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A B S T R A C T

Prism adaptation has a long history as an experimental paradigm used to investigate the functional and neural
processes that underlie sensorimotor control. In the neuropsychology literature, prism adaptation behaviour is
typically explained by reference to a traditional cognitive psychology framework that distinguishes putative
functions, such as 'strategic control' versus 'spatial realignment'. This theoretical framework lacks conceptual
clarity, quantitative precision and explanatory power. Here, we advocate for an alternative computational fra-
mework that offers several advantages: 1) an algorithmic explanatory account of the computations and opera-
tions that drive behaviour; 2) expressed in quantitative mathematical terms; 3) embedded within a principled
theoretical framework (Bayesian decision theory, state-space modelling); 4) that offers a means to generate and
test quantitative behavioural predictions. This computational framework offers a route towards mechanistic
neurocognitive explanations of prism adaptation behaviour. Thus it constitutes a conceptual advance compared
to the traditional theoretical framework. In this paper, we illustrate how Bayesian decision theory and state-
space models offer principled explanations for a range of behavioural phenomena in the field of prism adaptation
(e.g. visual capture, magnitude of visual versus proprioceptive realignment, spontaneous recovery and dynamics
of adaptation memory). We argue that this explanatory framework can advance understanding of the functional
and neural mechanisms that implement prism adaptation behaviour, by enabling quantitative tests of hypotheses
that go beyond merely descriptive mapping claims that ‘brain area X is (somehow) involved in psychological
process Y’.

1. Introduction

Adaptation is a fundamental property of the nervous system that
enables organisms to flexibly reconfigure sensorimotor processing to
counteract perturbations that cause performance errors (Shadmehr
et al., 2010; Franklin and Wolpert, 2011). Consider, for example, the
case of a basketball player shooting at various times throughout a game.
As the game progresses, so muscles will fatigue, such that the same
motor command produces a different outcome from one shoot to an-
other. A lateral wind might also alter the trajectory of the ball and
deviate it from the aimed basket. In these two situations, an internal
(muscle fatigue) or external (wind) disturbance introduces systematic
deviations from the intended action goal. These perturbations require
the relationship between a desired action goal and the motor com-
mands that execute it to be reconfigured, to avoid the large systematic
errors in performance that would ensue if the nervous system were

unable to adapt and correct for the perturbations. Thus, adaptation
underwrites the maintenance of successful actions across the lifespan.

In a laboratory context, sensorimotor adaptation has been studied
experimentally using a variety of methods (e.g. visuomotor rotation,
force-field adaptation, saccade adaptation, Coriolis forces, etc.)
(Lackner and Dizio, 1994; Shadmehr and Mussa-Ivaldi, 1994; Mazzoni
and Krakauer, 2006; Ethier et al., 2008). Here we focus on a method
first developed by von Helmholtz at the end of the nineteenth century,
called prism adaptation (Von Helmholtz, 1867). In this paradigm, par-
ticipants wear prism glasses that bend light, and so optically displace
the visual field, for example by 10° to the right. When participants
perform visuo-motor tasks (e.g. pointing at targets) while wearing the
prisms, at first, they make systematic rightward errors (owing to the
optical displacement), but participants learn rapidly from the error
feedback to correct their movements on subsequent trials and regain
normal accuracy (i.e. they adapt). When the prisms are removed post-
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adaptation, individuals then make errors in the opposite direction, i.e. a
leftward "after-effect", which reflects the temporary persistence of some
of the compensatory mechanisms engaged during the adaptation. Sev-
eral features of how prism after-effects generalise or transfer beyond the
specifically trained context make it an interesting paradigm to in-
vestigate. In healthy controls, prism after-effects tend to generalise at
least partially across space (Bedford, 1989, 1993; Redding and Wallace,
2006b). This contrasts with visuomotor rotation, for instance, where
effects drop off sharply with distance from the trained target location
(Krakauer et al., 2000). Pointing during prism exposure is typically
aimed at lateral targets under speeded conditions, whereas prism after-
effects are often measured at a central (untrained) location, with ac-
curacy emphasised over speed. With this procedure, there is therefore a
change in task context between prism exposure and prism after-effect
measurement conditions, such that the after-effect measure intrinsically
captures elements of generalisation/transfer, at least with respect to
task changes (training/test or exposure/after-effect) in reach trajectory,
movement speed and target location. Prism after-effects are measurable
in at least three different modalities, visual, proprioceptive, and motor,
which appear to follow different dynamics (Harris, 1963; Redding and
Wallace, 2001; Hatada et al., 2006b, 2006c, 2006d). It has been
claimed that prism after-effects can transfer to untrained visuospatial
tasks (e.g. line bisection task, greyscales task), although these effects in
young healthy volunteers appear to occur only with left-shifting (not
right-shifting) prisms and tend to be quite small and variable (Colent
et al., 2000; Michel et al., 2003; Loftus et al., 2009; Goedert et al., 2010;
Martin-Arevalo et al., 2014; Schintu et al., 2014, 2017; Striemer et al.,
2016). A stronger evidence base in patients has shown that the after-
effects of prism adaptation can transfer to improve cognitive deficits in

visuospatial neglect after right hemisphere brain damage (Rossetti
et al., 1998; Frassinetti et al., 2002; Serino et al., 2009; O'Shea et al.,
2017). After-effects have been shown to transfer to a broad range of
untrained sensory and cognitive domains in neglect, including, for ex-
ample, postural control, occulo-motor exploration, dichotic listening
and mental imagery (for review, see: Jacquin-Courtois et al., 2013).
Improved symptomatology after prism adaptation has also been re-
ported in patients with complex regional pain syndrome (Sumitani
et al., 2007) and Parkinson's disease (Bultitude et al., 2012). This dis-
tinctive generalisation/transfer profile of prism adaptation, by contrast
with other adaptation paradigms, suggests that this experimental model
of sensorimotor integration warrants special attention.

What features should a satisfying theoretical account of prism
adaptation behaviour have? An ideal account would provide: 1) me-
chanistic explanations, that are 2) biologically plausible, and 3) can
generate quantitative behavioural predictions, 4) about the effect of a
range of factors, such as experimental task manipulations (e.g. mod-
ality, quality and timing of sensory feedback, gradual versus abrupt
perturbation onset, etc.), psychological variables (e.g. internal state
estimates of limb position, sensory uncertainty, prior knowledge of the
perturbation, etc.), and neural state effects (e.g. change in neural ex-
citability in specific brain region owing to lesion or drug or brain sti-
mulation intervention). Here, we outline the current prevailing (de-
scriptive psychological) model of prism adaptation that is predominant
in the literature on healthy individuals, patients and animal studies. We
also highlight the brain regions implicated in prism adaptation by
studies conceived within this framework. Next, we make the case that a
computational characterisation of prism adaptation behaviour offers
advantages over this traditional functional descriptive approach, and

