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Abstract. In the mouse, considerable evidence indi- 
cates that initial sperm binding to the zona pellucida 
(ZP) is mediated by ZP3. In addition, this same glyco- 
protein is also responsible for inducing the acrosome 
reaction (AR). Whereas the O-linked oligosaccharides 
of ZP3 appear to mediate sperm-ZP binding, the por- 
tion of ZP3 bearing AR activity has not been defined. 
To try to understand the bifunctional role of ZP3 
(binding and AR inducing activities), we have exam- 
ined the hypothesis that ZP3 aggregates sperm recep- 
tor molecules. By analogy with findings in a variety of 
other extracellular signal transducing systems, includ- 
ing receptors for growth factors and insulin, this 
aggregation event could initiate the cascade resulting 
in the AR. To test this hypothesis, we have generated 
monospecific polyclonal antibodies against ZP2 and 
against ZP3, and examined the effects of these probes 
on capacitated sperm incubated in the absence or pres- 
ence of various ZP protein preparations. For some 
experiments, we have used proteolytic fragments of 
ZP3, a preparation known to retain specific binding, 
but not AR-inducing, activity. We show here that 

capacitated mouse sperm, incubated with ZP 
glycopeptides, displayed ARs when incubated subse- 
quently with anti-ZP3 IgG; ARs did not occur when 
parallel sperm samples were incubated with anti-ZP2 
IgG or with anti-ZP3 Fab fragments. When capaci- 
tated sperm were treated successively, with (a) ZP3 
glycopeptides, (b) anti-ZP3 Fab fragments, and (c) 
goat anti-rabbit IgG, ARs occurred in the majority of 
sperm. An alternative approach to examine this hy- 
pothesis used ZP proteins obtained from tubal eggs 
treated previously with bioactive phorbol diester (12- 
O-tetradecanoyl phorbol-13-acetate [TPA]). This prepa- 
ration arrests capacitated sperm in an intermediate 
state of the AR. We demonstrate here that these sperm 
can be induced to undergo a complete AR by subse- 
quent treatment with anti-ZP3 IgG. Together, these 
findings are consistent with the hypothesis under ex- 
amination, and suggest that the aggregation of sperm 
molecules recognized by ZP3 glycopeptides or by 
TPA-treated ZP is sufficient to trigger the events that 
occur during acrosomal exocytosis. 

T 
HE mouse egg's zona pellucida (ZP) z is an extracel- 
lular matrix composed of three glycoproteins termed 
ZP1, ZP2, and ZP3. These glycoproteins can be distin- 

guished readily on the basis of size, with Mr of 200 kD for 
ZP1, 120 kD for ZP2, and 83 kD for ZP3 when electropho- 
resed using nondisulfide reducing conditions (2). Consider- 
able evidence suggests that ZP3 serves as specific ligand for 
sperm binding to ZP during mouse fertilization (2). Further- 
more, ZP3 also stimulates an exocytotic process, known as 
the acrosome reaction (AR), that is required by sperm for 
ZP penetration and fertilization (28). 

Inquiry into the nature of ZP3 has revealed that ligand ac- 
tivity depends little upon the polypeptide backbone of ZP3, 
but resides in its O-linked oligosaccharides. Pronase diges- 
tion of ZP3 results in small glycopeptides (1.5-6 kD) that 
bind to sperm and are as effective as undigested ZP3 in com- 

1. Abbreviations used in this paper: AR, acrosome reaction; CM, complete 
culture medium for in vitro fertilization; CTC, chlortetracycline; pAb, poly- 
clonal antibody; ZP, zona(e) pellucida(e). 

petitively inhibiting sperm binding to intact ZP (9, 10). How- 
ever, these small ZP3 glycopeptides do not induce the AR, 
suggesting that the polypeptide chain or intact glycoprotein 
plays a role in the latter activity. Recently, Endo et al. (6, 7) 
demonstrated that it is possible to dissociate both ZP3 activ- 
ities (ZP binding and AR activities) without affecting the 
molecular mass of ZP3. Treating zona-intact mouse eggs 
with bioactive phorbol ester (12-O-tetradecanoyl phorbol- 
13-acetate [TPA]) before isolation of the zona proteins gener- 
ates a form of ZP3 that is modified subtly; sperm incubated 
with this protein can initiate the AR, but not complete it. 
Since the polypeptide chain is present but nonfunctional in 
this case, it was suggested that this portion of ZP3 is not 
sufficient for AR inducing activity. 

