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INTRODUCTION
The number of individuals affected by cancer in the 

United States is steadily increasing. In 2016, more than 
15.5 million individuals had a current or previous diagno-
sis of cancer, and this is predicted to rise to 20.3 million 
by 2026.1 Operative tumor resection remains the first-line-
treatment modality for many of these malignancies, but 
radiation therapy or “radiotherapy” (RT) is often used 
either exclusively, or in conjunction with chemotherapy 
and/or surgery. RT involves the projection of high-energy 
photons toward a tumor to damage the DNA of malignant 
cells, destroy their replicative ability, and ultimately cause 
their death. Although RT is extremely effective at shrink-
ing tumor size and reducing local recurrence,2–4 it also 
causes a number of unwanted and long-term sequelae. 
One significant side-effect is the collateral damage done 
to healthy tissues in the radiation field.

The skin and subcutaneous tissue are among the most 
severely affected tissues during RT. The skin is vulnerable 
to damage during the treatment of breast cancer, head 
and neck cancer, and anal cancer, where skin-sparing 
techniques for delivering RT are not yet possible. Addi-

tionally, the high proliferative capacity and oxygenation 
requirements of basal epidermal cells makes them very 
radiosensitive.5 Radiation injury to the skin, also called ra-
diodermatitis, occurs in over 90% of patients receiving RT 
for cancer.6 Classically, radiodermatitis is divided into the 
effects that occur in the acute phase following radiation 
exposure, and those which are evident after prolonged pe-
riods of time.7 The consequences of radiodermatitis can 
be profound; chronic soft-tissue fibrosis can significantly 
alter tissue form and function, which can significantly im-
pact quality of life.

The histological effects of radiation-induced skin dam-
age have long been described in the literature, but the 
pathogenesis driving these changes is less well understood. 
Additionally, while significant advances have been made 
towards the therapeutic delivery of RT, the treatment of ra-
diodermatitis is underdeveloped. From a clinical viewpoint, 
radiodermatitis has been considered progressive, irrevers-
ible, and intractable. Recently, however, there has been in-
creased focus on the use of autologous fat grafting (AFG) 
to rejuvenate and reverse the histological changes seen in 
radiodermatitis. Rigotti et al.8 were the first to demonstrate 
the beneficial effects of fat grafting in irradiated skin. Their 
observations have since been widely replicated and the 
mechanisms by which the grafted fat rejuvenates the skin 
remains an area of active research. Identifying the key fac-
tors that drive fibrotic skin damage following RT, and its 
mitigation by AFG, will highlight opportunities to enhance 
these restorative effects. This review outlines the current 
understanding of radiation-induced dermatitis, the thera-
peutic effects of AFG in the context of radiodermatitis, and 
the challenges facing this emerging treatment modality.
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Summary: Radiotherapy (RT) helps cure and palliate thousands of patients with a 
range of malignant diseases. A major drawback, however, is the collateral damage 
done to tissues surrounding the tumor in the radiation field. The skin and subcuta-
neous tissue are among the most severely affected regions. Immediately following 
RT, the skin may be inflamed, hyperemic, and can form ulcers. With time, the dermis 
becomes progressively indurated. These acute and chronic changes cause substan-
tial patient morbidity, yet there are few effective treatment modalities able to reduce 
radiodermatitis. Fat grafting is increasingly recognized as a tool able to reverse the 
fibrotic skin changes and rejuvenate the irradiated skin. This review outlines the 
current progress toward describing and understanding the cellular and molecular 
effects of fat grafting in irradiated skin. Identification of the key factors involved 
in the pathophysiology of fibrosis following RT will inform therapeutic interven-
tions to enhance its beneficial effects. (Plast Reconstr Surg Glob Open 2019;7:e2092; 
doi: 10.1097/GOX.0000000000002092; Published online 5 February 2019.)
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RADIODERMATITIS