Fig. 1. Prism adaptation (A) By bending light, prism lenses displace the visual field in a direction determined by the prism structure. Here for example, light is displaced laterally, by 10°
to the right. Hence, a central dot when viewed through this prism is (mis)perceived to be located 10° to the right of its true position. (B) Typical prism adaptation experimental
paradigm. Participants’ pointing accuracy is tested first at baseline (1), prior to prism exposure. Figure illustrates closed-loop pointing at baseline, i.e. participant is required to make fast
and accurate pointing movements to a visual target and receives visual feedback of the reach trajectory and endpoint. During prism exposure (2), the goggles shown in A) are worn. Owing
to the optical shift, the 'direct effect' is that the participant makes rightward pointing errors initially (early phase), but learns gradually from trial-by-trial error feedback to correct these
errors and re-gain baseline pointing accuracy (late phase). Consequent leftward prism after-effects (errors) are measurable post-adaptation once the glasses have been removed (3). (C)
Canonical pattern of performance errors during prism adaptation. Plot shows reach endpoint error (y-axis) as a function of trial number (x-axis) during closed-loop pointing (i.e. with
visual feedback). Note baseline accuracy (i.e. mean error centred on zero) (1), followed by rightward errors (in the direction of the prismatic shift) that decrease gradually across prism
exposure trials (2), followed by leftward errors (in the direction opposite the prismatic shift) after removal of the prism goggles (3). (D) Three tests commonly used in the prism
adaptation literature to quantify prism after-effects. During open-loop pointing participants point at visual targets, which are viewed transiently, and visual feedback of the reach
trajectory and the reach endpoint is deprived. This prevents (further) learning from endpoint error (which would over-turn the after-effect). Open-loop pointing measures of after-effect are
deviated in the direction opposite the prismatic shift (i.e. here leftward). During proprioceptive straight ahead pointing blindfolded participants are asked to point in the direction they
perceive as being straight ahead of their nose. This is thought to capture the proprioceptive component of adaptation. This after-effect measure is also deviated in the direction opposite to
the prismatic shift (i.e. leftward). During visual straight ahead judgement participants must indicate when a moving light is perceived as being straight ahead of their nose. This is thought to
capture the visual component of adaptation. After-effects with this measure are deviated in the same direction as the prismatic shift (i.e. rightward). The sum of visual and proprioceptive
after-effects immediately after prism exposure has been shown to equal the magnitude of after-effect quantified by open-loop pointing, which is therefore known as the total visuomotor
shift (Hay and Pick, 1966; Templeton et al., 1974; Redding and Wallace, 1988, 1996; Hatada et al., 2006a).
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argue the need for an integrated neuro-computational account to fur-
ther advance understanding within this field.

2. Prism adaptation procedures

Since the primary focus of this paper is on prism adaptation ex-
periments, we will first describe how such studies are typically per-
formed. This will provide the reader with the necessary background to
engage with the prism adaptation literature and understand the theo-
retical discussion developed in the following sections.

2.1. Typical experimental paradigm

Prism adaptation experiments usually include at least three phases:
1) pre-adaptation: baseline measure of individuals’ visuomotor task
performance; 2) prism exposure: visuomotor tasks are performed
during exposure to the prismatic shift. This optical shift causes per-
formance errors – individuals learn from error feedback to correct their
errors in order to compensate gradually for the optical shift (i.e. they
adapt); 3) post-adaptation: baseline tests are repeated, and changes in
performance (post - pre) provide a measure of after-effects (Kornheiser,
1976) (Fig. 1).

In the studies we will consider, participants are typically asked to
make pointing movements during each of the three phases. Visual
feedback of individuals’ trial-by-trial reach endpoints can either be
provided (closed-loop pointing, CLP) or deprived (open-loop pointing,
OLP). During prism exposure (phase 2), endpoint errors are deviated
initially in the direction of the optical displacement on both of these
types of pointing. Performance change relative to baseline (during
minus pre) during this initial phase is often described as the direct effect
of prisms. If visual feedback of endpoint errors is provided during prism
exposure (i.e. closed-loop pointing), individuals tend to reduce these
errors progressively to regain baseline accuracy (i.e. they adapt)
(Fig. 1B, C).

Prism after-effects are measured by asking participants to point
again after removal of the prisms. If sufficient practice has occurred
during prism exposure, performance will now be deviated in the di-
rection opposite to the prismatic shift. If visual feedback of these (now
leftward) reach endpoints is provided (i.e. closed-loop pointing), per-
formance errors will once again be corrected rapidly (now in the op-
posite direction) to re-gain baseline accuracy (Fig. 1C). This de-adap-
tation (or washout) can be limited by depriving visual feedback (i.e.
using open-loop pointing) (Fig. 1D). Prism after-effects measured using
open-loop pointing can persist even after closed-loop performance has
returned to baseline levels (Inoue et al., 2015).

Two other tests are commonly contrasted across the baseline and
post-exposure phases, to measure modality-specific prism after-effects:
visual straight-ahead judgement and proprioceptive straight-ahead
pointing (Redding and Wallace, 1988, 1993, 2001; Hatada et al.,
2006a, 2006d). The idea is to measure the different components hy-
pothesised to underlie prism adaptation: visual, proprioceptive and
motor changes (Harris, 1963). The visual straight ahead judgement
requires participants to report verbally when a visual stimulus moving
laterally across their visual field is perceived as being straight ahead of
their nose (Fig. 1D). This measure is thought to rely on eye-head co-
ordination, and any post-exposure change in accuracy is usually inter-
preted as a visual after-effect (Hatada et al., 2006a). Proprioceptive
straight ahead pointing requires blindfolded participants to point to the
position in space they perceive to be straight ahead of their nose. It is
thought to provide a measure of head-hand coordination, and post-
exposure shifts in this measure are interpreted as a proprioceptive after-
effect (Harris, 1963; Templeton et al., 1974). Several authors have re-
ported that immediately after prism adaptation, the sum of the visual
and proprioceptive after-effects, measured by visual straight ahead
judgement and proprioceptive straight ahead pointing, respectively,
equals the magnitude of after-effects assayed using open-loop pointing

(Hay and Pick, 1966; Templeton et al., 1974; Redding and Wallace,
1988, 1996; Hatada et al., 2006a). This finding is relatively intuitive
given that both vision of target location at onset and proprioceptive and
motor feedback during the reach trajectory contribute to motor per-
formance during open-loop pointing. Thus, open-loop pointing quan-
tifies the combined contribution of both factors influencing hand-eye
coordination (i.e. the total visuomotor shift), while visual straight
ahead judgement and proprioceptive straight ahead pointing each
measure individual components (eye-head and head-hand respec-
tively). Studies vary in whether they measure just the total visuomotor
shift, or the visual or proprioceptive after-effects, or investigate the
relationship between all three.

2.2. Important factors to consider

Several experimental factors can strongly influence the modality,
magnitude and persistence of both the direct- and after- effects of prism
adaptation. The way the prismatic shift is introduced (gradually versus
abruptly), the visibility of the starting position of the limb, the avail-
ability of visual feedback during the movement trajectory versus only at
the reach endpoints (i.e. concurrent versus terminal exposure), the
duration of prism exposure, the movement speed, the target location, or
the limb used - all have been shown to influence behavioural perfor-
mance (Hamilton, 1964; Bedford, 1989; Redding and Wallace, 1996,
2006a; Kitazawa et al., 1997; Michel et al., 2007; Inoue et al., 2015).
Additionally, brain lesions can affect the way individuals adapt to
prisms and express after-effects (Bossom, 1965; Welch and Goldstein,
1972; Weiner et al., 1983).

In the following section, we will outline the descriptive theoretical
framework typically used within the neuropsychology literature to ex-
plain the effects of the various factors listed above. Subsequently, we
will argue for the advantages of a computational framework in place of
this descriptive account. Key benefits of this formal model framework
are that it offers: 1) principled mechanistic explanations of behaviour,
2) which specify the computations that give rise to behaviour, 3) in
precise mathematical terms, 4) that enable quantitative tests of beha-
vioural predictions, 5) and characterise information processing in terms
(mathematical functions) that could plausibly be implemented by
neural circuits (unlike the traditional cognitive psychology descriptive
account). We argue that this explanatory framework offers a significant
conceptual advance, which promises to accelerate progress in under-
standing the causal bases of prism adaptation behaviour, in terms of the
algorithms that drive it, the neural circuits that implement it, and how
these interact.

3. The traditional dual-process framework: strategic control
versus spatial realignment

3.1. Theoretical framework

For the past forty years, the large majority of studies investigating
the neural mechanisms underlying prism adaptation have interpreted
their results within a theoretical framework that distinguishes two
learning processes that contribute differentially to the direct effects (i.e.
error correction) and after-effects of prisms. This framework posits that
prism adaptation recruits two distinct functional mechanisms: a rapid
process of error reduction that reflects strategic adjustments in motor
control, and a slower process, so-called ‘true’ sensorimotor adaptation,
thought to reflect the spatial realignment of motor, proprioceptive and
visual coordinate reference frames (for review, see: Redding et al.,
2005; Redding and Wallace, 2006b). The name given to these two
processes has varied slightly across studies and over time, but the core
idea of a distinction between a fast strategic component and a slower
‘true’ sensorimotor realignment has remained consistent. Here we will
adopt Redding and Wallace's (Redding et al., 2005; Redding and
Wallace, 2006b) latest terminology to describe this dual-process
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theoretical framework and review the evidence for functional and
anatomical dissociations associated with these two processes.