Receptor aggregation in response to biological stimuli has 
been described in other systems as an important mechanism 
to initiate signal transduction across the membrane (4, 13, 
17, 21). In this context the polypeptide backbone of ZP3 
might act to aggregate the sperm membrane proteins rec- 
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ognized by its O-linked oligosaccharides. Thus, ligand-re- 
ceptor interaction, followed by receptor aggregation, could 
initiate the signal that leads sperm to undergo the exocytotic 
events of the AR. 

To test the hypothesis that aggregation of sperm receptors 
by ZP3 stimulates the occurrence of the AR, we challenged 
sperm with modified ZP preparations followed by specific 
polyclonal antibodies (pAbs) against ZP3. Capacitated sperm 
that have been treated with small ZP glycopeptides or that 
are arrested in an intermediate state of the AR (TPA-ZP- 
treated sperm) undergo ARs in large numbers when incubated 
subsequently with bivalent anti-ZP3 pAbs. ARs do not occur 
with bivalent anti-ZP2 or with univalent anti-ZP3 Fab frag- 
ments. The results are consistent with the hypothesis that 
receptor aggregation after ZP3 binding is the first step in the 
cascade of biochemical events leading to acrosomal exocy- 
tosis. 

Materials and Methods 

Collection of Sperm 
Mouse sperm were obtained from caudae epididymides of mature CD-1 
mice (Charles River Breeding Laboratories, Wilmington, MA) in CM 
(Krebs Ringer-bicarbonate medium supplemented with pyruvate, lactate, 
glucose, and BSA; 22). All gamete incubations were conducted under sili- 
cone oil (dimethylsiloxane 20 cs; Contour Chemical Co., North Reading, 
MA). For capacitation, sperm (~al06 sperm/ml) were incubated for 60 min 
in 5% CO2 in air at 37°C. 

Isolation of ZP and Preparation of TPA-ZP 
ZP from ovarian follicles of 21-d-old CD-1 mice were isolated as described 
(18). ZP (20-30/#1) were solubilized in CM containing no BSA and 0.4% 
polyvinyl-pyrrolidone by incubation at 60°C for 60 min. Treatment of tubal 
eggs with the phorbol ester, TPA, and subsequent acid solubilization of ZP 
were accomplished as described by Endo et al. (7). 

ZP Glycopeptides Preparation 
A preparation of ovarian ZP from "~35 mice was washed twice by centrifu- 
gation (12,000 g, 5 min) with 20 mM Tris/126 mM NaC1/1.7 mM CaCI2 
buffer, pH Z4, resuspended in 100 t~l of the same buffer and solubilized by 
heating. Solubilized ZPs were incubated with insoluble pronase (pronase 
conjugated with carboxy methyl cellulose) following the procedure de- 
scribed by Florman et al. (10), except that the digestion was conducted for 
12 h with readdition of fresh enzyme after 6 h. The digestion was assessed 
by SDS-PAGE (16) using a 15% polyacrylamide-bisacrylamide gel; 10/~1 
of the ZP protein solution (•1 tzg of protein) was analyzed before and after 
pronase digestion. 

The ligand activity of the ZP glycopeptides was assayed using the binding 
competition assay described by Bleil and Wassarman (2). Four different di- 
lutions of each glycopeptide preparation were tested and compared to the 
bioactivity of known concentrations of solubilized undigested whole ZP. 
The concentration of the glycopeptide preparations, in whole ZP equiva- 
lents/#l, was calibrated based upon biological activity of whole ZP. 

The reactivity of the glycopeptides with anti-ZP pAbs was probed by dot 
blot (12) (Bio Dot microtitration apparatus, Bio-Rad Laboratories, Rich- 
mond, CA) using serial antibody dilutions. The nitrocellulose wells were 
exposed first to either ZP glycopeptides or whole ZP (100 ng each) for 1 h 
and then blocked with PBS/I% BSA/10 mM NAN3. After washing with 
PBS, the nitrocellulose wells were incubated with serial dilutions of either 
preimmune or immune rabbit antisera against ZP2 or ZP3 for 1 h and then 
washed four times with 20 mM Tris/130 mM NaC1/0.5% Tween 20. The 
reaction of pAbs with the ZP proteins was followed with 12Sl-labeled goat 
anti-rabbit lgG and autoradiographic analysis using AR-5 X-ray film (East- 
man Kodak Co., Rochester, NY) with intensifying screens. 