Acute Effects of Radiotherapy
The early symptoms of radiation-induced skin damage 

include pigment alterations, erythema, edema, desqua-
mation, ulceration, and loss of skin elasticity. On a cel-
lular and molecular level, exposure to radiation initiates 
a number of cytokine cascades. Reactive oxygen species 
are also generated, and free radicals are released, caus-
ing irreversible breaks in double stranded nuclear and 
mitochondrial DNA. This process changes cellular func-
tion and induces apoptosis.9 Hair follicle stem cells and 
basal keratinocytes are highly proliferative and are espe-
cially vulnerable to the acute effects of RT, and their de-
struction impairs the self-renewing abilities of the skin.7,10 
Damage to resident fibroblasts, endothelial cells, and 
epidermal cells causes them to release a number of pro-
inflammatory growth factors, chemokines, and cytokines, 
including transforming growth factor beta 1 (TGF-β1),  
tumor necrosis factor alpha (TNF-α), interleukins (IL-1 
and IL-6), basic fibroblast growth factor (bFGF), insulin-
like growth factor-1 (IGF-1), and platelet-derived growth 
factor.7,11,12 These molecular signals activate the coagula-
tion system and cause inflammation, tissue remodeling, 
and epithelial regeneration.

TGF-β1 is the principle growth factor/cytokine in-
volved in radiodermatitis and is produced in abundance 
by skin fibroblasts, endothelial and keratinocytes upon 
exposure to radiation.13 Within hours, increased TGF-β1 
levels are found in irradiated human, porcine, and mouse 
skin.13–16 TGF-β1 binds TβRI and TβRII—the transmem-
brane serine and threonine kinase receptors—which acti-
vates the intracellular signaling pathway mediated by the 
Smad proteins (Fig. 1). The receptor-associated Smads, 
Smad2, and Smad3 become activated/phosphorylated 
and heterodimerize with Smad4, the common mediator. 
Smad4 together with the receptor Smads, forms a com-
plex which translocates to the nucleus and acts as a tran-
scription factor for a number of profibrotic genes.17–19 
Radiation-induced epidermal and dermal thickening in 
mice is correlated with an upregulation of the TGF-β/
Smad3 fibrotic pathway.20,21 Additionally, wounds made 
in the skin of irradiated mice lacking Smad3 have fewer 
fibroblasts and myofibroblasts, less prominent but more 
organized collagen, and are less inflammatory than the ir-
radiated skin of wild-type mice.22,23

One of the main roles of TGF-β1 is homeostasis of the 
extracellular matrix (ECM). TGF-β1 stimulation leads to 
increased production of ECM proteins, decreased pro-
duction of matrix degrading proteases, and increased 
production of the inhibitors of these proteases. TGF-
β1 also promotes the differentiation of fibroblasts into 
myofibroblasts. Myofibroblasts are “activated” fibroblasts 
with high proliferative capabilities and the ability to se-
crete copious amounts of fibrous matrix including col-
lagen, fibronectin, and proteoglycans in response to 
TGF-β1. TGF-β1 further regulates the release of bFGF, 
TNF-α, and IL-1 by modulating their release and/or 
their production in endothelial cells and smooth muscle 
cells.11,14,15

The dermis is rich in blood vessels, which are also sus-
ceptible to damage from radiation. The smaller arterioles 
and capillaries are the most severely affected. In the acute 
phase, radiation increases the permeability of blood vessels, 
leading to tissue edema and intravascular thrombosis and 
fibrosis.24 Fibrin plugs form in blood vessels within hours 
of exposure, which obliterate blood flow leading to tissue 
hypoperfusion, ischemia, and ultimately atrophy.11 A signif-
icant reduction of blood flow is evident in irradiated, com-
pared with nonirradiated, human and mouse skin.21,25,26