Within this framework, the constituent processes driving prism
adaptation are described as follows. Strategic control is a set of processes
that guide everyday adaptive motor behaviours. For example, to reach
for a cup, depending on the sensory information available, it is neces-
sary to first select the appropriate reference frame to code the target
location (e.g. visual-motor, proprioceptive-motor) and guide the ap-
propriate reach-to-grasp command. The process of setting the reference
frame in relation to the desired action has been called ‘calibration’
(Redding and Wallace, 2002; Redding et al., 2005). Strategic control
also requires selecting the region of extrapersonal space most relevant
to the on-going task (e.g. the shelf where the cup is located), and is
therefore described as being closely related to spatial attention. If a
reach-to-grasp action is unsuccessful, the action may have to be ‘re-
calibrated’ by various means. For example, (while wearing prisms) one
may direct his/her reaching movement more towards the side of the
cup, so as to reduce the previous motor error. This mix of partly au-
tomatic, partly conscious processes is thought to contribute pre-
dominantly to the rapid error correction that occurs during the initial
phase of prism exposure, but to contribute poorly to prism after-effects
(Weiner et al., 1983; Pisella et al., 2004; Redding et al., 2005; Redding
and Wallace, 2006b; Aimola et al., 2012) (Fig. 2).

It is important to note that, within this framework, strategic motor
control adjustments do not require the linkage between different co-
ordinate frames to be reconfigured. Instead, motor performance can be
improved simply by changing the motor command issued to reach the
target. An analogy commonly used to illustrate this idea is to consider a
rifleman with misaligned telescopic sight. Suppose that the scope of the
rifle is misaligned with the barrel, so that the marksman misses the
target systematically by 10° to the right. Simply re-aiming 10° to the left
of the target would allow the marksman to hit his target without having
to realign the scope with the barrel. Strategic control refers to this
process of quickly recalibrating the reference frame to meet the task
objectives. Successful movements driven by such a process should
therefore be specific to the trained task context and should not gen-
eralise to other contexts (e.g. other movements, other spatial locations,
etc.).

By contrast, spatial realignment refers to the process of adjusting for
constant differences in spatial coordinates between multiple sensor-
imotor coordinate systems. In reference to the previous analogy, this
would be equivalent to realigning the barrel with the scope of the rifle.

The traditional theoretical framework often posits that accurate
pointing movements require the correct alignment of two reference
frames: an eye-head visual-motor system (measured with the visual
straight ahead test) and a head-hand proprioceptive-motor system
(measured with straight ahead pointing) (Redding and Wallace, 2002;
Redding et al., 2005). Because the prismatic shift displaces the visual-
motor reference frame only, compensatory shifts in the visual-motor
and/or proprioceptive-motor systems are required in order to re-align
the two reference frames and regain correct eye-hand coordination
during prism exposure (Templeton et al., 1974). The temporary carry-
over of these adaptive shifts after removal of prisms is thought to be
predominantly responsible for the after-effects of prism adaptation.

3.2. Behavioural predictions

In summary, the core theses of the traditional dual-process frame-
work are that: 1) strategic recalibration is a cognitively demanding
process, that drives error correction early during prism exposure, but
contributes little to prism after-effects; 2) spatial realignment is an
automatic process, that develops more gradually, and is mainly re-
sponsible for prism after-effects; 3) these two processes operate rela-
tively independently from one another (Fig. 2). Within this theoretical
framework, closed-loop performance during prism exposure reflects
both the strategic control and spatial realignment components, whereas
prism after-effects (measured via open-loop pointing, visual straight
ahead judgement or proprioceptive straight ahead pointing) provide a
measure of spatial realignment. Impaired strategic control would
therefore affect error correction during prism exposure, but would not
directly affect prism after-effects. By contrast, impaired spatial rea-
lignment would affect both direct- and after- effects of prisms.

In the following two Sections (3.3 and 3.4), we will review some of
the main empirical evidence that supports this theoretical model (for in
depth review, see: Redding and Wallace, 2002; Redding et al., 2005;
Redding and Wallace, 2006b) and summarise attempts to localise the
neural correlates of these two proposed processes.

3.3. Strategic control

Within the traditional framework, strategic control refers to the
process of quickly recalibrating the reference frame to (re)code the
location of the target. It is thought to contribute mainly to the early
phase of prism exposure.

Consistent with this view, several studies have reported behavioural
markers of a learning component engaged during the early phase of
prism exposure, but saturating quickly, and contributing poorly to the
after-effect. For example, in healthy individuals, during the initial phase
of prism exposure, when errors are large, the time gap between target
foveation and onset of the pointing movement increases transiently, but
returns to normal within about 10 trials, as the endpoint error magni-
tude is rapidly reduced (Rossetti et al., 1993). A similarly rapid time
course was observed in trial-by-trial corrections of the initial accel-
eration phase of the reach trajectory during the first 10 prism exposure
trials (O'Shea et al., 2014). It has also been shown that imposing a
cognitive load (mental arithmetic) during prism exposure disrupts
participants’ ability to correct pointing errors while wearing prisms
(Redding et al., 1992). None of these behavioural phenomena have
been shown to relate quantitatively to measures of prism after-effects.
Taken together, these results implicate a strategic learning component
that contributes to error correction during early prism exposure.

The neural substrates associated with this 'strategic control' com-
ponent of prism adaptation have been inferred from brain lesions that
have impaired error reduction during prism exposure but spared after-
effects (Welch and Goldstein, 1972; Weiner et al., 1983; Canavan et al.,
1990; Pisella et al., 2004; Newport and Jackson, 2006; Fernandez-Ruiz
et al., 2007) (Table 1). Such studies have converged on a crucial in-
volvement of the cerebral cortex in strategic control (Welch and

Fig. 2. The traditional dual-process framework. The traditional theoretical framework
posits that error correction during prism adaptation relies on two processes. Strategic
control refers to the calibration of individuals’ task workspace around the task relevant
objects. It is described as a rapid process that intervenes early during prism exposure but
contributes poorly to prism after-effects. Conversely, spatial realignment is described as
developing more slowly during prism exposure and is thought to be responsible for the
prism after-effects. The term describes a process of bringing the different sensorimotor
coordinate frames (visual-motor, proprioceptive-motor) into alignment with each other.
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Goldstein, 1972; Weiner et al., 1983; Canavan et al., 1990), more
specifically, the posterior parietal cortex (Pisella et al., 2004; Newport
and Jackson, 2006). The functional specificity implied by this beha-
vioural pattern is debatable given the variety of neurological impair-
ments that can lead to this pattern of performance. For example, tem-
poral lesions (Canavan et al., 1990), spinocerebellar ataxia type 2
(Fernandez-Ruiz et al., 2007), and spatial neglect (Aimola et al., 2012)
have all been associated with impaired error reduction but intact prism
after-effects.

In the healthy brain, several groups have used neuroimaging tech-
niques to try and identify brain regions involved in strategic control
during prism adaptation. Typically, these studies have contrasted the
amplitude of neural activity in the ‘early’ versus ‘late’ phases of prism
exposure and interpreted areas activated by this contrast (i.e. early>
late) as neural correlates of the strategic control component of prism
adaptation (Table 2). Consistent with lesion studies, activity in the
posterior parietal cortex has been reliably reported by whole brain
neuroimaging studies, but other brain regions such as primary motor
cortex, anterior cingulate cortex or cerebellum have also been found to
be preferentially activated during the early versus late phase of prism
exposure (Clower et al., 1996; Danckert et al., 2008; Luauté et al., 2009;
Kuper et al., 2014) (Table 2). Aside from functional localisation in this
way, these neuroimaging studies have said little about how these
identified brain regions are thought to implement the process of stra-
tegic control.