Anti-ZP Protein Polyclonal Antibodies 
Polyclonal antibodies against isolated ZP proteins were raised in adult male 

New Zealand white rabbits. ZE isolated from mouse ovaries, were boiled 
in sample buffer (62.5 mM Tris pH 6.8, 2% SDS, 10% glycerol) and the pro- 
teins were separated by electropboresis under nonreducing conditions on a 
7.5 % polyacrylamide-bisacrylamide gel. After electrophoretic transfer of 
the proteins to nitrocellulose (26), ZP2 and ZP3 were identified according 
to their Mr. The area of the nitrocellulose sheet containing each protein 
was used to immunize rabbits as described by Knudsen (14). The animals 
received a total of four immunizations: day 1, '~1 ttg in complete Freund's 
adjuvant; days 28, 56, and 100, ",,1/~g, ",,1/zg, and ",,3/~g, respectively, 
all in incomplete Freund's adjuvant. All injections were administered sub- 
cutaneously. 15 d after each injection, sera were titered by ELISA (20); 
bound Ig was detected with horseradish peroxidase-conjugated goat 
anti-rabbit IgG (Kierkegaard & Perry, Gaithersburg, MD) using 4-chloro-l- 
naphthol as substrate. Sera were also tested by immunoblot (Western blot) 
on whole ZP using 1251-labeled goat anti-rabbit IgG as the second an- 
tibody. 

For purification, rabbit Ig was precipitated with 50% ammonium sulfate, 
dialyzed against PBS, and afffinity-purified on protein-A Sepharose (ll). 
Purified antibodies were titered by dot blot, in which solubilized whole ZP 
(100 ng/well) was blotted onto nitrocellulose, followed by serial antibody 
dilutions, t25I-labeled goat anti-rabbit IgG, as described for dot blots with 
ZP glycopeptides, was used as the second antibody. 

Preparation of Fab Fragments 
Purified anti-ZP3 pAbs were digested using insoluble papain following the 
technique described by Goding (11). The IgG fraction (1 rag) was digested 
for 3 h at 37°C; the enzyme was removed by centrifugation. Digested mate- 
rial was applied to a protein-A Sepharose column to separate Fab fragments 
from Fc and undigested IgG molecules. Digestion and purification were fol- 
lowed by SDS-PAGE on a 10% gel, and the activity of the fragments was 
tested by Western blot on whole ZE The protein concentration was deter- 
mined by protein assay (Bio-Rad Laboratories) in 96-well microtiter plates; 
the results were quantified on an Enzyme Immuno Assay Reader (model 
2250; Bio-Rad Laboratories). 

Effect of Anti-ZP3 pAbs on the Acrosome 
Reaction-inducing Activity of ZP 
Capacitated sperm (final concentration, 5 × 105 sperm/ml) were incubated 
in CM with solubilized whole ZP, TPA-ZP, or glycopeptides (each at 4 ZP 
equivalents//~l) for 30 min at 37°C in 5% CO2/95% air. Separate samples 
of ZP glycopeptide-preincubated sperm received anti-ZP3 IgG, anti-ZP3 
Fab or anti-ZP2 IgG for a second incubation period of 30 min using the 
same conditions. In other aliquots, sperm were incubated, sequentially, with 
ZP glycopeptide, followed by anti-ZP3 Fab, and finally with goat anti-rabbit 
IgG using the same conditions. Parallel experiments were conducted by 
replacing the ZP glycopeptide incubation for a similar incubation with TPA- 
ZP (4 ZP/#I) followed by further incubation with solubilized whole ZP, 
anti-ZP3 IgG, or anti-ZP2 IgG. 

Controls for this entire series of experiments included sperm incubation 
with (a) anti-ZP protein pAbs in the absence of ZP preincubation, (b) gly- 
copeptide followed by goat anti-rabbit IgG in the absence of anti-ZP3 Fab 
fragments, and (c) either ZP glycopeptides or TPA-ZP followed by preim- 
mune rabbit sera. In all of these cases, no effect on acrosomal status was 
observed. 

