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Abstract

Genome-wide somatic mutation profiles of tumours can now be assessed efficiently and

promise to move precision medicine forward. Statistical analysis of mutation profiles is how-

ever challenging due to the low frequency of most mutations, the varying mutation rates

across tumours, and the presence of a majority of passenger events that hide the contribu-

tion of driver events. Here we propose a method, NetNorM, to represent whole-exome

somatic mutation data in a form that enhances cancer-relevant information using a gene

network as background knowledge. We evaluate its relevance for two tasks: survival predic-

tion and unsupervised patient stratification. Using data from 8 cancer types from The Cancer

Genome Atlas (TCGA), we show that it improves over the raw binary mutation data and net-

work diffusion for these two tasks. In doing so, we also provide a thorough assessment of

somatic mutations prognostic power which has been overlooked by previous studies

because of the sparse and binary nature of mutations.

Author summary

The transition from a normal cell to a cancer cell is driven by genetic alterations, such as

mutations, that induce uncontrolled cell proliferation. With the advent of next-generation

sequencing technologies (NGS) in the last decade, thousands of tumours have been

sequenced and their mutation profiles determined. However, the statistical analysis of

these mutation profiles remains challenging. Indeed, two patients usually do not share the

same set of mutations and can even have none in common. Moreover, it is difficult to dis-

tinguish the few disease-causing mutations from the dozens, often hundreds of mutations

observed in a tumour. To alleviate these challenges, it has been proposed to use gene-gene

interaction networks as prior knowledge, with the idea that if a gene is mutated and non-

functional, then its interacting neighbours might not be able to fulfil their function as

well. Here we propose NetNorM, a method that transforms mutation data using gene
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networks so as to make mutation profiles more amenable to statistical learning. We show

that NetNorM significantly improves the prognostic power of mutation data compared to

previous approaches, and allows defining meaningful groups of patients based on their

mutation profiles.

Introduction

Tumourigenesis and cancer growth involve somatic mutations which appear and accumulate

during cancer progression. These mutations impair the normal behaviour of various cancer

genes, and give cancer cells an often devastating advantage to proliferate over normal cells

[1–3]. Systematically assessing and monitoring somatic mutations in cancer therefore offers

the opportunity not only to better understand the biological processes involved in the disease,

but also to help rationalise patient treatment in a clinical setting. Rationalising treatment

involves finely characterising the genomic abnormalities of each given patient to discover

which may be treatable by a targeted therapeutic agent, as well as improving prognosis using

molecular information [4–6]. The development of fast and cost-effective technologies for

high-throughput sequencing in the last decade has triggered the launch of numerous data col-

lection projects such as The Cancer Genome Atlas (TCGA) [7] or the International Cancer

Genome Consortium (ICGC) [8], aiming at characterising at the molecular level, including

genome-wide or exome-wide somatic mutations, thousands of cancer samples of multiple

origins. By systematically comparing the molecular portraits of the resulting cohorts, one

might expect to be able to detect frequently mutated genes or groups of genes, and find associ-

ations between particular mutations and cancer phenotypes, response to treatment, or survival

[9–12].

The analysis of somatic mutation profiles is however challenging for multiple reasons. First,

most somatic mutations detected by systematic sequencing are likely to be irrelevant for bio-

logical or clinical applications. This is due to the fact that only a few driver mutations are

required to confer a growth advantage to the cancer cell, and therefore most somatic mutations

are likely to be passenger mutations which do not contribute to the cancer phenotype [3, 13].

Second, sequencing efforts have shown that while a few genes are frequently mutated, the vast

majority of genes are mutated in only a handful of patients [14, 15]. As a result, the mutation

profiles of two tumours often only share a few if any genes in common. Third, even if originat-

ing from the same tissue, tumours may exhibit widely varying mutation rates. The overall

mutational burden of a tumour constitute a strong and informative signal [16–18] but can

however complicate the retrieval of more subtle signals. Combined with the inherent high

dimensionality of somatic mutation datasets, this makes any statistical analysis of cohorts of

whole-exome somatic mutation profiles extremely challenging.

In order to make somatic mutation profiles more amenable to statistical analysis, several

studies have used gene networks as prior knowledge [19, 20]. Considering genes in the context

of networks instead of analysing them independently allows sharing mutation information

among neighbouring genes and identifying disruptions at the level of pathways or protein

complexes instead of single genes. A popular method to leverage this prior knowledge consists

in using a diffusion process on the gene network. This technique first appeared for the analysis

of gene expression and GWAS data [21–25], and has more recently been used for mutation

profiles [26–31]. Network diffusion processes allow smoothing binary vectors of somatic gene

mutations into non-negative real-valued vectors of mutational statuses, where the mutational

status of a gene increases when it is close to mutated genes in the network. This approach led
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to state-of-the-art methods for the discovery of driver pathways or complexes [30] and for the

stratification of patients into clinically relevant subtypes [31] using whole-exome mutation

profiles.

In this work we propose NetNorM, a new method to enhance mutation data with gene net-

works. NetNorM transforms a patient’s binary mutation profile by either removing mutations

or creating “proxy” mutations based on the gene network topology, until all patients reach a

consensus number of mutations. The resulting mutation matrix is binary like the initial one,

nonetheless we establish that it encodes new information reflecting both local network neigh-

bourhood mutational burdens and the overall tumour mutational burden.

We evaluate the relevance of NetNorM on two tasks: survival prediction and patient stratifi-

cation from exome somatic mutation profiles. In doing so, we also provide a thorough assess-

ment of somatic mutations prognostic power which has been overlooked by previous studies

because of the sparse and binary nature of mutations [32]. We show that NetNorM produces

state-of-the-art results for these two tasks compared to the raw binary mutation data and to

network diffusion-based methods. By comparing results obtained with real versus randomised

networks, we further show that the increase in relevance is actually partly driven by the gene’s

network prior knowledge. However, we observe that considering interactions between

mutated genes and their network neighbours only is enough do achieve state-of-the-art results,

thereby shedding light on which are the network features that are the most informative.

Results

Overview of NetNorM

NetNorM takes as input an undirected gene network and raw exome somatic mutation pro-

files and outputs a new representation of mutation profiles which allows better survival predic-

tion and patient stratification from mutations (Fig 1). Here and in what follows, the “raw”

mutation profiles refer to the binary patients times genes matrix where 1s indicate non-silent

somatic point mutations or indels in a patient-gene pair and 0s indicate the absence of such

mutations. The new representation of mutation profiles computed with NetNorM also takes

the form of a binary patients times genes mutation matrix, yet with new properties. While dif-

ferent tumours usually harbour different number of mutations, with NetNorM all patient

mutation profiles are normalised to the same number k of genes marked as mutated. The final

number of mutations k is the only parameter of NetNorM, which can be adjusted by various

heuristics, such as the median number of mutations in the original profiles, or optimised by

cross-validation for a given task such as survival prediction. In order to represent each tumour

by kmutations, NetNorM adds “missing” mutations to samples with less than kmutations,

and removes “non-essential” mutations from samples with more than kmutations. The “miss-

ing” mutations added to a sample with few mutations are the non-mutated genes with the larg-

est number of mutated neighbours in the gene network, while the “non-essential” mutations

removed from samples with many mutations are the ones with the smallest degree in the gene

network. These choices rely on the simple ideas that, on the one hand, genes with a lot of inter-

acting neighbours mutated might be unable to fulfil their functions and, on the other hand,

mutations in genes with a small number of interacting neighbours might have a minor impact

compared to mutations in more connected genes.