Chronic Effects of Radiotherapy
Chronic radiodermatitis is marked by significant indu-

ration of the dermis and subcutaneous tissue, telangiecta-
sia, and hyalinization of collagen of the reticular dermis. 
The epidermis may be hyperplastic or become atrophic, 
ulcerated, and necrotic, or develop skin tumors.27,28 These 
chronic fibrotic changes are the result of the continued 
release of cytokines and growth factors, which remain ele-
vated for extensive periods of time even after the radiation 
source is removed. Biopsies from breast cancer patients 
treated with adjuvant RT may exhibit upregulated gene 
expression for collagen types I and III and TGF-β1 up to 
20 years after RT.29 In porcine and mouse skin, radiation-
induced elevated TGF-β1 levels remain high for up to  
12 months after radiation and are localized to myofibro-
blasts, endothelial cells, and the collagen matrix.15,30

Fig. 1. The TGF-β/Smad3 pathway: radiation damage results in TGF-
β1 release from endothelial cells, fibroblasts, and keratinocytes. TGF-
β1 binds the TβRii, which becomes phosphorylated and recruits the 
TβRi receptor. TβRi then phosphorylates the receptor associated 
Smads, Smad2, and Smad3, which bind Smad4, the common media-
tor. The receptor Smads and the common mediator form a complex, 
which translocates to the nucleus and acts as a transcription factor 
for a number of pro-fibrotic genes.
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The continued abnormal production of stimulating cy-
tokines and growth factors likely mediates a chronic state 
of cellular activation. Histological studies in mice indicate 
there is prolonged fibroblast proliferation27 and progres-
sive ECM deposition with increasing time postirradiation. 
There is sustained myofibroblast activity, and the usual 
regulatory feedback mechanisms controlling myofibro-
blast activation and ECM production and degradation are 
disrupted.14

Vascular density is also decreased in irradiated, chroni-
cally injured skin.20 There is a dose-dependent reduction 
in the number of capillaries, the regularity of their dis-
tribution, and an increase in pericapillary fibrosis.31 The 
relative hypoxia stimulates the budding of irregular and 
easily occluded capillaries. The compromised tissue per-
fusion and resultant tissue hypoxia further augments the 
action of TGF-β1 and stimulates fibroblasts to proliferate 
and increase their expression collagen type 1.32,33 Reduced 
perfusion in irradiated skin impairs its wound healing po-
tential and complicates reconstructive strategies.

Fat Grafting
Treatment of chronic radiodermatitis is lacking, with 

most current interventions failing to adequately restore 
skin form and function following radiation-induced dam-
age.34 AFG, however, is one emerging modality able to 
reverse and rejuvenate the fibrotic changes in the skin 
(Fig. 2). In 2007, Rigotti et al.8 first demonstrated the cu-
rative effects of AFG in irradiated human skin. They ap-
plied purified autologous fat cells to radiation-induced 
wounds of 20 breast cancer patients. The grafted fat im-
proved clinical symptoms and healed wounds faster with 
evidence neovascularization. Multiple clinical studies have 
since confirmed that fat grafting can reverse chronic radi-
ation-induced skin alterations.35–39 In 2009, Panettiere et 
al.38 treated irradiated postsurgical breasts with fat grafts 
and found this to improve patients’ clinical symptoms and 

clinical scores compared with patients who did not re-
ceived fat grafts. Grafting of fat into the irradiated skin of 
breast cancer patients before implant placement, reduced 
the complications of subsequent breast reconstruction 
surgery including implant exposure and capsular contrac-
ture—which are typically increased in the postirradiated 
breast.39 Additionally, fat grafting also improved skin and 
subcutaneous tissue quality when delivered at the same 
time as prostheses in breast reconstructive surgery.36 AFG 
has thus transformed the treatment of radiation-induced 
skin damage and helped to reconceptualize radiodermati-
tis as a process that is dynamic and reversible.