After the indicated incubations, acrosomal status was monitored by the 
CTC fluorescence assay that describes three different patterns: (a) intact 
sperm (B pattern); (b) sperm in an early intermediate state of AR (S pat- 
tern); and (c) acrosome reacted sperm (AR pattern) (22, 27). Control 
sperm, incubated in CM alone throughout the time course of each experi- 
ment, were examined using the chlortetracycline (CTC) assay to quantitate 
the occurrence of spontaneous ARs; the proportions of B, S, and AR sperm 
did not differ significantly from beginning to end of each experiment. Repli- 
cate experiments were conducted for each set of incubation conditions; at 
least 100 sperm were scored for each condition per experiment. The data 
presented represent the mean value obtained for all replicates of each ex- 
periment. 

Unless indicated otherwise, all biochemical reagents were purchased 
from Sigma Chemical Co., St. Louis, MO. 

Results 

ZP Glycopeptides 
Treatment of solubilized ZP with insoluble pronase gener- 
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Figure 1. ELISA assay to estimate the titer of preimmune and im- 
mune sera assayed on solubilized whole ZR Whole ZP (100 ng/ml) 
was dried onto microtiter wells and probed with serial dilutions of 
preimmune and immune sera. Bound Ig was detected using horse- 
radish peroxidase-conjugated goat anti-rabbit IgG with 4-chloro-1- 
naphthol as substrate. Reactivity was followed by measuring OD at 
405 nm. The titer, defined as 50% of maximal reactivity and shown 
by the broken line, was determined to be 1:2 j° for anti-ZP2 serum 
and 1:2" for anti-ZP3 serum. 

ated ZP glycopeptides that migrated with Mr <30 kD on 
SDS-PAGE, similar to the findings of Florman et al. (10). No 
evidence of undigested ZP protein was observed in gels of 
this material (data not shown). The binding competition as- 
say revealed that these glycopeptides were bioactive: the 
highest concentration tested inhibited the binding between 
sperm and eggs by ~90%,  which was the same activity at- 
tained with 3 whole ZP//~I. Using this calculated concentra- 
tion for the ZP glycopeptides, based upon ligand bioactivity, 
the AR-inducing activity of the ZP glycopeptide preparation 
was tested. At a concentration of 4 ZP equivalents//zl, the ZP 
glycopeptides were unable to stimulate ARs in capacitated 
sperm over control levels (background ARs 'M0%) after a 
30 min coincubation period, whereas treatment with un- 
digested ZP at a similar concentration resulted in ,~70% AR 
sperm. 

Characterization o f  Anti-ZP-Antibodies 

ELISA titration of rabbit sera collected after the fourth im- 
munization indicated a titer of 1:2 j° (or 1:1,000) for anti-ZP2 
pAbs and 1:2 ~[ (or 1:2,000) for anti-ZP3 pAbs, while the 
corresponding preimmune sera displayed low level, nonspe- 
cific responses (Fig. 1). By immunoblot analysis on electro- 
phoreticaUy separated whole ZP proteins, the antisera reacted 
specifically with the expected ZP protein (Fig. 2, lanes A and 

B). Digestion of anti-ZP3 IgG with papain and chromato- 
graphic separation on protein A-Sepharose yielded Fab frag- 
ments alone, uncontaminated by IgG, as judged by SDS- 
PAGE. When these Fab fragments were used to probe a nitro- 
cellulose blot containing the separated ZP proteins, specific 
reactivity with ZP3 alone was observed (Fig. 2, lane C). 

Dot blot analysis of the purified IgG fractions, probed on 
solubilized whole ZP similar to the method described above 
to estimate the titer of the rabbit antisera, was used to de- 
termine the IgG concentration that should be employed to 
examine specific physiological effects on sperm function. 
Anti-ZP2 IgG (dilution 1:29; i.e., 2/~g/ml) and anti-ZP3 IgG 
(dilution 1:28; i.e., 10/~g/ml) resulted in specific reactivity 
when compared with the preimmune IgG from the same 
animals (Fig. 3). These IgG concentrations were, therefore, 
chosen to initiate examination of effects on AR induction in 
capacitated sperm. 

Finally, to ensure that the pAbs recognized the ZP glyco- 
peptides after pronase digestion as well as they recognized 
undigested ZP, reactivity between the anti-ZP pAbs and ZP 
glycopeptides was tested in a dot blot assay. Both anti-ZP2 
IgG and anti-ZP3 IgG bound to pronase-digested ZP glyco- 
peptides specifically and to the same extent as that observed 
with the whole undigested ZP (Fig. 4). 