In this study, we compare NetNorM-processed profiles with the raw mutation data and

with profiles processed with network smoothing (NS) [33] (also called network diffusion, or

network propagation) followed by quantile normalisation (QN) as implemented in [31]. We

refer to this method as NSQN below. Mutation profiles, either raw or processed with NetNorM

or NSQN, are restricted to the genes present in the network used. While both NetNorM and

NetNorM: Normalization of somatic exome mutation data for cancer stratification and prognosis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005573 June 26, 2017 3 / 29

https://doi.org/10.1371/journal.pcbi.1005573


NSQN leverage gene network prior knowledge to enhance mutation data, the two methods

have fundamental differences. First, NetNorM leverages information about first neighbours in

the network only while NSQN spreads mutation information at a more global scale on the

gene network. Second, with NetNorM the normalised profiles all have the same value

Fig 1. Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM normalises each mutation profile in

a collection of somatic mutation profiles (upper left) into a new, binary representation (right) which encodes additional information relative to

tumours’ overall mutational burden and hubs’ neighbourhood mutational burden. This new representation allows performing patient

stratification with unsupervised clustering techniques, or survival analysis. (b) NetNorM normalises every patient mutation profile to k

mutations. Patients with less than k mutations get ‘proxy’ mutations in their genes with the highest number of mutated neighbours until they

reach k mutations. Patients with more than k mutations have mutations ‘removed’ in their genes with lowest degree until they reach k

mutations.

https://doi.org/10.1371/journal.pcbi.1005573.g001
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distribution by construction, since they are all binary vectors with k ones, removing the need

for further quantile normalisation which, as we discuss below, is critical for NSQN.

NetNorM provides state-of-the-art prognosis for patient survival based

on mutation profiles

To assess the relevance of NetNorM, we first explore the capacity of somatic mutations to pre-

dict patient survival. We collected a total of 3,278 full-exome mutation profiles of 8 cancer

types from the TCGA portal (Table 1), censored survival information and clinical data. In par-

allel we retrieved a gene network to be used as background information for NSQN and Net-

NorM: Pathway Commons, which integrates a number of pathway and molecular interaction

databases [34]. For each cancer type, we use these data to assess how well survival can be pre-

dicted from somatic mutations. For that purpose, we perform survival prediction with a sparse

survival SVM (see Methods) using either the raw mutation profiles or the profiles processed

with NSQN or NetNorM, respectively, and assess their performance by cross-validation using

the concordance index (CI) on the test sets as performance metric.

Fig 2 summarises the survival prediction performances for the 8 cancer types, when the

sparse survival SVM is fed with the raw mutation profile, or with the mutation profiles modi-

fied by NSQN or NetNorM using Pathway Common as gene network. For two cancers (LUSC,

HNSC), none of the methods manages to outperform a random prediction, questioning the

relevance of the mutation information in this context. For OV, BRCA, KIRC and GBM, all

three methods are significantly better than random, although the estimated CI remains below

0.56, and we again observe no significant difference between the raw data and the data trans-

formed by NSQN or NetNorM. Finally, the last two cases, SKCM and LUAD, are the only

ones for which we reach a median CI above 0.6. In both cases, processing the mutation data

with NetNorM significantly improves performances compared to using the raw data or pro-

files processed with NSQN. More precisely, for LUAD the median CI increases from 0.56 for

the raw data and 0.53 for NSQN to 0.62 for NetNorM. In the case of SKCM, the median CI

increases from 0.48 for the raw data to 0.52 for NSQN, and to 0.61 for NetNorM. For SKCM,

both NetNorM and NSQN are significantly better than the raw data (P< 0.01).

In our experiments, silent mutations are systematically filtered out. To evaluate whether

this preprocessing step is actually detrimental or beneficial for the survival prediction task, we

performed further experiments where silent mutations are not filtered out (S1 Fig). We find

that considering silent mutations does not improve survival prediction performances com-

pared to the case where they are filtered out. In fact, the performance of NetNorM on LUAD is

significantly decreased when silent mutations are taken into account.

Table 1. Summary of the full exome mutation profiles used in this study. We analysed a total of 3,278 samples from 8 cancer types, downloaded from

the TCGA portal.

Cancer type Patients Genes Deaths Download date

LUAD (Lung adenocarcinoma) 430 20 596 110 6/22/2015

SKCM (Skin cutaneous melanoma) 307 17 461 129 11/18/2015

GBM (Glioblastoma multiform) 265 14 748 195 11/18/2015

BRCA (Breast invasive carcinoma) 945 16 806 97 11/25/2015

KIRC (Kidney renal clear cell carcinoma) 411 10 608 136 11/25/2015

HNSC (Head and Neck squamous cell carcinoma) 388 17 022 140 11/25/2015

LUSC (Lung squamous cell carcinoma) 169 13 589 70 11/25/2015

OV (Ovarian serous cystadenocarcinoma) 363 10 192 172 11/24/2014

https://doi.org/10.1371/journal.pcbi.1005573.t001
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To assess the influence of the gene network used on the survival prediction performances,

we also repeated our experiments with four gene networks instead of Pathway Commons: Bio-

GRID [35], HPRD [36], HumanNet [37] and STRING [38] (S2 Fig). For HumanNet and

STRING, only the 10% most confident interactions were retained. We observe that no gene

network clearly stands out as the best network for all cancers. For two cancers, LUSC and

HNSC, performances remain very low, close to a concordance index of 0.5, whatever the

method or network used. For three cancers, OV, BRCA and KIRC, NetNorM is the only

method to significantly outperform the raw data with at least one network (HumanNet and

STRING for OV, HPRD for BRCA, and STRING for KIRC) with a median concordance index

above 0.55. For GBM, NSQN is the only method to outperform the raw data (with HumanNet

and STRING) with a median concordance index above 0.55. For the two remaining cancers,

LUAD and SKCM, the best performances are those obtained with NetNorM using Pathway

Commons, with median CI of 0.62 and 0.61 respectively. Across all cancers, methods, and

networks combinations, these two cases are the only ones where the median CI obtained

exceeds 0.60.

Fig 2. Comparison of the survival predictive power of the raw mutation data, NSQN and NetNorM (with Pathway Commons as

gene network) for 8 cancer types. For each cancer type, samples were split 20 times in training and test sets (4 times 5-fold cross-

validation). Each time a sparse survival SVM was trained on the training set and the test set was used for performance evaluation. The

presence of asterisks indicate when the test CI is significantly different between 2 conditions (Wilcoxon signed-rank test, P < 5 × 10−2 (*) or

P < 1 × 10−2 (**)).

https://doi.org/10.1371/journal.pcbi.1005573.g002
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Finally, as mutations in some genes are known to be associated with survival, such as TP53
in BRCA and HNSC which is associated with worsened survival [39], we evaluate the predic-

tion ability of individual genes’ mutation status. For each cross-validation fold, the gene giving

the best concordance index on the training set is selected and its performance evaluated on the

test set. We find that for 5 cancers, the performances of individual genes are similar to those of

the survival SMV applied to the whole raw mutations datasets (S3 Fig). However for BRCA

and HNSC, better survival predictions are obtained using a single gene than the whole raw

mutational profiles. Yet these predictions are not better than those obtained with NetNorM.

For these two cases, TP53 is the gene selected in the majority of folds (17/20 for HNSC and 19/

20 for BRCA), which is in accordance with existing literature (S1 Table). Lastly, the survival

SVM applied to the whole dataset yields significantly better performances than the single gene

approach for LUAD. This means that contrary to the BRCA and HNSC cases, the linear com-

binations of genes which are found for LUAD have a predictive power that generalises well to

unseen data.

In summary, these results show that for at least 6 out of 8 cancers investigated, somatic

mutation profiles have a prognostic value, and that for two of them (SKCM and LUAD) it is

possible to improve the prognostic power of mutations by using gene networks and to reach a

CI above 0.6. In both cases, NetNorM is significantly better than NSQN.

The biological information encoded in the gene network contributes to

the prognosis

To test whether the biological information contained in the gene network plays a role in the

improvement of survival predictions for LUAD and SKCM, we evaluate again NetNorM and

NSQN using 10 different randomised versions of Pathway Commons for these two cancers.

Random networks were obtained by shuffling the nodes’ labels of the real network while keep-

ing the structure unchanged. The results, shown on Fig 3, demonstrate that NetNorM per-

forms significantly better with a real network. More precisely, the real network significantly

outperforms all random networks for SKCM and 8 out of 10 random networks for LUAD

(Wilcoxon signed-rank test with correction for multiple hypothesis testing, FDR� 5%).