3.4. Spatial realignment

Within the traditional dual process framework, spatial realignment
refers to the process of shifting the visual-motor and/or proprioceptive-
motor systems in order to re-align these two coordinate frames and
regain accurate hand-eye coordination. This process is believed to de-
velop slowly during prism exposure, and to be responsible almost en-
tirely for the prism after-effects (Redding and Wallace, 2002, 2006b;
Redding et al., 2005).

One study in healthy individuals reported a putative kinematic
signature of sensorimotor realignment: gradual correction of the
terminal (deceleration) phase of the pointing trajectory during prism
exposure. This corrective process unfolded slowly during prism ex-
posure and the magnitude of correction of this kinematic error corre-
lated with the magnitude of prism after-effects (O'Shea et al., 2014).
Endpoint error appears not to be necessary for spatial realignment to
occur, as after-effects can be observed in the absence of measurable
reach endpoint errors if the prismatic shift is introduced gradually
(Howard and Freedman, 1968; Dewar, 1971; Michel et al., 2007;
Hanajima et al., 2015). Instead, it has been suggested that the dis-
cordance between the expected (feedforward predicted) and observed
(feedback measured) position of the hand is the learning signal for
spatial realignment (Redding and Wallace, 2006b). Support for this
claim comes mainly from the finding that the magnitude of visual and
proprioceptive after-effects (measured by the visual straight ahead
judgement and proprioceptive straight ahead pointing, respectively)
depends upon the sensory information available in-flight during the
reach trajectory when individuals are wearing prisms (Redding and
Wallace, 1996, 2001). If both proprioceptive and visual feedback is
available, proprioceptive after-effects tend to be greater than visual
after-effects. The opposite is true (i.e. greater visual than proprioceptive
after-effects) if only proprioceptive feedback is available (Redding and
Wallace, 1996, 2001). This suggests that the modality in which the
discrepancy between the predicted and observed hand location is
sensed determines which coordinate reference frame is preferentially
re-aligned.

Several studies have reported evidence of impaired spatial realign-
ment following cerebellar lesions in humans (Weiner et al., 1983;
Martin et al., 1996; Pisella et al., 2005; Calzolari et al., 2015; Hanajima
et al., 2015) (Table 1) and non-human primates (Baizer et al., 1999).

The typical behavioural pattern is reduced error correction during
prism exposure, combined with decreased or absent prism after-effects.
The contribution of the precise cerebellar sub-regions is still unclear, as
evidence of impaired spatial realignment has been found after anterior
(Pisella et al., 2005; Calzolari et al., 2015) and posterior (Martin et al.,
1996; Baizer et al., 1999) lesions to cerebellum. To our knowledge, only
three neuroimaging studies have investigated the pattern of functional
brain activity associated with spatial realignment (Luauté et al., 2009;
Chapman et al., 2010; Kuper et al., 2014). They did so by investigating
brain regions that were more active during the later stage of prism
exposure compared to the early stage (late> early). Posterior cere-
bellar activity was reported in two of these studies (Chapman et al.,
2010; Kuper et al., 2014), but other regions such as the superior tem-
poral gyrus and angular gyrus were also activated (Luauté et al., 2009;
Chapman et al., 2010) (Table 2).

3.5. Is this theoretical framework satisfying?

The traditional dual-process theoretical framework offers an ac-
count of various behavioural dissociations observed in healthy in-
dividuals and neurological patients (for review, see: Redding and
Wallace, 2002; Redding et al., 2005; Redding and Wallace, 2006b). The
main functional insight provided by this framework has been to dis-
tinguish two psychological processes (strategic control, spatial rea-
lignment) that combine to explain behaviour, but seem to operate with
a certain degree of independence from one another. However, studies
conceived within this theoretical framework do not offer a mechanistic
explanation of how prism adaptation behaviour arises, and attempts to
localise the neural circuits underlying these two processes have yielded
heterogeneous results (Table 1). In addition, the information processing
operations executed by the identified neural components remain largely
unknown.

The traditional dual-process theory suffers from a pervasive pro-
blem in cognitive neuroscience – how to bridge the conceptual gap
between cognitive psychological level descriptions of behaviour and
biologically plausible descriptions of neural circuit functioning?
Computational models offer a potential bridge, as they provide a
common currency (algorithms, mathematical functions) in which to
describe both information processing and neural circuit mechanisms
that could implement such functions. We contend that, in order to
advance cognitive neuroscience explanation of the causal brain-beha-
viour dynamics that underwrite prism adaptation, the traditional dual-
process framework needs to be replaced with a re-conceptualisation at
the algorithmic level. By ‘algorithmic’, we mean a level of description
that sets out clearly the (mathematical) rules and operations (functions)
required to execute prism adaptation behaviour. It is obvious that, at
the cellular and neural circuit level, cognitive concepts like ‘strategic
control' or ‘spatial realignment’ have no explanatory value, since brain
circuits are computing information, and the explanatory task is to
provide an account of how these computations implement psycholo-
gical functions. Explanatory progress therefore requires a conceptual
advance: a theoretical framework that decomposes prism adaptation
behaviour into the underlying algorithms required to implement it (for
a related recent argument, see: Krakauer et al., 2017). Re-con-
ceptualising prism adaptation in terms of its constituent algorithms
offers objective mathematical description, as opposed to qualitative
description offered by the traditional dual-process psychological fra-
mework. This greater precision helps avoid confusion related to ter-
minology. It also allows for quantitative experimental predictions. We
will return to these points in the next section. More generally, recasting
any behaviour or cognitive process in algorithmic terms helps advance
the field towards a re-defined taxonomy of cognitive processes, one
grounded in the recognition that the same computations (and brain
circuits) might contribute to diverse behavioural phenomena de-
pending on the constraints of the task. This offers a way to move be-
yond accounts of brain activations in terms of 'area X is involved in
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cognitive function Y (e.g. attention)' to 'computation Y is implemented
within circuit X and engaged during tasks a, b, c'. This distinct con-
ceptual approach could, for example, help to explain why prism after-
effects transfer from pointing tasks to cognitive domains in neglect
patients (Rossetti et al., 1998; Sumitani et al., 2007).

In the following section, we propose an algorithmic decomposition
of the computations required for prism adaptation, by leveraging in-
sights from the field of computational neuroscience applied to sensor-
imotor control. We argue that this decomposition, which is not in-
compatible with the traditional psychological approach, offers a more
useful theoretical framework, in terms of quantitative precision, ex-
planation, and plausible neural implementation.

4. Computational principles of sensorimotor control

4.1. The temporal dynamics of adaptation explained by multiple timescale
models

State-space modelling has provided insights into the hidden internal
state learning and forgetting dynamics that contribute to overt beha-
viour during sensorimotor adaptation (Smith et al., 2006). Trial-by-trial
error correction has been explained as the output of multiple internal
adaptive systems that learn and forget on different timescales. The key
idea is that these systems compete to learn from performance error and
that the sum of their states provides an inverse estimate of the per-
turbation that is used to correct motor performance (Fig. 3A). A com-
monly used simplified model posits that the multitude of possible
timescales can be approximated by a fast system, which learns and
forgets rapidly, and a slow system, which learns and forgets more slowly
(Smith et al., 2006). The model posits that early during adaptation,
error correction is mainly dominated by the fast system, which satu-
rates quickly before decaying back to baseline. By contrast, the slow
system develops more gradually over extended practice and accounts
for most of the net adaptation at later stages of exposure to the per-
turbation. This ‘two-state’ framework is able to reproduce and explain a
range of behavioural phenomena in adaptation, including apparently
counterintuitive effects such as spontaneous recovery - the re-

appearance of after-effects after a brief period of washout (Smith et al.,
2006; Zarahn et al., 2008; Lee and Schweighofer, 2009). The model
offers an efficient way to extract (hidden, internal state-driven) tem-
poral dynamics of learning processes that drive adaptation and to
generate and test precise quantitative predictions about the relative
contributions of these fast versus slow systems to behaviour. For ex-
ample, it has been shown that the level of adaptation reached by the
slow system during force-field adaptation, rather than the overall per-
formance improvement, predicts the amount of long-term retention
(Joiner and Smith, 2008).