Induct ion a f A R  

The CTC assay was used to monitor the sperm's acrosomal 
status as a function of ZP and anti-ZP antibody exposure. At 
the start of the experiment (Fig. 5 A, T = 0), nearly 80% 
of capacitated sperm displayed the B pattern, indicating that 
they have intact acrosomes. Treatment of such a sperm popu- 
lation with ZP glycopeptide for 30 min (Fig. 5, A and B, 
Glycop) did not alter acrosomal status, despite the ability of 
the glycopeptide preparation to inhibit sperm-ZP binding 
competitively (see above). In contrast, when capacitated 
sperm were exposed to solubilized whole ZP (Fig. 5 A, 
WhZP), the majority of the population was observed in the 

Figure 2. Reactivity of anti- 
ZP protein antibodies assessed 
by immunoblot. Proteins from 
whole ZP were separated in 
SDS-PAGE and then trans- 
ferred to nitrocellulose. After 
blocking with 3 % instant non- 
fat milk, the nitrocellulose 
was incubated with anti-ZP 
Abs, washed, and probed with 
t25I-labeled goat anti-rabbit 
IgG. The autoradiogram indi- 
cates that the three types of 
antibodies assayed (lane A, 
anti-ZP2 IgG, lane B, anti-ZP3 
IgG; and lane C, anti-ZP3 Fab 
fragment) reacted specifically 
with the expected ZP pro- 
tein. Molecular mass stan- 
dards (xl0 -3 kD) are indi- 
cated to the right of lane C; the 

Mr of ZP proteins is shown to the left of the lane A. The x-ray film 
was overexposed to permit detection of minor reactivities of the an- 
tibodies; none were observed. 

Leyton and Saling ZP3 Receptor Aggregation and the Acrosome Reaction 2165 



Figure 3. Autoradiographic analysis of the reactivity of anti-ZP2 
IgG and anti-ZP3 IgG with whole ZP. Nitrocellulose wells were in- 
cubated with solubilized whole ZP (100 ng/well), followed by seri- 
ally diluted IgG from preimmune (p-aZP2, p-c~ZP3) or immune 
(~-ZP2, ~-ZP3) sera. After washing, the nitrocellulose sheet was 
probed with ~25I-labeled goat anti-rabbit IgG. Starting IgG con- 
centrations were adjusted to 1 mg/ml for p-ZP2 IgG and ZP2 IgG, 
and to 2.5 mg/ml for p-ZP3 IgG and ZP3 IgG. 

AR pattern, indicating that the AR is completed. Treatment 
of capacitated sperm with glycopeptide for 30 min, followed 
by anti-ZP3 IgG (Fig. 5, Glycop ~ ol-ZP3Ab), produced the 
same pattern of acrosomal status in the population as whole 
ZP, i.e., --60% of the population displayed the AR pattern. 
This effect appeared specific for the anti-ZP3 IgG prepara- 
tion, since treatment of glycopeptide-preincubated sperm 
with anti-ZP2 IgG (Fig. 5 A, Glycop--" o~-ZP2Ab) did not 
lead to ARs. Similarly, incubation of sperm with anti-ZP an- 
tibodies in the absence of ZP glycopeptide did not result in 
ARs (data not shown). 

Since the protein concentration of the anti-ZP2 pAb that 
was selected for use in these experiments (on the basis of dot 
blot titration) was lower than that of the anti-ZP3 pAb (2 
#g/ml versus 10/~g/ml, respectively), the effect of anti-ZP2 
IgG at a protein concentration equivalent to that used for 
anti-ZP3 pAb on promotion of ARs was examined. Regard- 
less of concentration, anti-ZP2 pAbs were never observed to 
effect ARs. 

According to the hypothesis under examination, anti-ZP3 
pAbs can aggregate the sperm's ZP receptors in glycopeptide- 
treated sperm. If this is true, a corollary is that ZP glycopep- 
tide-treated sperm would not undergo ARs in large numbers 
in the presence of univalent anti-ZP3 Fab fragments. This 
possibility was tested by treating capacitated sperm first with 
ZP glycopeptides, followed 30 min later with anti-ZP3 Fab 
fragments. 70% of such sperm were acrosome-intact, indi- 
cated by B pattern of the CTC assay (Fig. 5 B, Glycop --" 
Fabo.ZP3). Moreover, if these cells were incubated subse- 
quently with goat anti-rabbit IgG, ARs were observed in the 
majority of the population (Fig. 5 B, Giycop --" FaboZP3 --" 
Gotrabbit Ig). In the absence of anti-ZP3 Fab fragments, the 
goat anti-rabbit IgG had no effect on acrosomal status (data 
not shown). 