Although fat grafting has been used clinically for more 
than 100 years, the mechanisms by which it exerts its ben-
eficial effects remain incompletely determined. Animal 
studies have corroborated the clinical findings and helped 
to elucidate the histological changes underlying these ef-
fects. Like in human skin, fat grafted into the irradiated 
skin of mice improves the healing of radiation-induced 
ulcers, reduces skin hyperpigmentation, and attenuates 
dermal thickness and collagen deposition.20,26,40–42 The fat 
grafts also increase skin vascularity, normalize the archi-
tecture of skin microvasculature, and enhance the expres-
sion of vasculogenic factors including vascular endothelial 
growth factor (VEGF) and stromal cell-derived factor 1 
(SDF-1).20,26,40,41

Role of Adipose-derived Stem Cells
There is increasing support for the idea that the mul-

tipotent adipose tissue-derived stromal cells (ASCs) and 
adipose-derived regenerative cells (ADRCs) within grafted 
fat are largely responsible for its therapeutic effects.8 ASCs 
are cells with an extensive proliferative capacity and the 
ability differentiate into multiple mesodermal lineages, 
including adipocytes, myocytes, chondrocytes, and osteo-
cytes. They comprise up to 3% of the stromal vascular frac-
tion (SVF) of adipose tissue.43 The remaining cells of the 

Fig. 2.  clinical photograph of a right breast following flap reconstruction and irradiation with clinical 
signs of texture and pigmentation changes (a). The same breast is shown 12 months after fat grafting 
demonstrating long-term clinical improvements in contour and skin quality (B).
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SVF, collectively referred to as ADRCs, are a heterogenous 
mix of stem and regenerative cells, including endothelial 
and smooth muscle progenitors, and preadipocytes.

A causative role for ASCs driving the regenerative ef-
fects of fat grafting is suggested by their ability to tolerate 
the hypoxia encountered in the recipient graft site. A sig-
nificant proportion of grafted fat is resorbed or undergoes 
necrosis due to the oxidative and ischemic stress. Although 
mature adipocytes show poor survival upon transplanta-
tion, ASCs are able to withstand the ischemia and their 
proliferative activity is even augmented.44,45 Furthermore, 
a number of studies have demonstrated the superior ef-
fects of cell-assisted lipotransfer (CAL) over standard fat 
grafting. In CAL, fat grafts are enriched with the SVF of 
the lipoaspirate, or with ASCs isolated from the SVF and 
expanded in culture (Fig. 3).46–48 In both mice and hu-
mans, CAL increases the volume of fat retained in the ir-
radiated skin and augments the ability of fat to attenuate 
radiation-induced increase in dermal thickness.40,46,49,50 Ad-
ditionally, posttransplantation into irradiated graft sites, 
supplemented fat is of higher quality; it contains fewer 
cysts and vacuoles and is more vascularized than fat not 
supplementated.40,46

The exact mechanisms by which ASCs rejuvenate the 
irradiated skin, however, are still unclear. One possibility 
is that ASCs directly differentiate into adipocytes, endo-
thelial cells, pericytes, and/or smooth muscle cells to re-
generate tissue in the recipient site. In the nonirradiated 
context, cell-tracking experiments have shown that ASCs 
grafted from genetically labeled green fluorescent protein 
mice into nonfluorescent recipient mice undergo adipo-
genic differentiation and incorporation into host adipose 
tissue.51 Other researchers have labeled SVF cells or ASCs 
with the lipophilic carbocyanine dye, DiI, before trans-
plantation and shown the presence of DiI+ cells among 

the mature adipocytes in the fat grafted area, which also 
suggests that the transplanted cells differentiate into adi-
pocytes.46,52 Importantly, fibrosis has become increasingly 
recognized to be intimately involved in adipose tissue dys-
function, and restoration of healthy adipocytes derived 
from ASCs may contribute to the reversal of fibrosis.53 
Furthermore, peroxisome proliferator-activated recep-
tor gamma, a master regulator of adipogenesis, has been 
shown to inhibit profibrotic effects of TGF-β.54 However, 
some research indicates that transplanted ASCs may sur-
vive only transiently and that the majority of regenerated 
tissue may be derived from host cells.52,55–57 Furthermore, 
transcriptional profiling shows that grafted ASCs have low 
levels of expression of markers for adipogenic differentia-
tion and exhibit no enhanced capacity for adipogenic dif-
ferentiation than the ASCs within host tissue.55