Because they are not restricted to two learning systems (Kording
et al., 2007; Inoue et al., 2015; Kim et al., 2015), multiple timescale
models can also be used to ask what number of processes best explains
adaptation behaviour. For example, a recent prism adaptation study
asked how many systems were needed to explain the immediate and
long-term retention dynamics of prism after-effects (Inoue et al., 2015).
During prism exposure, error-dependent learning (closed-loop trial ac-
curacy) asymptotes quickly after the initial error correction phase, i.e.
once pointing accuracy has been restored to near-baseline levels, it
remains at the same level for the rest of the exposure period. However,
even once CLP behaviour has plateaued, the subsequent after-effect
dynamics (on open-loop trials) continue to change, depending on the
duration of the preceding prism exposure. Typically, the longer the
prism exposure, the more stable the subsequent after-effects (i.e. less
decay), reflecting consolidation of the acquired adaptation. To account
for this phenomenon, Inoue and colleagues proposed a third ‘ultraslow’
system, required to explain behaviour only when prism exposure was
prolonged (500 trials) (Fig. 3B). Using a Bayesian model with an even
larger number of states to explain saccadic adaptation, Kording et al.
(2007) argued that these internal states reflect the nervous system's
current estimate of the perturbation timescale, which shifts towards
slower, longer timescale estimates as a function of increasing exposure
duration (Kording et al., 2007). In other words, optimal adaptation
(learning and forgetting rates) reflects the solution of a temporal credit
assignment problem: what is the most likely timescale of the pertur-
bation that causes the observed performance error? A Bayesian solution
treats longer exposure duration as greater evidence of a long-lasting

Fig. 3. The three timescales state-space model for prism
adaptation. (A) Each of the fast, slow and ultraslow systems are
described by a pair of free parameters: a retention factor A, that
describes the amount of decay occurring between trials (0<A

f<As<Aus< 1), and a learning rate B, that describes the frac-
tion of performance error being incorporated into that system's
state on each trial (0<Bus< Bs<Bf< 1). The sum of the states
of the three systems produces an inverse estimate of the pertur-
bation on a trial-by-trial basis, which can be used to correct motor
output. On any trial, performance error therefore corresponds to
the sum of the prismatic shift and the state of the three systems.
We have chosen here to illustrate state-space models with a three
timescales model because of its relevance for prism adaptation
(Inoue et al., 2015), but in principle any number of systems could
be posited. (B) Simulation of prism adaptation in the three
timescales model, based on Inoue et al. (2015) experiment. When
the prismatic shift (in blue) is introduced, the three systems
(dotted yellow, green and purple lines) learn at three different
rates (set by their respective learning rates B). The sum of the
states of the three systems is added to the magnitude of the
prismatic shift to reduce performance error (in red) during prism
exposure. If the after-effects are probed after 30 exposure trials
(learning rate is set to 0 for all three systems during after-effect
trials, i.e. open-loop pointing. shadded grey), the memory trace
decays rapidly, because it is largely dominated by the fast system,
which has the lowest retention factor. However, if prism exposure
continues, the contribution of the fast system gradually decreases.
As a result, after-effects are more stable after 150 trials. Finally,
after extended prism exposure of 500 trials, the ultraslow system
accounts for most of the net adaptation (i.e. the purple line is the

most negative one of all three). Because of that system's high retention factor, the after-effects are then very stable. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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perturbation. Hence, at any time point, optimal behaviour is defined as
the motor output most consistent with the evidence of the estimated
perturbation (magnitude and timescale). This theoretical framework
has been shown to reproduce and explain a variety of saccade adap-
tation behaviour in both monkey and human (Kording et al., 2007). In
summary, there may be a continuum of learning processes, operating
over multiple timescales, whose contribution to behaviour varies with
factors such as the source, duration, and volatility of the perturbation.

Following similar reasoning, a recent study combined state-space
modelling and functional magnetic resonance imaging (fMRI) to test for
neural signatures associated with a range of possible internal state
learning and forgetting dynamics during adaptation to a novel visuo-
motor rotation (Kim et al., 2015). The rationale was to use state-space
modelling to extract hidden internal states and identify brain regions
where the blood oxygenation level dependent (BOLD) signal co-varies
with these computational dynamics. Using a dimensionality reduction
analysis, Kim and colleagues identified four main components (i.e.
group of multiple timescales), each associated with different neural
networks. Notably, all these networks included either a parietal and/or
a cerebellar component, suggesting that the functional activation
timecourses of brain regions known to be associated with prism adap-
tation (see Section 3) are compatible with the state-space modelling
framework. In a different field, recent advances in biophysical models
of neural networks also support the idea that different brain networks
process information at different timescales (Fusi et al., 2005;
Bernacchia et al., 2011; Chaudhuri et al., 2015). This may offer a po-
tential path to bridge biologically plausible models of neural networks
with computational descriptions of learning systems and span ex-
planatory levels from neurons to behaviour.

In summary, computational models including multiple time-in-
variant adaptive systems offer a good quantitative description of motor
behaviour during sensorimotor adaptation. The main theoretical lim-
itation of this approach is its agnosticism regarding the information
content that is being learnt (and forgotten) by these multiple systems
during adaptation. Prism adaptation induces a visuo-proprioceptive
conflict that requires the nervous system to modify sensory (visual,
proprioceptive) and motor information processing to regain normal
behavioural accuracy. What is the relationship between these func-
tional components (visual, proprioceptive and motor systems) and the
learning dynamics extracted by state-space models? The following
sections outline a computational framework (Bayesian decision theory)
that clarifies the content of information processing in relation to the
visual, proprioceptive and motor systems.

4.2. Internal models for sensorimotor control

Most theoretical models of sensorimotor control posit that prior to
generating a successful action (e.g. pointing to a visual target), the
nervous system should produce a coherent, accurate and unbiased es-
timate of the current state of one's body, the external world, and how
they interact, based on all useful sources of information available.
Based on this knowledge, an action plan can then be selected, one that
is most likely to maximise performance in relation to the current be-
havioural goal. The selection of the most appropriate action plan is
fundamentally a decision process that is tightly coupled to the ability to
generate accurate predictions about the consequences of one's actions
on the world and/or one's body (Kording and Wolpert, 2006).

Within this framework, sensorimotor control is proposed to rely on
internal models of the external world and the mechanics of the body.
Inverse motor models transform a desired behavioural goal into an
action plan to accomplish it (Wolpert and Kawato, 1998; Kawato,
1999). When applied to the sensory domain, inverse models infer the
current state of the body (e.g. position of the hand in space) from
sensory input (e.g. proprioceptive feedback). Forward models work in
the opposite direction and predict the next state (e.g. next position of
the hand) based on an estimate of the current state, a copy of the motor

command (efference copy), and some internal representation of the
complex causal relationship between the two (for review, see: Miall and
Wolpert, 1996; Davidson and Wolpert, 2005; Lalazar and Vaadia, 2008;
Shadmehr et al., 2010; Franklin and Wolpert, 2011). In the context of
this paper, we will distinguish between a visual and a proprioceptive
forward model, each of which generates predictions about the likely
next (i.e. expected) visual and proprioceptive state. One advantage of
continuously predicting the next state of the body is that this limits the
impact of neural transmission delays inherent in relying on actual
sensory feedback instead of feedforward predictions (Shadmehr et al.,
2010). It also allows the brain to compare continuously the veridicality
of its predictions against the actually observed (i.e. sensed) measure of
a state (provided by sensory inverse models). Deviations between pre-
dicted and observed states (i.e. prediction errors) can be used as a signal
to drive updating of internal models (see Section 4.3.3).