Further support for a specific effect of anti-ZP3 pAbs on 
acrosomal status was demonstrated by the dose dependency 
of the response (Fig. 6). Populations of ZP glycopeptide- 
treated sperm displayed increasing proportions of AR- 
pattern sperm as a function of increasing concentration of 

anti-ZP3 IgG. It is interesting to note that, with submaximal 
concentrations of anti-ZP3 IgG, the proportion of the popula- 
tion found in the S pattern of the CTC assay was substantially 
larger than that observed without anti-ZP3 IgG treatment. 

It has been shown previously that incubation of capacitated 
sperm with TPA-ZP leads to an early stage of the AR (S pat- 
tern of the CTC assay) (7) and that the AR may be completed 
if whole ZP is then added (18). We now report that the same 
result may also be obtained if, instead of whole ZP, anti-ZP3 
IgG (10 #g/ml) was added after pretreatment with TPA-ZP 
(Fig. 7). Neither anti-ZP2 IgG (2 #g/ml; Fig. 7) nor preim- 
mune anti-ZP3 IgG (data not shown) promoted the same 
effect. None of the rabbit IgG preparations (either immune 
or preimmune) contained endogenous AR-promoting ac- 
tivity. 

D i s c u s s i o n  

Receptor-mediated cellular responses may be triggered by 
receptor aggregation in a variety of systems (4, 13). In some 
cases, it has been reported that ligand fragments can bind to 
their receptors but cannot induce a response unless a cross- 
linking molecule is present (3, 23, 24). In this manuscript, 
we examined receptor-effector coupling as a consequence of 
receptor aggregation in a novel system, that of mammalian 
gamete interaction leading to fertilization. In the mouse, 
receptors in the sperm plasma membrane bind to the ZP, 
specifically to ZP3; ZP3 then stimulates the occurrence of 
the AR, an exocytotic event that permits sperm penetration 
of the zona matrix and fusion with the egg plasma membrane 
(28). We have tested the hypothesis that acrosomal exocytosis 
is initiated by aggregation of the sperm receptors recognized 

Figure 4. Autoradiographic analysis indicates that anti-ZP2 IgG and 
anti-ZP3 IgG recognize ZP glycopeptides. Nitrocellulose wells 
containing solubilized whole ZP (A) or ZP glycopeptides (B) (each 
at 100 ng/well) were incubated with anti-ZP2 and anti-ZP3 preim- 
mune (p-otZP2, p-otZP3) or immune (a-ZP2, a-ZP3) sera. Three 
different dilutions of the sera were tested with the glycopeptides. 
Reactivity was probed with ~zSI-labeled goat anti-rabbit IgG. 
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Figure 5. Distribution of CTC fluorescent patterns in mouse sperm 
treated with ZP glycopeptides followed by anti-ZP protein antibod- 
ies. An aliquant of a control capacitated sperm sample was assessed 
at T = 0. Samples of this preparation were also recovered at the com- 
pletion of the experiment. Capacitated sperm were incubated with 
the reagents indicated in the figure as follows: with ZP glycopeptide 
(Glycop) or whole ZP (WhZP), each at 4 ZP equivalents/td; with 
anti-ZP3 IgG or Fab (10 t~g/ml); with anti-ZP2 IgG (2 t~g/ml); 
and/or with goat anti-rabbit IgG (10 #g/ml). The duration of each 
incubation was 30 min. Refer to the figure for the order of reagent 
addition. Acrosomal status was evaluated by CTC assay. In A, the 
effect of ZP glycopeptide incubation followed by bivalent anti-ZP 
IgGs is shown. In B, the effect of ZP glycopeptide treatment, fol- 
lowed by univalent anti-ZP3 Fab, followed by the absence or pres- 
ence of a final incubation with goat anti-rabbit IgG is compared. 
The data represent the percentage of cells observed in each of the 
three CTC fluorescent patterns (B, intact sperm; S, sperm in an in- 
termediate state of AR; AR, acrosome-reacted sperm). 

by ZP3; the results of this study are consistent with such an 
hypothesis. 