NSQN also performs significantly better with a real network for SKCM (7 out of 10 cases) but

Fig 3. Effect of network randomisation on survival prediction performances. (a-b) Performances obtained for 20 cross-validation folds

with Pathway Commons (real network) and 10 randomised versions of Pathway Commons (randomised network) with NetNorM (left) and

NSQN (right) for LUAD (a) and SKCM (b).

https://doi.org/10.1371/journal.pcbi.1005573.g003
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not for LUAD (0 out of 10 cases). This last observation is not surprising since NSQN does not

improve over the raw data for LUAD, which suggests that the method may have failed to lever-

age network information in this case. In summary, these results indicate that the improve-

ments obtained with NetNorM and NSQN compared to the raw data do rely on biological

information encoded in the network.

Analysis of predictive genes

In order to shed light on the reasons why NetNorM outperforms the raw data and NSQN on

survival prediction for SKCM and LUAD, we now analyse more finely the normalisation car-

ried out by NetNorM on the mutation profiles, and why they lead to better prognostic models.

For that purpose, we focus on the genes that are selected at least 50% of the times by the sparse

survival SVM during the 20 different train/test splits of cross-validation, after NetNorM nor-

malisation. This leads to 21 frequently selected genes for LUAD and 10 for SKCM (Fig 4).

Remembering that NetNorM either removes mutated genes for patients with many mutations,

or adds proxy mutations for patients with few mutations, we can assess for each frequently

selected gene whether it tends to exhibit proxy mutations or whether it tends to be actually

mutated in the tumour. This is done by comparing how frequently it is marked as mutated on

the raw data and after NetNorM normalisation (Fig 4, top plot). For both cancers, we observe

two clearly distinct groups of frequently selected genes: those that concentrate proxy mutations

(which we will call proxy genes, in red in Fig 4), and those to which NetNorM brings only few

Fig 4. Genes frequently selected in the survival prediction model for LUAD (left) and SKCM (right) learned using the NetNorM

representation of mutations with Pathway Commons as gene network. The genes reported are those that were selected at least 10

times in 20 cross-validation folds. For each cancer, genes are ordered from the most frequently selected (left) to the least frequently selected

(right). The top panel reports the number of raw mutations in the selected genes (black), as well as the number of “proxy” mutations (red) and

the number of mutations removed (blue) after application of NetNorM. The bottom panel reports the coefficients of a gene in the survival

SVM model across the cross-validation folds where this gene was selected. Gene names marked in red indicate proxy genes.

https://doi.org/10.1371/journal.pcbi.1005573.g004
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modifications compared to the raw data, meaning they are usually actually mutated in the

tumours (in black in Fig 4).

Genes with few modifications imputed by NetNorM. In the case of LUAD, 12 out of the

21 selected genes are non-proxy genes, meaning they tend to be really mutated when they are

marked as mutated after NetNorM normalisation. Interestingly, mutations in 5 of these genes

are predictive of an increased survival time (corresponding to a positive coefficient in the

sparse survival SVM) while mutations in the remaining 7 genes are predictive of a decreased

survival time (corresponding to a negative coefficient) (Fig 4, bottom plot). The three most

important predictors according to their frequency of selection include NOTCH4, TP53 and

CRB1 (selected in all of the 20 folds) and are all predictive of a decreased survival time. TP53 is

a well-known cancer gene and has been reported as significantly mutated in LUAD [40, 41].

NOTCH4 is part of theNOTCH signalling pathway which has been widely implicated in cancer

and shown to act as both oncogene or tumour suppressor depending on the context [42].

Finally, CRB1 is known to localise at tight junctions but little is known about its role in carci-

nogenesis [43]. Among the remaining genes, LAMA2 (selected in 16 out of 20 folds) has been

detected as a driver gene in head and neck squamous cell carcinoma and PCDH18 (selected in

11 out of 20 folds) has been detected as a driver in bladder carcinoma, cutaneous melanoma

and in a pan-cancer analysis setting [44]. In the case of SKCM, 9 out of the 10 selected genes

are genes with few modifications. This includes 7 genes whose mutations are predictive of a

decreased survival time (FLNC, IQGAP2,NPC1L1,NCOA3, LRBA, DSP, PRRC2A), and 2

whose mutations are predictive of an increased survival time (SACS and APOB). Among

these genes, NCOA3 (also known as AIB1 or SRC3) is an important oncogene in breast cancer

[45, 46]. Its role in other cancers is unclear however it has been shown that overexpression of

NCOA3 is a marker of melanoma outcome [47]. LRBA interacts with multiple important signal

transduction pathways including EGFR and its deregulation in several cancer types has been

shown to facilitate cancer cell growth [48]. Moreover LRBA expression has been indicated as a

clinical outcome predictor in breast cancer [49]. Filamin C (FLNC, selected in all of the 20

folds) is a large actin-cross-linking protein which has been shown to inhibit proliferation and

metastasis in gastric and prostate cancer cell lines [50]. Desmoplakin (DSP) is required for

functional desmosomal adhesion which has been linked to cancer cells development and pro-

gression in several cancers [51, 52]. Moreover IQGAP2 has been identified as a tumour sup-

pressor gene in hepatocellular carcinoma, gastric and prostate cancers [53].

Proxy genes. In addition to somatically mutated genes, several proxy genes, mutated by

the NetNorM procedure, are often selected by the survival model. The proxy genes for LUAD

are IGF2BP2, RPS9, SMARCA5,MCM4, KHDRBS1, PSMD12, SKIV2L2, FN1, RPL19 and for

SKCM UBC is the only one. These genes are among the biggest hubs in the network. This is

expected as proxy mutations are imputed in genes with a lot of mutated neighbours, which is

more likely to occur for genes that simply have a lot of neighbours. The fact that these proxy

genes were selected in the survival models means that they have some prognostic power. In

particular for LUAD, the better prediction performances achieved by NetNorM compared to

the raw data is largely explained by better predictions made for the half of patients with fewer

mutations, and therefore by the proxy mutations that were created in these patients (Fig 5a).

The prognostic power of proxy genes in NetNorM comes from at least two types of infor-

mation they capture. The first type of information captured by proxy mutations is the total

number of mutations in a patient. Patients harbouring proxy mutations are significantly less

mutated than those without proxy mutations (Welsh t-test, P� 1 × 10−2) in a given proxy

gene. This results from the fact that patients with few mutations receive as many proxy muta-

tions as needed to reach the target number of mutations k, and therefore proxy mutations have

a higher probability to be set in patients with few mutations. The fact that NetNorM creates

NetNorM: Normalization of somatic exome mutation data for cancer stratification and prognosis
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proxies for the total number of mutations raises the question of whether or not the total num-

ber of mutations can improve survival predictions made using the raw binary mutation pro-

files. To answer this question, we trained a model to predict survival from the raw binary

mutation profiles concatenated with a feature, scaled to unit variance, which records the total

number of mutations in each patient (S4 Fig). According to our results, taking into account

such a feature does not improve survival prediction performances compared to using the raw

data alone. We therefore tested another feature which better mimics the proxies created by

NetNorM, which we call ‘proxies’. This feature is equal to the total number of mutations in a

patient for patients with less than kmutations, and is equal to 0 otherwise. We trained a sur-

vival prediction model on the raw data concatenated with the feature ‘proxies’, scaled to unit

variance, where k is chosen by cross-validation. Interestingly, we find that using such a feature

allows to significantly improve the results obtained for OV, KIRC and LUAD compared to the

raw data alone. In particular, the performances obtained for LUAD are on par with those

obtained with NetNorM, suggesting that the feature ‘proxies’ summarises well the information

leveraged by NetNorM. However this is not the case for SKCM since considering the feature

‘proxies’ does not improve over using the raw data alone. We draw two conclusions from these

observations: first, NetNorM creates relevant proxies for the total number of mutations which,

in combination with the binary mutation profiles, have predictive power; second, such proxies

do not entirely explain the performances of NetNorM, at least for SKCM.