4.3. Bayesian decision theory

In this section, we outline a theoretical framework that offers a
mathematical description of the concepts introduced above (in Section
4.2). Bayesian decision theory is composed of two components, Baye-
sian statistics and decision theory. Bayesian statistics offers a means to
formalise how an ideal observer should combine new information (e.g.
observed sensory input) with prior beliefs (e.g. predicted sensory
input), and how multiple sources of uncertain information (e.g. mul-
tiple sensory modalities, predictions, prior knowledge) should be in-
tegrated, in an optimal fashion, to generate a more certain combined
estimate of the current state. Decision theory describes the process of

Fig. 4. Decision theory. (A) Any action can be executed in an almost infinite number of
ways. For example, many different movement trajectories would bring one's finger from
point A to a point B. Decision theory provides a mathematical framework that describes
how a rational decision maker should choose among alternative movement parameters
based on their relative level of expected utility. (B) Prism adaptation can be con-
ceptualised as a manipulation that affects the computation of expected utility associated
with the disparity between the visual estimate of the position of the target and the
multimodal estimate of the hand location at the reach endpoint. Before prism onset, the
movement plan with highest expected utility is the one that minimises this disparity (i.e.
peak utility centred on zero on trial 1). After prism onset however, the visuo-proprio-
ceptive conflict introduced by the prisms induces a performance error: the (experienced)
utility of the executed movement plan doesn’t match the predicted utility. This should
result in a shift of utility in the direction opposite to the error when planning the pointing
movement on trial 2: now, the movement plan with highest expected utility is one that
results in a negative disparity between the visual estimate of the target position and the
multimodal estimate of the hand location at the reach endpoint (i.e. the multimodal es-
timate of the hand location is to the left of the visual estimate of the target).
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rationally selecting actions, based on the predictions of internal models,
given the current behavioural goal. Bayesian decision theory therefore
provides a general framework to formalise optimal state estimation and
action selection in a dynamic and uncertain world.

4.3.1. Decision theory and rational movement planning
Any given action (e.g. grasping a cup, hitting a ball) can be executed

by an almost infinite number of possible movements (Fig. 4). Yet, in-
dividuals often move in a very stereotypical way (Morasso, 1981; Harris
and Wolpert, 1998; Simmons and Demiris, 2005). Why is this so? De-
cision theory provides a mathematical framework that formally ex-
plains why individuals ‘choose’ to move the way they do. The central
concept is that the cost of a potential movement (e.g. energy consumed,
fatigue, risk of an injury, etc.) is weighed against the potential reward
that is expected from that movement (e.g. sporting success, monetary
gain, altruistic feelings, etc.) (Mazzoni et al., 2007; Shadmehr et al.,
2016). Mathematically, the concept of a utility function (or cost function,
the negative counterpart) captures the complex relationship that in-
tegrates all of these factors, and quantifies the overall desirability of a
potential movement choice. Within this decision theoretic framework,
the process of selecting one action amongst alternatives is oper-
ationalised as the rational choice of whichever movement plan that
maximises expected utility (or minimises expected cost) (Kording and
Wolpert, 2006; Berniker and Kording, 2011). Mathematically, expected
utility is defined as:

=Expected Utility movementplan p outcome movement plan

U outcome

( ) ( | ).

( ) (1)

where p(outcome|movement plan) is the current estimate of the prob-
ability of obtaining an outcome given a particular movement plan (e.g.
probability of reaching the target given a certain aiming direction) and
U(outcome) is the utility associated with this outcome. This mathema-
tical definition becomes intuitive if you consider, for example, a gam-
bling task in which individuals have to choose between alternative
options that are associated with varying reward probabilities and re-
ward magnitudes (for example: Hsu et al., 2005; Behrens et al., 2007).
In this scenario, the expected utility of each action alternative is the
probability of that action yielding a reward, multiplied by the reward
magnitude. Choosing the option that maximises expected utility is the
definition of choosing rationally. This mathematical framework has
been shown to provide a good quantitative fit to human behavioural
data in this kind of decision making task (Hsu et al., 2005; Behrens
et al., 2007) and has been used to identify functional brain imaging
signals that co-vary with the computation of these decision variables
(O'Doherty et al., 2003; Daw et al., 2006; Hampton et al., 2006).

When planning a movement, more than one decision needs to be
made (Fig. 4). For example, reaching to visual target requires selection
of an aiming location (under prism displacement this need not overlap
with the estimated target position see Fig. 4B), as well as movement
speed and movement trajectory. These different aspects of movement
planning are likely to involve different utility functions, and decision
theory offers a quantitative framework within which these can be in-
tegrated to determine rational movement decisions. Whereas in the
gambling task example, the experimenter imposes a utility function, by
setting the reward structure of the task, in real-life motor control con-
texts, it is hypothesised that an agent's rational choice of movements is
guided by internal utility functions. Assuming that individuals naturally
choose actions that maximise expected utility, then investigating the
rules that dictate individuals’ movement properties offers a window
onto the internal utility functions that guide action choices. When
generating target directed movements, for example, it has been shown
that healthy individuals favour the precision rather than smoothness of
movement (Harris and Wolpert, 1998), so as to adopt a trajectory that
minimises what resembles the terminal squared error (Kording and
Wolpert, 2004b). Movement speed seems to be determined by both a

speed-accuracy trade-off and an implicit cost assigned to the metabolic
energy consumed to produce the movement (Mazzoni et al., 2007;
Shadmehr et al., 2016).

Within a decision theoretic framework, factors that change expected
utility should result in a change of movement plan. The prism adap-
tation task can be conceptualised as a manipulation that changes the
expected utility of pointing movements. Based on Eq. (1), there are two
ways of modifying the expected utility: 1) by changing the utility as-
sociated with certain movement outcomes (U(outcome)), and/or 2) by
changing the probability of obtaining a certain outcome given a
movement plan (p(outcome|movement plan)). These two could be argued
to map on to the traditional dual-process model distinction between
strategic control and spatial realignment, respectively.

Strategic control can be re-conceptualised as changing U(outcome),
where the outcome is defined as the disparity between the estimate of
the hand position at the reach endpoint and the estimate of the target
position. Normally, peak utility is when this disparity is zero, i.e. the
pointing finger lands on the same location as the (visual) target.
However, when an individual corrects strategically for a rightward
displacement, by choosing not to aim at the perceived (right-shifted)
target location, but instead to aim left of that perceived location, s/he is
effectively defining a new utility function with its peak at a non-zero
disparity (Fig. 4B). Evidence that movement plans are sensitive to
changes in U(outcome) has been found in an experiment that imposed
new utility functions by modulating the monetary value associated with
certain movement outcomes (Trommershäuser et al., 2003). Under
these imposed task constraints, healthy individuals were able to ra-
tionally select movement endpoints that maximised the potential re-
ward.

Spatial realignment can be conceptualised, within this framework,
as minimisation of the prediction error associated with the expected p
(outcome|movement plan). That is, the prism manipulation changes the
probability that a planned pointing movement (with a given aiming
location) will accurately hit the target (p(hitting the target|aiming loca-
tion)). Because of the optical shift, during the early phase of prism ex-
posure the experienced utility of pointing movements does not match
predictions (U(missing the target by 10° to the right)<U(hitting the
target)), i.e. there is a prediction error in terms of utility. We propose
that this signal should induce changes in internal models in order to
update the computation of p(outcome|aiming location). This would
gradually displace the peak of expected utility towards a different
movement plan (i.e. more left-oriented) to achieve the desired (un-
changed) outcome (i.e. point accurately at the target).