Small glycopeptides of ZP3 can bind to the sperm surface 
but fail to induce the AR (10). In this paper, we demonstrated 
that it was possible to reconstitute this activity by binding the 
glycopeptides with pAbs raised against ZP3. The antibody 
by itself was unable to produce this effect. Furthermore, if, 
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Figure 6. Distribution of CTC fluorescent patterns in mouse sperm 
treated with ZP glycopeptides followed by decreasing concentra- 
tions of anti-ZP3 IgG. Capacitated sperm were incubated with 
glycopeptides (Glycop), at 4 ZP equivalents/#i, for 30 min. Anti- 
ZP3 IgG was added for an additional 30 min period. A dilution of 
1:250 represents 10 t~g IgG/ml. Acrosomal status was evaluated by 
CTC assay. The data represent the percentage of cells observed in 
each of the three CTC fluorescent patterns. 
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Figure 7. CTC fluorescent patterns of capacitated sperm incubated 
with TPA-ZP. Samples were incubated for 30 min with TPA-ZP (4 
ZP equivalents//~l). Sperm were then exposed to (a) no further addi- 
tion; (b) whole solubilized ZP (4 ZP/#I); (c) anti-ZP3 IgG (10 
t~g/ml); or (d) anti-ZP2 IgG (2 ~tg/ml) for an additional 30 min. 
Acrosomal status was determined using the CTC assay. The distri- 
bution of fluorescence did not change substantially in the control 
samples during the course of the experiment. The data represent the 
percentage of cells observed in each of the three CTC fluorescent 
patterns. 

instead of the polyvalent anti-ZP3 pAb, the corresponding 
Fab fragment was used, no AR was induced. However, AR 
activity could again be reconstituted by addition of another 
reagent (goat anti-rabbit IgG) that cross-linked the Fab frag- 
ments. These observations lead to the suggestion that sperm 
receptor aggregation may play an important role in AR in- 
duction. A further test of this model will be possible when 
the identity of the sperm's receptor(s) for ZP3 are known. 
Polyvalent, but not univalent, antibodies against the receptors 
should promote the AR in the absence of ZP. In this connec- 
tion it is interesting to note that a mAb that identifies a subset 
of sea urchin sperm membrane proteins is able, by itself, to 
induce ARs in that system (25). 

Recently, Endo and colleagues (6, 7) found that exposure 
of zona-intact mouse eggs to TPA results in modified bioac- 
tivity of ZP3 without alteration of the glycoprotein's M,, 
suggesting that the polypeptide portion of ZP3 is present. 
Treatment of capacitated mouse sperm with TPA-ZP arrests 
the cells at an early stage of the AR, visualized as the S pat- 
tern in the CTC assay. Such TPA-ZP-treated sperm can be 
induced to undergo ARs if they are incubated subsequently 
with either (a) whole solubilized ZP (18), or (b) anti-ZP3 
pAbs (Fig. 7). In the case of TPA-modified ZP3, perhaps the 
patching ability of the protein is restricted, such that receptor 
aggregation occurs to a subthreshold extent despite normal 
ligand activity. The results obtained with TPA-ZP are remi- 
niscent of those observed when different anti-ZP3 IgG con- 
centrations were used; when the antibody concentration is 
decreased, a large proportion of sperm remained in S pat- 
tern, and did not complete the AR (Fig. 6). It will be interest- 
ing to determine whether related mechanisms are operating 
in these two cases to produce such similar sperm popula- 
tions. 

For the insulin receptor, it has been reported that receptor 
subunit aggregation can activate a tyrosine kinase (21), and 
it has been proposed that the main function of this activation 
is to induce a conformational change in the receptor that is 
transmitted to one or more regulatory proteins (8). A large 
number of cell surface receptors exert their actions through 
specific GTP-binding regulatory proteins (G-proteins), which 
couple the receptor to appropriate effector systems (19). Re- 
cent evidence suggests that G-proteins are present in mam- 
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malian sperm (1, 15), and may be involved in ZP-induced 
ARs in mouse sperm since inactivation of a 41-kD o~-like 
subunit of a G-protein heterotrimer by pertussis toxin in- 
hibits physiological ARs (5). The results presented here 
suggest that ZP3 mediated aggregation of receptors in the 
sperm's plasma membrane may represent the initial event in 
this G-protein-coupled cascade that leads to acrosomal exo- 
cytosis. Work is directed presently toward identifying the 
sperm's receptor(s) for ZP3 and determining whether other 
mechanisms found in model systems where receptor aggre- 
gation plays a key role in extracellular signal transmission 
also operate during gamete interaction. 
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