The second type of information captured by proxy mutations is genes’ neighbourhood

mutational burden (NMB). When we look at which patients get mutated in a given gene after

NetNorM normalisation (red dots in Fig 5b), we observe that they tend to have more muta-

tions in the neighbours of this gene than what the sole mutational burden would predict (rep-

resented by the regression line in Fig 5b). In other words, among the hubs that could get

Fig 5. Analysis of predictive genes. (a) Comparison of survival prediction performances according to patients’ mutational burden for

LUAD. Three different representations of the mutations are used to perform survival prediction using a ranking SVM: raw (the raw binary

mutation data), NSQN (network smoothing with quantile normalisation) and NetNorM. Performances for half of the patients with fewer (resp.

more) mutations are derived from the predictions made using the whole dataset. (b) Scatter plot of the total number of mutations in a patient

of the LUAD cohort (x-axis) against the number of mutated neighbours of KHDRBS1 in a patient (y-axis). Only patients with less than kmed =

295 mutations are shown, where kmed is the median value of k learned across cross-validation folds. Red (resp. blue) indicate patients

mutated (resp. non mutated) in KHDRBS1 after processing with NetNorM using k = kmed. The black line was fit by linear regression and by

definition indicates the expected number of mutated neighbours of KHDRBS1 given the mutational burden of a patient.

https://doi.org/10.1371/journal.pcbi.1005573.g005
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mutated by NetNorM for patients with few mutations, the ones that get mutated tend to be the

ones surrounded by more mutations than expected given the mutational burden of the patient.

NetNorM thus creates proxy mutations when a gene’s NMB is higher than expected.

Among the proxy genes selected in LUAD (resp. SKCM), IGF2BP2, SMARCA5,MCM4,

PSMD12 and SKIV2L2 (resp. UBC) define groups of patients with significantly different sur-

vival outcomes (log-rank test, P� 5 × 10−2). Given the discussion in the previous paragraph,

this may be due to differences in the overall mutational burden between tumours, to differ-

ences in NMB for some genes, or to both effects. To clarify the contributions of each effect, we

investigate whether such distinct survival outcomes can be obtained with proxies for the total

number of mutations only, regardless of NMBs. To this end, we simulate proxy mutations

according to a probability depending on patients’ total number of mutations only. By contrast,

NetNorM mutates genes according to patients’ total number of mutations and according to

genes’ NMB. Then for each gene we compare the survival outcomes of the obtained subgroups

(patients which were imputed a proxy mutation versus those that were not) using a log-rank

test and examine whether the log-rank statistic is higher with NetNorM than with the simula-

tions (see Methods for more details). We find that all of IGF2BP2, SMARCA5,MCM4,

PSMD12, SKIV2L2 and UBC produce groups with a significantly higher log-rank statistic with

NetNorM than with their simulated counterpart (log-rank test, P� 5 × 10−2). This clarifies

that the prognostic information captured by proxy mutations with NetNorM combines the

overall mutational burden of the patient with local mutational burden on the gene network.

NetNorM enhances clinical data based prognosis

We assess whether the combination of both mutations and clinical features can improve per-

formances for LUAD and SKCM compared to using clinical data alone. For this purpose, two

sparse survival SVM models are trained independently: one on the raw mutation data or muta-

tions preprocessed with NSQN or NetNorM and one on the clinical data. Then the survival

predictions from both models are simply averaged (after being standardised to unit variance).

The resulting predictions are again evaluated in a 4 times 5 folds cross-validation setting. First,

the results show that mutations preprocessed with NetNorM and the clinical data yield similar

performances (P = 0.52, Wilcoxon signed rank test) for LUAD while the clinical data performs

significantly better than NetNorM in the case of SKCM (P� 1 × 10−2) (Fig 6). Moreover, we

observe that combining mutations preprocessed with NetNorM with clinical features allows

improving survival predictions compared to the clinical data alone for both LUAD

(P = 4.8 × 10−2) and SKCM (P = 5.7 × 10−2). More precisely, the median CI increases from

0.64 with the clinical data to 0.66 with the combination of NetNorM and the clinical data for

LUAD and from 0.66 to 0.70 in the case of SKCM. We also tried to concatenate the mutation

profiles with the clinical data before training a unique model and observed that it did not

improve the results compared to the previous strategy (S5 Fig). Overall, these results suggest

that mutations could provide useful prognostic information that is complementary to the clini-

cal information available.

NetNorM allows stable unsupervised stratification of patients with

significantly different survival curves

We now assess the possibility to stratify patients into a small number of groups in an unsuper-

vised way, meaning without using survival information, in order to identify distinct subgroups

of patients in terms of mutational profiles. For that purpose, we use a standard unsupervised

clustering pipeline based on nonnegative matrix factorisation (NMF), and apply it to the dif-

ferent cohorts of patients represented by the raw mutation profiles, or the profiles normalised
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by NSQN or NetNorM. The hyperparameters k (NetNorM) and α (NSQN) were set to default

values chosen as the median number of mutations in a cohort for k and α = 0.5 as recom-

mended in [31]. As we have no ground truth regarding “true” groups of patients, we assess the

quality of clustering by two factors: (i) the stability of the clusters, assessed by the proportion

of ambiguous clustering (PAC) which is the rate of discordant cluster assignments across

1,000 random subsamples of the full cohort; and (ii) the significance of association between

clusters and survival.

With the raw data, NMF tends to stratify patients into very unbalanced subtypes with typi-

cally one subtype gathering the majority of patients (Fig 7b). LUSC, HNSC and SKCM are

Fig 6. Survival predictive power of mutation data (raw binary mutations, mutations preprocessed with NSQN or NetNorM with

Pathway Commons), clinical data, and the combination of both for LUAD and SKCM. The combination of both data types was made

by averaging the predictions obtained with each data type separately. For both cancers, samples were split 20 times in training and test sets

(4 times 5-fold cross-validation). Each time a sparse survival SVM was trained on the training set and the test set was used for performance

evaluation.

https://doi.org/10.1371/journal.pcbi.1005573.g006
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Fig 7. Comparison of patient stratifications obtained with the raw mutation data, NSQN (Pathway Commons) and NetNorM

(Pathway Commons) for 8 cancer types. (a) Association of patient subtypes with survival time. One circle indicates P� 0.05 and two

concentric circles indicate P� 0.01 (log-rank test). Cases where clusters were too unbalanced (95% of the patients in one single cluster) are

not shown. (b) Evaluation of the clustering stability as measured by the proportion of ambiguous clustering (PAC). The transparency of the

triangles indicate the percentage of patients in the largest cluster. The scale ranges from 100% (totally opaque) to 1

N % (totally transparent)

where N is the number of subtypes. Therefore opacity (resp. transparency) indicate unbalanced (resp. balanced) clusters. (c) Kaplan Meir

survival curves for NetNorM subtypes with significantly distinct survival outcomes. In the legend are indicated the subtype number followed

by the number of patients in the subtype.

https://doi.org/10.1371/journal.pcbi.1005573.g007
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extreme cases where one cluster contains 95% of the patients, whatever the number of clus-

ters. In addition, in cases where the obtained clusters are reasonably balanced as for KIRC,

the clustering stability is low. These results are coherent with [31] who highlighted the diffi-

culty to cluster raw mutation profiles. These undesirable behaviours disappear with both

NSQN and NetNorM (Fig 7). With NetNorM the obtained clusters are reasonably balanced

across all cancers and the clusters are stable (PAC � 30%). NSQN also provides stable clusters

(PAC � 30%) when the number of clusters is set between 4 and 6 however for 2 or 3 clusters

the stability is not as good (PAC � 50%). To assess the clinical relevance of the obtained sub-

types, we test whether they are associated with significantly distinct survival outcomes

(Fig 7a). With the raw data, patient stratification is never significantly associated with clinical

data. With NetNorM, significant associations of patient subtypes with survival times are

achieved for HNSC, OV, KIRC and SKCM (Fig 7c), while with NSQN, a significant associa-

tion is only achieved for OV. The stratification based on NetNorM remains prognostic

beyond clinical data for SKCM (Likelihood ratio test, P = 2.4 × 10−2 (SKCM, N = 5)). It can be

surprising at first sight that no signal is recovered for LUAD with NetNorM and for SKCM

with NSQN since some signal was observed in the survival prediction setting in these cases.