Revascularization posttransplantation is also essential 
for adipose tissue survival and tissue regeneration. Vasculo-
genesis is the de novo formation and growth of blood vessels 
from mesodermal derived cells. The SVF is rich in vessel-
forming cells such as endothelial cells, pericytes, smooth 
muscle cells, and their progenitors. These cells, and/or 
the ASCs, may directly differentiate into vascular cells and 
assemble into blood vessels. Our laboratory has recently 
identified 2 progenitor populations from both mouse and 
human adipose tissue, which are able to form vessels upon 
transplantation (unpublished data). Other researchers 
have shown that SVF cells transplanted from green fluo-
rescent protein+ or LacZ+ mice into the adipose tissue of 
recipient mice create a hybrid vascular network composed 
of both transplanted ASCs and recipient-derived cells.58,59 
Likewise, Dil-labeling of ASCs before transplantation also 
results in Dil+ endothelial cells, indicated by CD31 expres-
sion52 or expression of von Willebrand factor.46 One study 
reported that the vascular smooth muscle cells in grafted 

Fig. 3. creation of aSc-enriched fat: a fraction of the fresh lipoaspirate is digested enzymatically to 
obtain the SVF. The SVF can then be cultured to further enrich for aScs. The SVF cells or aScs are then 
added to the fresh lipoaspirate.
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adipose tissue vessels largely originated from the grafted 
cells, whereas the endothelial cells derived from both graft 
and host cells. The authors also reported that the host en-
dothelial cells were bone marrow-derived, which suggests 
that circulating endothelial cells may be mobilized as a re-
sult of fat transplantation.56

An alternative mechanism by which ASCs mediate 
their regenerative effects is through paracrine signaling. 
ASCs have marked proangiogenic effects upon transplan-
tation,60 and transcriptional profiling shows that grafted 
ASCs upregulate their expression of proangiogenic fac-
tors.55 ASCs secrete multiple potentially synergistic pro-
angiogenic factors, including VEGF, hepatocyte growth 
factor (HGF), bFGF, and IGF-1.55,59–62 The increase in 
VEGF posttransplantation of ASCs into the mouse fat pads 
is associated with increased proliferation of neighboring 
endothelial cells.57 The hypoxic conditions in the grafted 
site may further enhance the secretion of factors such as 
VEGF and bFGF.60,63 Inhibition of apoptosis of proliferat-
ing endothelial cells is also critical to allow for the unin-
hibited growth of new blood vessels. The release of IGF-1 
by ASCs has potent antiapoptotic activity and may further 
promote angiogenesis through this mechanism. Further-
more, IGF-1 also acts as a strong stimulus for preadipo-
cytes to differentiate into mature adipocytes64,65 and may 
help to regenerate the adipose tissue in the grafted site 
through its pro-adipogenic effects.

The hypoxic environment within the host tissue can 
also stimulate ASCs to release additional factors with an-
tifibrotic actions. One example is the anti-inflammatory 
cytokine interleukin (IL)-10, which is released by ASCs,66 
and has been associated with reduced skin contracture, 
decreased thickening, and less collagen in upon cell 
therapy.67 Additionally, the ASC-mediated vascularization 
of the recipient site may lead to decreased tissue fibrosis. 

Low tissue oxygen levels have been shown to be a strong 
stimulus for the release of TGF-β1 by resident and infiltrat-
ing cells, and this leads to increasing fibrosis with time.68 
Improved vascularity and, thus oxygenation, may decrease 
TGF-β1 and its consequent effects on scarring.

In summary, ASCs and SVF cells may act by both dif-
ferentiation and paracrine signaling to promote revascu-
larization, promote adipogenesis, and reduce apoptosis, 
which may synergistically regenerate the skin and subcu-
taneous tissue following radiation-induced injury (Fig. 4).