It is worth noticing that this explanatory framework can thus in-
corporate the key feature of the traditional theoretical framework, i.e.
the dissociation between two alternative ways to reduce motor errors
during prism exposure (Redding et al., 2005; Redding and Wallace,
2006b) (see Section 3.1). A potential criticism of this proposed decision
theory framework is that it merely re-describes the traditional dual-
process model and does not add anything new to the understanding of
prism adaptation. The answer to this objection is threefold. First, there
is value in precise quantitative (mathematical) description of algo-
rithms that explain behaviour, by contrast with qualitative description.
Re-specifying behaviour at an algorithmic level also offers a means to
generate and test hypotheses about the neural implementation of those
computations (O'doherty et al., 2007; Krakauer et al., 2017). Second,
the model we propose offers a formal mathematical description of how
‘strategic control' and ‘spatial realignment’ processes interact, which is
typically vague or lacking in the traditional framework. Third, this
framework incorporates the contribution of both task errors (i.e. brea-
ches of expectancy in terms of the utility of a movement) and re-
inforcement learning (Sutton and Barto, 1998) in driving behavioural
change during adaptation (Huberdeau et al., 2015; Krakauer et al.,
2017). A recent adaptation experiment using visuomotor rotation de-
monstrated this interaction, by showing that rates of adaptation and
retention were differentially modulated by monetary rewards and
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punishments associated with movement outcomes (Galea et al., 2015).
Changes in expected utility differentially affected the rate of error
correction and the magnitude of subsequent after-effects. This compu-
tational framework may also be useful in understanding prism adap-
tation impairments observed in certain neuropsychological disorders.
For example, it has been hypothesised that cognitive impairments ob-
served in patients with Parkinson's disease arise owing to altered utility
functions because of depleted dopamine in the basal ganglia (Frank
et al., 2004; Mazzoni et al., 2007; Pekny et al., 2015). Prism adaptation
impairments, including altered error reduction and reduced after-ef-
fects, have also been reported in these patients (Weiner et al., 1983;
Stern et al., 1988; Canavan et al., 1990; Fernandez-Ruiz et al., 2003).
We propose that decision theory offers a unified conceptual framework
within which to consider and identify possibly common computations
(e.g. altered utility functions) that may explain both the classical cog-
nitive impairments observed in Parkinson's disease (e.g. apathy) and
concomitantly altered mechanisms of prism adaptation behaviour.
Thus, re-casting accounts of prism adaptation behaviour within this
computational framework offers a means of advancing conceptual and
empirical understanding of cognitive impairments across different

paradigms of enquiry.
How is the prediction p(outcome|movement plan) generated, and

how is the predictive model (motor, proprioceptive, visual) adjusted
during prism adaptation? The following two Sections (4.3.2 and 4.3.3)
will offer a Bayesian answer to these questions.

4.3.2. Bayesian statistics and optimal state estimation
In order to generate appropriate motor commands given a move-

ment plan, the nervous system needs to generate, update, and maintain
accurate estimates of states of the body and the external world as we
move through space (Franklin and Wolpert, 2011). During a pointing
movement, multiple sources of error feedback (visual, proprioceptive,
motor), with different time constants, both in-flight and following the
reach endpoint, provide information about the hand and target posi-
tion, and the discrepancy between the two. In addition, forward models
generate advance predictions about expected outcomes before sensory
observations occur. The nervous system must combine these multiple
sources of information (predicted and observed) in order to generate a
single integrated state estimate (e.g. position of the hand in space) that
will guide behaviour (for review, see: Ernst and Bülthoff, 2004;

Fig. 5. Bayesian statistics in sensorimotor control. Bayesian
statistics describe how multiple sources of uncertain information
can be combined optimally into a joint estimate. Here we consider
the example of estimating the location of the hand in space. For
all panels, the x-axis represents all possible locations of the hand
and the y-axis is the probability of the hand being positioned at
this location. (A) The optimal integration of a forward prediction
(prior, in blue) with a sensory observation (likelihood, in black) is
illustrated under two conditions. During a passive movement
(case 1), no forward prediction is generated, i.e. the prior dis-
tribution is flat. The resulting sensory posterior estimate (in red)
will therefore have the same distribution as the observation
(likelihood). During an active movement however, a forward
model generates a prediction of the next most likely hand position
(prior) that can be integrated with sensory feedback (likelihood)
to refine state estimation. This results in a posterior estimate (in
red) that is more certain than the likelihood or the prior. (B–D)
Bayesian statistics can also be used to describe (multimodal) vi-
sual-proprioceptive integration as illustrated here. The black dot
on the x-axis represents the true location of the hand. (B) In the
absence of prisms, the visual (green) and proprioceptive (red)
estimates of the hand location are close to each other. Based on
these two estimates, Bayes’ rule can be used to compute a pos-
terior estimate of the hand location (purple) that is more certain
than any of the sensory estimates. It posits that the relative level
of uncertainty of the two sources of information (visual estimate
and proprioceptive estimate) determines their relative contribu-
tion to the posterior estimate. Because the visual domain is more
reliable (i.e. the width of the distribution is narrower), the re-
sulting multimodal posterior estimate is biased towards the visual
estimate. (C) The visuo-proprioceptive conflict induced by prism
glasses is illustrated as a shift of the visual estimate (green) in the
direction of the prismatic shift (towards the right). Bayes’ rule
predicts that the resulting multimodal posterior estimate of the
hand location is biased towards the visual observation because it
is more reliable (i.e. lower standard deviation of the estimate)
than the proprioceptive observation; this effect is called visual
capture. The contribution of visual versus proprioceptive estimates
of hand location to the multimodal posterior estimate is de-
termined by their relative level of uncertainty. (D) In this condi-
tion, individuals actively move their limb without visual feedback
prior to locating their hand in space. The execution of an active
movement without visual feedback generates a proprioceptive
forward prediction (case 2 of panel A) but no visual forward
prediction (case 1 of panel A). If the proprioceptive forward
prediction is accurate, the confidence in the resulting estimate
will be increased. According to Bayes’ rule, the proprioceptive
estimate will therefore have a greater influence on the multimodal
posterior estimate of the hand location. In other words, the
magnitude of visual capture is reduced. (For interpretation of the
references to color in this figure legend, the reader is referred to
the web version of this article.)

P. Petitet et al. Neuropsychologia 115 (2018) 188–203

198



Chandrasekaran, 2017). The uncertainty associated with any source of
information places the problem of state estimation within a statistical
framework. Bayesian statistics posit that inference about the state of the
body or the external world can be made by combining and weighting
each source of information according to its relative level of reliability.
Consider for example the task of estimating the reach endpoint position
of the hand after executing a pointing movement. Sensory predictions
generated by forward models (e.g. proprioceptive forward model)
constitute a prior assumption about where the hand should be if our
internal models are correct. In Bayesian terms, such prior knowledge is
represented as a prior distribution (blue curve in Fig. 5A). The sensory
system also provides (noisy) information about the likely position of the
hand (e.g. proprioceptive feedback). This information is represented as
a likelihood distribution (dotted black curve in Fig. 5A). Combining both
sources of information (prior and likelihood) according to Bayes’ rule
offers a way to calculate a single, more certain estimate of the hand
position, represented as a posterior distribution (red curve in Fig. 5A).
Because it minimises uncertainty, such estimate is called optimal.

Bayes’ rule states that the probability of the hand being in a location
x, given a proprioceptive observation o, is the product of the prior
probability of the hand location (i.e. prediction about the most likely
position of the hand) and the likelihood (i.e. visual estimate of the hand
location), normalised by the probability of the observation.
Mathematically, Bayes’ rule defines the posterior as follows:

=p x o
p x p o x

p o
( | )

( ). ( | )
( ) (2)

Several studies have shown that, when integrating multiple sources
of uncertain information, humans behave in a near optimal way that is
well predicted by Bayesian models (Ernst and Banks, 2002; Alais and
Burr, 2004; Kording and Wolpert, 2004a; Sober and Sabes, 2005;
Körding et al., 2007; Kayser and Shams, 2015). Fig. 5B illustrates the
use of Bayes’ rule for visual-proprioceptive integration under the as-
sumption of normally distributed noise. The uncertainty (i.e. width of
the Gaussian curve) associated with the proprioceptive estimate has
been found to be greater than that of its visual homologue (Beers et al.,
1996; van Beers et al., 1999; Ernst and Banks, 2002; Burge et al., 2010).
Thus, according to Bayes’ rule, the optimal combination of proprio-
ceptive and visual estimates of the hand location should result in a
multimodal estimate that is biased towards the visual estimate.