We hypothesized that this could be due to a bad choice of the hyperparameters k and α for

these cancer types. Therefore additional experiments were run for LUAD and SKCM with k
and α set to their values learned by cross-validation for the survival prediction task (S3 Table).

This corresponds to k = 315 and α = 0.6 for LUAD (instead of k = 189 and α = 0.5 as defaults)

and k = 140 and α = 0.25 for SKCM (instead of k = 243 and α = 0.5 as defaults). With these

new values for the hyperparameters, significant associations with survival are detected for

LUAD with NetNorM (for 4, 5 and 6 clusters) and for SKCM with both NetNorM (for any

number of clusters) and NSQN (for 4 clusters) (S6 Fig). The recovery of a signal in these cases

is in accordance with the results in the supervised setting. Overall, these results confirm the

findings of [31] that network-based normalisation with NSQN allows stratifying patients bet-

ter than the raw mutation profiles, and also show that the stratification obtained from Net-

NorM normalisation is both more stable and more clinically relevant than the one obtained

with NSQN.

Patient stratification with randomised networks

We now assess whether the biological information contained in Pathway Commons is crucial

to obtain subtypes with significantly distinct survival outcomes. For that purpose, we carry out

patient stratification with NSQN and NetNorM using 10 randomised versions of Pathway

Commons for HNSC, OV, KIRC and SKCM. As for the survival prediction experiment, the

randomisation involves shuffling the vertices’ labels so as to keep the structure of the network

unchanged. Surprisingly, network randomisation does not affect the log-rank statistic obtained

for HNSC and SKCM. This suggests that although NetNorM generates subtypes with more

distinct survival times than NSQN for HNSC and SKCM, it does not benefit from Pathway

Commons gene-gene interaction knowledge. Rather it exploits the prognostic information

contained in the raw mutation profiles as well as the overall mutational burdens as captured by

proxy mutations. Regarding KIRC and OV, NetNorM produces subtypes with significantly

different survival times with 4 and 5 clusters for KIRC and for any number of clusters for OV.

In the case of KIRC, the real network yields the subtypes with the most distinct survival times

(N = 5) (Fig 8) while in the case of OV, most randomized networks (at least 15 out of 20 for

each number of clusters) produce subtypes with worse association to survival time. This indi-

cates that for KIRC and presumably for OV, NetNorM takes advantage of gene-gene interac-

tion knowledge to stratify patients into clinically relevant subtypes. This is also clearly the case
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for LUAD with NetNorM when the hyperparameter k is set to its value learned by cross-valida-

tion in the survival prediction setting (S6 Fig).

Patient subtypes obtained with NetNorM are characterised by distinct

pathways

To interpret biologically the subgroups of patients identified by automatic stratification after

NetNorM normalisation, we look at differentially mutated genes and pathways across sub-

types. We focus on LUAD with N = 5 groups as a proof of principle with k set to its value

learned by cross-validation in the supervised setting. This choice is motivated by the fact that

LUAD is the most promising cancer type for supervised survival prediction and produces

interesting results in the unsupervised setting. As the basis vectors or “metapatients” yielded

by the NMF summarise the mutational patterns found in the different subtypes, we analyse

genes in terms of their weight in the different metapatients, and restrict our attention to the

approximately 900 genes displaying highest variance (variance greater than 0.01) across basis

vectors since these genes are expected to be the most differentially mutated across subtypes.

Interestingly, this gene list comprises most significantly mutated genes in LUAD including

TP53,KRAS, KEAP1, EGFR,NF1, RB1 [40, 41]. To analyse these genes we cluster them into

groups with similar weights across basis vectors using hierarchical clustering (Fig 9b), and we

test for enrichment in known biological pathways the 20 gene clusters (GCs) obtained.

One first observation is that the 5 patient subtypes have distinct overall mutational burdens

with groups 4 and 5 (resp. 2 and 3) gathering patients with many (resp. few) mutations

(Fig 9e). This confirms the fact that NetNorM-normalised profiles contain information about

the initial number of mutations, although they are normalised to a fixed number of mutations.

More importantly, most GCs exhibit high weights in one metapatient and low weights in

others, suggesting that they are mainly enriched in mutations in one single patient subtype

(Fig 9b). χ2 contingency tests (see methods) for each GC confirms that for most of them

Fig 8. Effect of network randomisation on patient stratification. Log-rank statistic obtained with Pathway Commons (curve) and 10

randomised versions of Pathway Commons (boxplots) with NetNorM (blue) and NSQN (orange) for HNSC, OV, KIRC and SKCM. One circle

indicate a P-value P� 5 × 10−2 and two concentric circles indicate P� 1 × 10−2.

https://doi.org/10.1371/journal.pcbi.1005573.g008
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(17/20), the distribution of the mutations across patient subtypes is not that expected accord-

ing to subtypes’ overall mutational burdens (P< 5 × 10−2) (S4 Table). The contribution of

each subtype to the test statistic for each GC also confirms that GCs are often enriched in

mutations in mainly one patient subtype (Fig 9d). Subtypes could thus easily be associated

with one or several GCs, and therefore pathways through pathway enrichment analysis using

the KEGG database [54] (see Methods).

Consequently, subtype 3 is characterised by an enrichment in mutations in genes associated

with ribosomes and spliceosomes (GCs 2, 3, 4, 5, 6, 7, 8, 17, 18, 19) (S4 Table). Subtype 1 is

enriched in mutations in two very small gene clusters (GCs 11 and 16): the first one consists of

four genes including KRAS and the second one only includesMUC16. These two subtypes are

those with poorest survival probability. Subtype 4 is mainly enriched in late replicating genes

(GC 10) (Fig 9c). This reflects the fact that subtype 4 is enriched in highly mutated patients as

Fig 9. Characterisation of LUAD patient subtypes obtained with NetNorM (N = 5 groups, k = 315, Pathway Commons). (a) Kaplan

Meir survival curves for NetNorM subtypes with significantly distinct survival outcomes. In the legend are indicated the subtype number

followed by the number of patients in the subtype. (b) Metapatients matrix obtained by applying NMF to mutation profiles processed with

NetNorM. The matrix shown is restricted to the genes with highest variance across metapatients. The genes (columns) are clustered via

hierarchical clustering. Clusters are numbered from 1 to 20 from left to right. (c) Distribution of gene replication times across gene clusters.

(d) A χ2 contingency test was performed for each gene cluster to test its enrichment (or depletion) in mutations across patient subtypes given

the subtypes’ marginal number of mutations. The value represents the contribution of a subtype to the test statistic, and the colour indicates

an enrichment (red) or a depletion (blue) in mutations. (e) Distribution of patients’ total number of (raw) mutations across patient subtypes.

https://doi.org/10.1371/journal.pcbi.1005573.g009
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there exists a positive correlation between somatic mutation frequency and genes replication

time [16]. Subtype 2 is enriched in mutations in genes related to endocytosis and phagosomes

(GCs 16, 1, 11). Finally, subtype 5 is very strongly associated with gene clusters 9 and 13. Gene

cluster 9 is enriched in genes from the cAMP and PI3K-Akt signaling pathways. Gene cluster

13 could not be significantly associated to a known biological pathway. However it contains

FANCD2 (Fanconi Anemia Complementation Group D2) which is involved in double-strand

breaks DNA repair and the maintenance of chromosomal stability [55]. We note that 12 of the

15 patients in subtype 4 present the same 4-nucleotides splice site deletion in FANCD2,

whereas across the rest of the 430 patients FANCD2 is mutated in 6 patients only, and only one

of these 6 mutations is the same as that observed in subtype 4 patients.

Discussion

Exploiting the wealth of cancer genomic data collected by large-scale sequencing efforts is a

pressing need for clinical applications. Somatic mutations are particularly important since

they may reveal the unique history of each tumour at the molecular level, and shed light on the

biological processes and potential drug targets dysregulated in each patient. Standard statistical

techniques for unsupervised classification or supervised predictive modelling perform poorly

when each patient is represented by a raw binary vector indicating which genes have a somatic

mutation. This is both because the relevant driver mutations are hidden in the middle of many

irrelevant passenger mutations, and because there is usually very little overlap between the

somatic mutation profiles of two individuals. NetNorM aims to increase the relevance of muta-

tion data for various tasks such as prognostic modelling and patient stratification by leveraging

gene networks as prior knowledge.