CHALLENGES OF FAT GRAFTING INTO 
IRRADIATED TISSUE

Fat grafting is an emerging treatment, especially in 
the postirradiated context, and although it is effective at 
treating radiodermatitis, there are many ongoing con-
siderations. Patients receiving fat grafting post-RT often 
have severely compromised blood supply in the recipient 
areas as a result of radiation damage, and this significant-
ly reduces the survival of fat grafts. Methods to improve 
tissue vascularity before transplantation may, therefore, 
enhance the survival of grafted fat and, consequently, 
its regenerative effects. Deferoxamine (DFO) is a Food 
and Drug Administration (FDA)–approved iron chela-
tor, which has been shown to have angiogenic and anti-
oxidant qualities. DFO stabilizes, and thus increases, levels 
of hypoxia-inducible factor 1 alpha (HIF-1α) by chelating 
the iron cofactor of prolyl hydroxylase domain-containing 
protein 2, the protein which degrades HIF-1α. Increased 
HIF-1α leads to an increase in downstream angiogenic 
growth factors69,70 and recruitment of endothelial progeni-
tor cells.71 In nonirradiated tissue, local DFO treatments 
improve ischemic flap survival, blood perfusion, and capil-
lary density in animal models.72,73 Autologous fat grafts en-

Fig. 4. proposed mechanisms by which aScs and SVF cells mediate the beneficial effects of fat grafting: aScs are SVFs thought to help 
regenerate the tissue in the recipient bed posttransplantation by directly differentiating into adipocytes and vascular cells, as well as by 
their adipogenic, angiogenic, and anifibrotic paracrine signaling.
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riched with DFO have been shown to have increased graft 
survival and viability in rats.74 A concern with intragraft 
injection of DFO, however, is that it may chelate and thus 
deplete iron, which can impair adipogenesis.44,45,75 To cir-
cumvent this, preconditioning of irradiated recipient sites 
with DFO before fat grafting has been performed and we 
have found that this strategy improved vascularization be-
fore grafting, and ultimately enhanced volume of retained 
fat retained posttransplantation.76

Another concern is that fat grafting postirradiation is 
most often used to regenerate the tissue of patients with 
an oncologic history. One ongoing concern regarding the 
use of fat grafting in this context is that transplanted ASCs 
and SVFs may create an environment conducive to tumor 
growth or recurrence through their stimulatory paracrine 
action. Although an in-depth discussion of this is beyond 
the scope of this review, several in vitro and in vivo animal 
studies have suggested a pro-oncologic effect of ASCs/
SVFs.77 Mature adipocytes can also stimulate the prolif-
eration potential of cancer cells in culture.78,79 However, 
clinical studies have failed to show any increase of breast 
cancer recurrence after AFG.80,81 Furthermore, a number 
of systematic reviews and meta-analyses have reported no 
clinical evidence of an increased oncological risk in pa-
tients receiving fat grafting. Nonetheless, additional high-
quality research is required to investigate this further.82–85 
As such there is currently no evidence to conclusively sup-
port or refute the notion that fat grafting increases onco-
logical risk.

CONCLUSIONS
RT is an extremely effective oncological therapy but 

causes severe and long-term collateral damage to tissues, 
including most often, the skin and subcutaneous tissue. 
Radiation activates fibrotic pathways in the acute phase, 
which result in progressive deposition of collagen and 
substantial dermal induration even years after the initial 
radiation exposure. The collateral soft-tissue fibrosis can 
cause significant cosmetic and functional disturbances. 
AFG is increasingly recognized as a technique able to re-
verse the radiation-induced fibrosis in the skin. The ASCs 
and ADRCs within the SVF of grafted fat are thought to be 
responsible for mediating these beneficial effects, both by 
direct differentiation and by paracrine signaling. Greater 
understanding of the mechanisms by which AFG, and the 
ASCs and ADRCs, rejuvenate the irradiated skin, however, 
can inform future strategies able to exploit or enhance 
these effects therapeutically.
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