConPred2 vs. SPOT-Contact are 41.27% vs. 43.93%, 49.16%
vs. 52.69% and 57.56% vs. 63.18%, respectively).

We then extended the comparison to all 53 CASP12 targets that have
available structure information (Tables S2–S3). BecauseDNCON2 server
was temporarily unavailable for prediction, comparison with DNCON2
was only conducted on 35 targets that have downloadable prediction
results posted on the DNCON2website. Similar to the previous compar-
ison, DeepConPred2 significantly outperforms DNCON2, but is slightly
prevailed by SPOT-Contact. Possibly due to the strong prediction
power on TBM targets, the relatively easy targets for de novo protein
structure prediction, performance of RaptorX-Contact slightly surpasses
DeepConPred2 and becomes close to SPOT-Contact. Nevertheless,
DeepConPred2 reaches a high level of prediction accuracy (especially
for the hard FM targets) and thus can be ranked as one of the best resi-
due contact predictors. It should be noticed that updates of sequence
databases, especially the introduction of metagenome sequence data,
would have big impact on performance of predictors [33]. It is possible
that the performance of ourmethodwould be further improved though
database updating, especially for TBM targets that potentially will have
more homologous sequences identified from the metagenome data.
Table 4
Performance evaluation on the CASP12 set.

Range Version L/10 L/5 L/2 L

Short New 0.7075 0.6689 0.5152 0.3600
Old – – – –

Medium New 0.6966 0.6568 0.5211 0.3860
Old – – – –

Long New 0.7039 0.6960 0.6225 0.5310
Old 0.5157 0.4400 0.3138 0.2579



Fig. 2. Comparison of contact maps for a specific target (PDB ID: 1A3A). (a) The contact map predicted by our previous version. (b) The contactmap predicted by the new version. (c) The
contact map of the native structure.

Fig. 3. Consumption of computational time of different versions on 102 CASP11 targets.

Table 5
Comparison of prediction precisions on 22 CASP12 FM targets.

Range Methods L/10 L/5 L/2 L

Short DNCON2 0.5219 0.5145 0.3879 0.2807
RaptorX-Contact 0.6871 0.5720 0.3583 0.2257
SPOT-Contact 0.7220 0.6146 0.3994 0.2421
DeepConPred2 0.6257 0.5849 0.4434 0.3190

Medium DNCON2 0.4698 0.4682 0.3837 0.2859
RaptorX-Contact 0.6104 0.5341 0.3608 0.2364
SPOT-Contact 0.7120 0.6195 0.4182 0.2699
DeepConPred2 0.6091 0.5687 0.4263 0.3078

Long DNCON2 0.5864 0.5349 0.4241 0.3378
RaptorX-Contact 0.6765 0.5855 0.5115 0.3950
SPOT-Contact 0.6758 0.6318 0.5269 0.4393
DeepConPred2 0.6100 0.5756 0.4916 0.4127
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Fig. 4. RMSD comparison between CONFOLD results of models generated using our program
various colors labeling the proteins of different sizes: red for small domains (length b120), blu
The lime green dashed lines and fuchsia dotted lines denote the results of Deming regression a

Table 6
P-values of paired t-test and Levene-test on CONFOLD RMSD groups from different
methods.

Paired t-test/Levene
test

DNCON2
(12.50)

RaptorX-Contact
(11.82)

SPOT-Contact
(10.43)

DeepConPred2 (11.60) 0.07238/0.9463 0.8031/0.6597 0.1145/0.8913

P-values of the paired t-test and Levene test are listed before and after the slash, respec-
tively. Numbers in brackets are the average RMSD values of the 22 CASP12 FM targets
for corresponding algorithms.
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3.4. Evaluation for Contact-Assisted Folding

To further validate the contribution of predicted contacts by various
methods in the practical protein structure prediction, we first con-
structed the model structures for the 22 CASP12 FM targets with the
general CONFOLD protocol, using the top 2L predicted contacts as the
only constraints. For each protein, we chose the one with minimum
RMSD to the native structure from the top 5 models provided by
CONFOLD as its representative model for the corresponding algorithm.
We performed Levene test to make sure the equal variance between
and other 3 methods on 22 CASP12 FM targets. Each point denotes a protein target, with
e for medium domains (120 ≤ length b 180), and black for large domains (length ≥ 180).
nd the Passing-Bablock regression, respectively.
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RMSDgroups of differentmethods and then conducted 2-sided paired t-
test to check whether there are any significant differences. At the confi-
dence threshold of 0.1, CONFOLDmodels using contact prediction of our
method surpass those using DNCON2 significantly but have no signifi-
cant differences from those of RaptorX-Contact or SPOT-Contact
(Table 6).

Fig. 4 shows the pairwise comparison between models generated
using our method vs. those using the other three methods by the
RMSD criterion. Clearly, in respect of contact-assisted folding,
DeepConPred2 outperforms DNCON2 and reaches a very similar power
to RaptorX-Contact. Although slightly prevailed by SPOT-Contact,
DeepConPred2 could provide complementary information: our method
outperforms SPOT-Contact on small proteins (red points in Fig. 4c) but
performs less well on large proteins (black points in Fig. 4c), which
might arise from the differences in average protein lengths between
the training sets of the two methods. Comparisons using TM-score and
GDT-TS score show the similar trend (Figs. S2–S3). For a comprehensive
and systematic comparison over the models produced using these
methods,wealsoperformedDeming regression andPassing-Bablock re-
gression analyses (Tables S4–S6). Interestingly, these two statistics tests
deny the presence of significant differences between the four methods.

We then extend our folding test to all available CASP12 targets. As
shown in Fig. S4, despite the generally comparable model quality pro-
duced by the fourmethods, information complementarity is present be-
tween these methods (see the dispersion of points). Deming regression
and Passing-Bablock regression analyses (Tables S7–S9) also indicate
that the four methods have the same level of powers on contact-
assisted folding.

Despite the CASP12 report that usage of coevolutionary information
and ultra-deep learning framework has raised accuracy performance of
contact prediction into a new level [8], our analysis shows that apparent
gaps of performance between different state-of-the-art contact predic-
tors are not linearly reflected in their real contributions to the practical
protein structure prediction, at least in the contact-assisted folding
using CONFOLD. Although this phenomenon should be validated using
other folding programs,we can still suspect that state-of-the-art contact
predictors make a similar level of contribution to tertiary structure
modeling as long as the accuracy of contact prediction exceeds some
threshold. Thus, to break through the bottleneck, effectively utilizing
the predicted contact information, for instance, combining complemen-
tary results of various state-of-the-arts contact predictors, may further
benefit practical protein structure prediction.

4. Conclusions

In this work, we present a second version of our residue contact pre-
dictor, DeepConPred2,which can predict all contacts of a protein at once
from a protein sequence. The new version exhibits remarkably im-
proved performance in comparison to the previous one, and could
reach a prediction power comparable to the other state-of-the-art
methods. In addition, implementationwith GPU acceleration further re-
duces the running time, especially for large protein targets. A user
friendly web server is available for reliable prediction of residue contact
maps.
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