One important aspect of NetNorM is the property that, after normalisation, all patients

have the same number of 1’s in their normalised mutation profile. Although there is no biolog-

ical rational for this constraint, we believe that the fact that all normalised samples have the

same distribution of values is an important property for many high-dimensional statistical

methods such as survival models or clustering techniques to work properly. To support this

claim, we notice that the Network-based stratification (NBS) method proposed in [31] per-

forms a quantile normalisation step after network smoothing. To investigate whether the

quantile normalisation step in NSQN plays an important role, we applied network smoothing

without quantile normalisation (called NS) and performed survival prediction and patients

stratification with this representation of the mutations. Surprisingly, NS does not improve

over the raw mutation profiles for both LUAD and SKCM (Fig 10c). Moreover just as the raw

data, NS is unable to stratify patients into approximately balanced clusters (Fig 10b). This sug-

gests that quantile normalisation plays a crucial role in the performances obtained with

NSQN, in spite of non obvious biological justification for this step.

Another important difference between NSQN and NetNorM is the fact that NetNorM only

exploits mutation information about direct neighbours in the network, while NSQN can

potentially diffuse a mutation further than the direct neighbours. However, we found that

NSQN does not benefit from this possibility. Indeed, we tested a simplified version of NSQN

where the network propagation is stopped after one iteration, and assessed the performance of

the corresponding method which we call SimpNSQN. For survival prediction, we observe no

significant difference between NSQN and SimpNSQN (Fig 10c). For patient stratification,

SimpNSQN produces subtypes that are vey similar to those produced by NSQN (Fig 10d).

Therefore the subtypes generated by both methods associate equally well to clinical data, and

even slightly better for SimpNSQN in the case of LUAD (Fig 10a). Overall, these pieces of

information indicate that the useful information created by NSQN is mostly concentrated on
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shared mutated order 1 neighbourhoods, and explain why we observe no loss in performance

with NetNorM which explicitly restricts the diffusion of mutations to direct neighbours only.

More generally, these elements also indicate that diffusion to indirect neighbours is still diffi-

cult with current methods. This is a likely consequence of the small world property of biologi-

cal graphs [56]. Because the path between any two genes is usually short, diffusion even to

order-2 neighbours reaches a substantial number of genes, and therefore the resulting signal

observed for one gene is the superposition of a large number of signals originating from close

mutations.

Fig 10. Exploring NSQN and NetNorM performances levers. (a) Subtypes log-rank statistic obtained for LUAD (left) and SKCM (right).

One circle indicate a P-value P� 5 × 10−2 and two concentric circles indicate P� 1 × 10−2 (log-rank test). (b) Consensus clustering matrices

for LUAD. (c) Survival prediction performances for LUAD (left) and SKCM (right). (d) Confusion matrices for LUAD (top) and SKCM (bottom)

comparing the subtypes obtained with NSQN and SimpNSQN on the one hand, and NSQN and NetNorM on the other hand. (a, b, c, d) were

obtained with Pathway Commons.

https://doi.org/10.1371/journal.pcbi.1005573.g010
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NetNorM encodes information about patients’ total number of mutations in the raw data,

and potentially can exploit it if this information is relevant for the problem at hand. However

we found that the total number of mutations is a poor predictor or survival (Fig 10c), and a

poor feature for LUAD patient stratification (Fig 10a). This confirms that NetNorM conserves

useful information regarding both the total mutational burden of a patient and the distribution

of the mutations on the gene network, and manages to leverage both types of information. In

addition to mutational burdens, NetNorM also encodes information about genes’ NMB which

proved to carry some prognostic power. The fact that NMB might reveal new insights into

mutation profiles is an emerging idea supported by this study. Further support has been for-

malised with two recently published methods [57, 58] which rely on NMB to achieve state-of-

the-art performances for cancer gene discovery.

We emphasize that randomised gene networks lead to significantly worse performances

than the real network for survival prediction as well as for patient stratification for several can-

cers. While it is not always clear whether incorporating gene networks as prior knowledge

does help for a given task, this provides a sound argument that such prior knowledge is effec-

tively leveraged with NetNorM.

Increasing the relevance of mutation data to various tasks is a broad project and NetNorM

could be extended in many ways. First, although NetNorM was successful for LUAD and

SKCM, we note that the method brings few improvements compared to the raw data for the

remaining cancer types. Therefore extensive efforts are needed to determine whether it is pos-

sible to design representations of mutations that would increase the statistical power of models

learned on these datasets. Second, NetNorM does not integrate further information about

mutations such as their predicted functional impact. A possible extension could therefore

include this type of information. Finally, the distribution of values for the normalised profiles

is defined as the mean distribution of the original profiles in the case of NSQN, and simply a

binary vector with a fixed number of 1’s in the case of NetNorM, however these choices are

empirical. This suggests that an interesting future work may be to assess more precisely the

effect of this distribution and, perhaps, optimise it for each specific task.

Materials and methods

Patient mutation profiles preprocessing

Whole exome somatic mutation calls (MAF files) were downloaded from TCGA data portal

(https://tcga-data.nci.nih.gov/tcga) for 8 cancer types (LUAD, SKCM, GBM, BRCA, KIRC,

HNSC, LUSC, OV) (Table 1). The data include point mutations (single nucleotide polymor-

phism as well as di/tri/oligo-nucleotide polymorphism) and indels. Silent mutations were fil-

tered out and mutations profiles were defined as binary vectors with ones whenever a patient

is mutated in a given gene and zeros otherwise.

Gene-gene interaction network

Pathway Commons (http://www.pathwaycommons.org/pc2/downloads) was used throughout

this work (Pathway Commons v6, SIF format). It integrates gene networks from several public

databases and aggregates both genetic and protein-protein interactions (PPIs). PPIs refer to

physical contacts established between proteins while genetic interactions refer to interactions

through regulatory and signalling pathways. To remove interactions involving small molecules

in Pathway Commons, the following interaction types were filtered out: “consumption-

controlled-by”, “controls-production-of”, “controls-transport-of-chemical”, “chemical-

affects”, “reacts-with”, “used-to-produce”, “SmallMoleculeReference”, “ProteinReference;

SmallMoleculeReference”, “ProteinReference”. We obtained a network with 16,674 nodes
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(genes) and 2,117,955 edges (interactions). For the survival prediction task, we also tested the

following gene networks: BioGRID v3.4.131, HPRD release 9, HumanNet v1 and STRING

v10. For HumanNet and STRING, only the top 10% most confident interactions were

retained.

Network based normalisation of mutation profiles (NetNorM)

NetNorM is a method that integrates patients mutation profiles with a gene network to pro-

duce normalised mutation profiles where all patients have the same number k of mutations.

The target number of mutations k is a tuning parameter. In the context of survival prediction

(supervised setting), it is learned by cross-validation while for patient stratification (unsuper-

vised setting), it is set as the median number of mutations in a cohort, or alternatively to the

median best k learned across cross-validation folds for survival prediction. Concretely, Net-

NorM defines a ranking over genes separately for each patient and then use this ranking to

normalise mutation profiles. The ranking defined in NetNorM is obtained with a simple two-

step procedure. First, genes are ranked according to their mutation status with mutated genes

ranked higher than non mutated genes. Then, mutated genes are ranked according to their

degree (i.e. their number of neighbours) and non mutated genes are ranked according to their

number of mutated neighbours. The normalisation is then obtained by considering the k high-

est ranked genes as mutated while the rest of the genes will be considered non mutated. By

construction, mutated genes are always ranked higher than non-mutated genes. Therefore

patients with a lot of mutations will have mutations removed while patients with few muta-

tions will hold artificial proxy mutations. Note that when the obtained ranking contains ties,

all genes are given distinct ranks according to the order in which they occur in the mutation

matrix.

Network smoothing with quantile normalisation (NSQN)

Network smoothing propagates the influence of mutations over gene-gene interaction net-

works. It was implemented according to the following update function [31]:

Xtþ1 ¼ aXtD
� 1

2 AD� 1
2 þ ð1 � aÞX0

where Xt is the patient × genes mutation matrix at iteration t, X0 is the initial binary mutation

matrix, A is the adjacency matrix representing the network used and D is the diagonal degree

matrix where Dii ¼
X

j

Aij. α is a tuning parameter controlling the length of diffusion paths

over the network. Similarly to the parameter k in the context of NetNorM, it is learned by

cross-validation for survival prediction (supervised task) while for patient stratification (unsu-

pervised task) it is set as α = 0.5 as recommended in [31] with Pathway Commons or alterna-

tively to the median best α learned across survival prediction cross-validation folds. The

update function is applied until convergence, and the resulting smoothed matrix is then quan-

tile normalised so that all patients have the same mutation distribution.

Simplified version of NSQN (SimpNSQN)

The simplified version of NSQN does not propagate mutations further than to order 1 neigh-

bours in the network. More precisely, the SimpNSQN score of a gene is equal to its number of

mutated neighbours normalised by its degree and by the degrees of its neighbours, plus a con-

stant if the gene is mutated. This is obtained by computing:

X ¼ aX0D� 1
2 AD� 1

2 þ ð1 � aÞX0
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where X0 is the initial binary mutation matrix, A is the adjacency matrix representing the net-

work used, D is the diagonal degree matrix where Dii ¼
X

j

Aij and a 2 R is a tuning parame-

ter. Note that SimpNSQN uses the same update equation as NSQN but it is run only once.

Sparse survival SVM

To estimate a survival model from high-dimensional mutation profiles, we use a survival SVM

model [59] combined with a sparsity-inducing regularisation to automatically perform gene

selection. Let δi = 1 (resp. δi = 0) if patient i is deceased (resp. censored), and yi 2 R be the

observed survival time of patient i. It corresponds to either a failure or a censoring time

depending on whether the patient is deceased or censored. Define Z 2 {0, 1}n×n which indicates

whether a pair of patients is comparable, i.e,

Zij ¼

1 if ðyi < yj and di ¼ 1Þ or ðyj < yi and dj ¼ 1Þ ;

1 if ðyi ¼ yj and ðdi ¼ 1 or dj ¼ 1ÞÞ ;

0 otherwise :

8
>>><

>>>:

Finally, let xi 2 {0, 1}p be the mutation profile of patient i. The survival time of patient i is mod-

elled as si = wT xi where w 2 Rp is the model parameter learned using ranking Support Vector

Machines (rSVM) as in [59]. However to get a sparse w we introduce an ℓ1 regularisation

instead of the ℓ2 regularisation in [59] and thus solve the following optimisation problem:

minimise
w

1

2
jjwjj

1
þ C

X

i;j
Zij ‘hingeðw

T ðxj � xiÞÞ ;

where ℓhinge(u) = max(1 − u, 0) is the hinge loss and C 2 R is the regularisation parameter. To

solve this problem we used the support vector classification algorithm svm.LinearSVC from

the Python package scikit learn [60]. This optimisation problem maximises a convex relaxation

of the Concordance Index (CI) which measures how well the predicted survival times s are in

accordance with the observed survival times y for the comparable pairs of patients. Formally,

CI ¼ 1

jZj

X

yi�yj

ZijIðsj � siÞ where

IðxÞ ¼

1 if x > 0 ;

1

2
if x ¼ 0 ;

0 otherwise ;

8
>>>><

>>>>:

and jZj ¼
X

yi�yj

Zij. To evaluate the CI obtained on a given dataset, samples were split in 80%

train and 20% test sets 20 times using 4 five-fold cross-validation. Each time, a model was

learned on the training set and tested on the test set. The CI was computed according to a

python implementation of the function estC from the R package compareC. Hyperparameters

were learned thanks to an inner 5-fold cross-validation on the training set. The values tested

for C ranged from 1 × 10−4 to 1 × 102 included in log scale. The values tested for α ranged from

0.1 to 0.9 included with steps of 0.1. Finally the values tested for k were chosen to span a grid

from kmin and kmax with steps of 2, where kmin and kmax are the first and third quartiles of the

distribution of patients’ total number of mutations. kmin and kmax differ for each cohort (S2

Table).
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Patient stratification

Let X 2 Rn�p be the matrix with patient mutations profiles as rows. To cluster the patients we

perform a non-negative matrix factorisation (NMF) on X, i.e., solve the following optimisation

problem:

minimise
W;H>0

jjX � WHjj2
2
;

where H 2 RN�p defines N basis vectors or “metapatients” and W 2 Rn�N defines basis vectors

loadings. Patient i was then assigned to the group j 2 {1‥N} that represents him best i.e.

argmax
j

Wij. To promote robust cluster assignments, NMF was applied 1000 times to subsam-

ples of the dataset composed of 80% of the samples and 80% of the features chosen at random

without replacement. A consensus matrix C 2 Rn�n was then derived from the 1000 cluster

assignments obtained where each entry Cij corresponds to the frequency at which two patients

where clustered in the same group over all samplings where both patients were retained. The

final cluster assignment was obtained by applying hierarchical clustering to the consensus

matrix with euclidean distance and average linkage.

To assess the stability of the obtained clusters, we computed the proportion of ambiguous

clustering (PAC) which is the proportion of discordant cluster assignments obtained through

consensus clustering. Cluster assignments for a pair of patients (i, j) were considered discor-

dant when 0.25� Cij� 0.75.

In the case where only the total number of mutations was used for stratification, NMF is

not applicable and kMeans was used instead with 1000 restarts and initialisation by kMeans++

[61].

Analysis of the proxy genes selected by the sparse survival SVM with

NetNorM

Several proxy genes have a prognostic power according to log-rank tests performed for each

gene separately and which compare patients with mutations (proxy or not) versus those with-

out (P� 1 × 10−2). The difference in survival outcomes observed may be due to at least two

types of information encoded in proxy genes: patients’ overall mutational burden and genes’

neighbourhood mutational burden (NMB). To clarify the contributions of each effect, we

investigate whether such distinct survival outcomes can be obtained with proxies for the total

number of mutations only, regardless of NMBs. To this end, we simulate proxy mutations

for each gene separately according to a model that only depends on patients’ total number

of mutations. Let Ti 2 N be the total number of mutations of patient i, i 2 {1, . . ., n}. Let

Mo � f1; :::; ng and Mp � f1; :::; ng indicate which patients have original and proxy muta-

tions respectively. For a given proxy gene whose mutations are described by the setsMo and

Mp, we leave the original mutations untouched and reallocate the proxy mutations according

to

Pði 2MpjTiÞ ¼
0 if ðTi � kÞ or ði 2MoÞ

k � Ti
a

otherwise

8
><

>:

where α is chosen so that the probabilities sum to 1. Proxy mutations are drawn from this

model 1000 times. Each time we compute the log-rank statistic between the mutated and non

mutated patients which yields a distribution of the log-rank statistic under the null hypothesis.

The actual log-rank statistic obtained using NetNorM is then compared to this distribution to
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accept or reject the null hypothesis. Rejecting the null hypothesis means that the difference in

survival outcomes observed between the patients with and without artificial mutations is not

only driven by patients’ total number of mutations.

Survival analysis using patient subtypes and clinical data

To determine whether the obtained patient subtypes are predictive of survival beyond clinical

data, we fitted a Cox proportional hazards regression model to the clinical data and to the clin-

ical data augmented with a variable describing patients’ subtypes. We then performed a likeli-

hood ratio test to compare the two models. The clinical variables used were downloaded from

TCGA. It includes age, gender, stage, extent of spread to the lymph nodes, presence of metasta-

sis, histology for both LUAD and SKCM and further variables such as smoking history, history

of prior malignancy, residual tumour after surgery, tumour dimensions for LUAD and clark

level at diagnosis, primary melanoma mitotic rate, new tumour event after initial treatment

(yes/no), primary melanoma tumour ulceration (yes/no), primary melanoma known (yes/no)

for SKCM.

Identifying differentially mutated genes and pathways across subtypes

We obtain gene clusters by applying hierarchical clustering with centroid linkage and Euclid-

ean distance to the columns of the metapatients matrix (restricted to high variance genes). To

obtain a reasonable number of gene clusters to analyse, we cut the hierarchical cluster tree at a

distance threshold of 5.5, yielding 20 clusters. Gene clusters can be categorised into two types:

those that contain a lot of proxy mutations (� 80% of the total mutational load of the cluster)

and whose genes form a dense subgraph, and those that have neither of these two features. The

presence of dense subgraphs with many proxy mutations results from the fact that NetNorM

tends to add proxy mutations to all genes in a dense subgraph or none since they all have

roughly the same number of mutated neighbours. The association of a gene cluster with one

subtype can therefore indicate two things: either the subtype is expected to be enriched in

proxy mutations in the corresponding gene cluster, which in turn indicates that the subgraph

in which the cluster lies is expected to be enriched in mutations, or the gene cluster itself is

expected to be enriched in mutations in the corresponding subtype. The enrichment or deple-

tion in mutations of one gene cluster across patient subtypes was therefore tested slightly dif-

ferently according to the gene cluster type. In the first case, we first define the neighbourhood

of the gene clusters as all genes lying in the same dense subgraph. Specifically, we include in

the subgraph all genes sharing an edge with at least 90% of the genes in the cluster, thus keep-

ing subgraphs very dense. The obtained set of genes is the one tested for enrichment in muta-

tions across subtype. In the second case, the gene cluster is directly tested for enrichment.

Enrichment is assessed with a χ2 contingency test, where the contingency table is defined by

the following marginals: the total number of raw mutations in each subtype, and the total

number of raw mutations in and outside the gene cluster (generalised to the embedding of a

dense subgraph if it is relevant).

Gene clusters are searched for pathway enrichment using DAVID online tool [62] (https://

david.ncifcrf.gov/summary.jsp) with the KEGG database [54]. They are also tested for enrich-

ment in late replicating genes thanks to a permutation test using data downloaded from http://

www.broadinstitute.org/cancer/cga/mutsig_run. For each gene cluster c of length lc, lc genes

are chosen uniformly at random without replacement from the list of genes with replication

time information. This sampling is performed 1000 times and the null distribution was

obtained by computing the median replication time of these 1000 gene sets. The median repli-

cation time of cluster c is then compared to the null distribution to yield a p-value, i.e. the
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probability to observe a set of genes of length lc with median replication time at least as

extreme.

Supporting information

S1 Fig. Effect of silent mutations on the survival predictive power of the raw mutation pro-

files, and mutation profiles processed with NSQN and NetNorM (with Pathway Commons

as gene network). In the legend, ‘Filtered silent’ indicates that genes with silent mutations

were not considered as mutated while ‘with silent’ indicates that genes with silent mutations

were considered as mutated. For each cancer type, samples were split 20 times in training and

test sets (4 times 5-fold cross-validation). Each time a sparse survival SVM was trained on the

training set and the test set was used for performance evaluation. Wilcoxon signed rank tests

were run to compare the performances obtained with and without silent mutations for each

method and cancer type. Resulting P-values below 0.05 or 0.01 are indicated with asterisks

(P< 5 × 10−2 (�) or P< 1 × 10−2 (��)).

(TIFF)

S2 Fig. Survival predictive power of the mutation profiles processed with NSQN and Net-

NorM assessed with five different gene-gene interaction networks: Pathway Commons,

BioGRID, HPRD, STRING and HumanNet. For STRING and HumanNet, only the top 10%

most confident interactions were kept in the network. The performances obtained with the

raw data slightly vary according to the network used since only the genes present in the net-

work are considered. For each cancer type, samples were split 20 times in training and test sets

(4 times 5-fold cross-validation). Each time a sparse survival SVM was trained on the training

set and the test set was used for performance evaluation. The presence of asterisks indicate

when the test CI is significantly different between 2 conditions (Wilcoxon signed rank test,

P< 5 × 10−2 (�) or P< 1 × 10−2 (��)).

(TIFF)

S3 Fig. Comparison of the survival predictive power of: the most predictive gene, the raw

mutation data, NSQN and NetNorM (with Pathway Commons as gene network) for 8 can-

cer types. For each cancer type, samples were split 20 times in training and test sets (4 times

5-fold cross-validation). In the case where only one gene was used to predict survival, the gene

with the best concordance index on the training set was chosen and its performance evaluated

on the test set. Otherwise, each time a sparse survival SVM was trained on the training set

and the test set was used for performance evaluation. The presence of asterisks indicate when

the test CI is significantly different between 2 conditions (Wilcoxon signed rank test,

P< 5 × 10−2 (�) or P< 1 × 10−2 (��)).

(PDF)

S4 Fig. Survival predictive power of mutation data preprocessed according to five different

schemes: 1) the raw data concatenated with a feature (scaled to unit variance) recording

the total number of mutations in each patient (light gray); 2) the raw data concatenated

with a feature called ‘proxies’ (scaled to unit variance) which is equal to 0 if the patient has

more than k mutations (k is learned by cross-validation) and is equal to the total number

of mutations otherwise (light purple), 3) the NetNorM representation concatenated with

‘proxies’ (purple) scaled to unit variance; 4) the raw binary mutation profiles; 5) mutation

profiles processed with NSQN (orange); 6) mutation profiles processed with NetNorM

(blue). Pathway Commons was used with NetNorM and NSQN. Samples were split 20 times

in training and test sets (4 times 5-fold cross-validation). Each time a sparse survival SVM was
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trained on the training set and the test set was used for performance evaluation.

(PDF)

S5 Fig. Survival predictive power of mutation data (raw binary mutations, mutations pre-

processed with NSQN or NetNorM with Pathway Commons), clinical data, and the combi-

nation of both for LUAD and SKCM. The combination of both data types was obtained by

concatenating the mutation features with the clinical features scaled to unit variance. For both

cancers, samples were split 20 times in training and test sets (4 times 5-fold cross-validation).

Each time a sparse survival SVM was trained on the training set and the test set was used for

performance evaluation.

(TIFF)

S6 Fig. Patient stratification based on NetNorM (resp. NSQN) with hyperparameter k
(resp. α) set to the value learned cross-validation for the survival prediction task instead of

the default value. The stratification was obtained using NMF with consensus clustering. (a)

Effect of network randomisation on patient stratification. Log-rank statistic obtained with

Pathway Commons (curve) and 10 randomised versions of Pathway Commons (boxplots)

with NetNorM (blue) and NSQN (orange) for LUAD and SKCM. One circle indicate a P-

value P� 5 × 10−2 and two concentric circles indicate P� 1 × 10−2. (b) Kaplan Meir survival

curves for NetNorM subtypes with significantly distinct survival outcomes (we illustrated the

case with 5 subgroups for both LUAD and SKCM). In the legend are indicated the subtype

number followed by the number of patients in the subtype.

(TIFF)

S1 Table. Summary of the genes selected when only one gene is used to predict survival.

For each gene the number of folds (out of 20 folds) where the gene is selected is indicated.

(TIFF)

S2 Table. Statistics of the distributions of patients’ total number of mutations for each can-

cer. Only mutations in genes present in Pathway Commons are taken into account. Q1 and Q3

refer to the 1st and 3rd quartiles respectively. The parameter k (NetNorM) was learned by

cross-validation in the supervised setting using cancer specific cross-validation grids delimited

by Q1 and Q3, and with a step-size of 2.

(TIFF)

S3 Table. Summary of the values of k (NetNorM) and α (NS and NSQN) learned by cross-

validation for survival prediction. The values given are the medians obtained over 20 cross-

validation folds performed for each dataset and each method.

(TIFF)

S4 Table. The gene clusters characterising LUAD patient subtypes obtained with NetNorM

(N = 5 groups, Pathway Commons). nb. of genes: number of genes in a cluster, subgraph den-
sity: density of the subgraph whose vertices are the genes inside a cluster, proxy mutations frac-
tion: number of proxy mutations out the the total number of mutations for a gene cluster

across all patients.

(TIFF)
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