In the context of prism adaptation, Bayesian statistics thus allow a
re-formulation in mathematical terms of the perceptual phenomenon
known as ‘visual capture’. Visual capture refers to the finding that in-
dividuals report their limb to be located closer to where it looks than
where it feels under the visuo-proprioceptive conflict generated by

Fig. 6. A Bayesian account of prism adaptation. This schema illustrates putative in-
formation processing occurring during the first reaching movement (closed-loop
pointing) on trial 1 of prism exposure. First, light from the target is refracted through the
prism lens and enters the eye inducing sensory input (yellow arrow between the target
and the eye, 1). Based on this input, a visual inverse model generates an estimate of the
most likely location of the target (yellow arrow between the visual inverse model and the
visual estimate of the target location, top of Fig., 2). Owing to the prismatic displacement,
this estimate will be right-shifted relative to the true location of the target in space (re-
presented as the red dot, which is left of the visual estimate of the target location). The
manual aiming direction believed to maximise expected utility, i.e. that which is expected
to successfully align the reach endpoint with the target location, is selected by a decision
maker (3). This process is explained in detail in Fig. 4. The selected aiming location is
then fed to a motor inverse model, which transforms the desired goal (aiming direction)
into an action plan to accomplish it (motor command, 4). An efference copy of this motor
command is sent to visual (5a) and proprioceptive (5b) forward models that generate
modality-specific predictions about the most likely next location of the hand. In this
example, because a ballistic movement is generated (closed-loop pointing trial), this
prediction concerns the hand position at the reach endpoint. Meanwhile, the execution of
the motor command by the muscles generates visual and proprioceptive feedback (de-
picted by the arrows originating from the muscle spindle and eye symbols) that is in-
tegrated by sensory inverse models to generate modality-specific estimates of the sensed
location of the hand (6a: visual and 6b: proprioceptive estimate of the hand location at
the reach endpoint). Bayesian integration of the modality-specific forward predictions
(prior) with the sensory observations (likelihood) generates modality-specific estimates of
the most likely hand location (posterior) (7a and 7b). See Fig. 5A for a detailed de-
scription of this type of integration. The resulting visual and proprioceptive (posterior)
estimates are then combined into a multimodal (visuo-proprioceptive) posterior estimate
of the hand position (8). See Fig. 5B–D for a detailed description of this type of in-
tegration. On trial 1 of prism exposure, the rightward prism displacement induces: 1)
leftward performance error (i.e. divergence between the visual estimate of the target

position, 2, and the multimodal estimate of the hand location after movement execution,
8); 2) prediction errors in the sensory internal models (i.e. divergence between prior and
likelihood, 7a–b); 3) visuo-proprioceptive conflict (i.e. divergence between the proprio-
ceptive and visual estimates of the hand location, 8). The effect of internal model up-
dating is to reduce these performance errors and to gradually realign all the distributions
depicted in this schema (i.e. aiming location, predicted visual and proprioceptive ob-
servations, visual and proprioceptive observations, visual and proprioceptive estimates,
multimodal estimate). Internal models are updated iteratively within this network as
evidence accumulates and performance is adjusted from one trial to the next. In order to
update internal models appropriately, the brain has to attribute learning to the correct
internal models (motor, visual or proprioceptive). The level of uncertainty associated
with each source of information (sensory predictions, sensory observations, sensory es-
timates) at every level of integration (modality-specific and multimodal) is used to infer
the most likely error source and hence assign learning to the correct internal model. In
this example, the visual estimate is more certain than the proprioceptive estimate, which
should result in a preferential update of proprioceptive internal models. This model ar-
chitecture incorporates the ‘strategic control versus spatial realignment’ dissociation as
performance error can alternatively be quickly corrected at the level of the decision
maker by selecting an aiming location that would result in a negative disparity between
the visual estimate of the target position and the multimodal estimate of the reach end-
point hand location (see Fig. 3 for a detailed description). (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version of this
article.)
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prisms (Tastevin, 1937; Hay et al., 1965; van Beers et al., 1999). Tra-
ditionally, this phenomenon has been described qualitatively as “a kind
of perceptual fusion of the discrepant visual and proprioceptive stimuli”
where “the proprioceptive stimulus […] fail[s] to evoke its normal
response” (Hay et al., 1965). By providing a rule to define optimal
multisensory integration, Bayes’ theory makes quantitative predictions
about the expected magnitude of sensory capture based on the level of
uncertainty associated with information provided by each sensory
modality (van Beers et al., 1999; Ernst and Banks, 2002; Burge et al.,
2010) (Fig. 5BC). It also offers a theoretical explanation for the re-
duction in magnitude of visual capture that has been observed fol-
lowing an active hand movement compared to a passive one (Welch
et al., 1979). The execution of a motor command elicits visual and
proprioceptive forward models (efference copy) to predict the most
likely next visual and proprioceptive observations (Lalazar and Vaadia,
2008). These predictions provide additional sources of information that
can be combined with actual sensory observations to refine state esti-
mation, i.e. reduce the uncertainty about the resulting percept. Because
no visual feedback was provided during movement execution in Welch
and colleagues’ experiment (Welch et al., 1979), only the propriocep-
tive estimate of the hand position could benefit from integration of the
prediction generated by a (proprioceptive) forward model. We suggest
that this explains why the resulting percept was more biased towards
the proprioceptive estimate (i.e. lower visual capture) in this condition
(Fig. 5D).

Visual capture has traditionally been studied relatively in-
dependently of prism adaptation, as it does not directly produce after-
effects (Held and Hein, 1958; Welch et al., 1979). The next section,
however, will illustrate how, when expressed in Bayesian terms, the
phenomenon of ‘visual capture’ is an important factor that should in-
fluence the relative extent of proprioceptive versus visual internal
model updating that occurs during prism adaptation.

4.3.3. Internal model updating and credit assignment
Prism after-effects occur only when active but not passive move-

ments are executed under prism exposure (Held and Hein, 1958; Welch
et al., 1979). This is consistent with the idea that the generation of
predictions prior to movement execution is fundamental to the ability
to adapt in a way that generates after-effects. In a situation in which the
reliability of sensory information is believed to be unchanged, persis-
tent differences between predicted and measured observations implies
the need for an update of internal models (Lalazar and Vaadia, 2008).
The goal of this updating is to minimise systematic prediction errors
and maintain internal consistency between predictions and observa-
tions.

In order to determine which internal model(s) to update (motor,
visual, proprioceptive), the rate at which it should be updated, and for
how long the update should be retained, the brain needs to solve what
is known as a credit assignment problem, i.e. estimate the underlying
cause of the prediction error, in order to assign learning to the correct
internal model and update it appropriately (Wolpert et al., 2011). It has
been proposed that the way in which credit is assigned can be inferred
behaviourally by predicted effects on: the rate of error reduction, or the
pattern of generalisation (to other contexts, spatial locations, body
parts, modalities), or the timescale over which adaptation memory is
retained (Cothros et al., 2006; Kording et al., 2007; Berniker and
Kording, 2008; Kluzik et al., 2008; White and Diedrichsen, 2010).

When pointing towards visual targets while wearing prism glasses,
there are many possible perturbations that could equally explain the
occurrence of prediction errors. For example, a change in the arm dy-
namics – caused by fatigue for example – can alter the implementation
of the motor command, causing systematic deviations from the pre-
dicted state. In this case, the nervous system should modify the re-
lationship between a desired state and the associated motor command,
i.e. adapt a motor internal model. Alternatively, prediction errors can
arise from incorrect sensory estimates of the target location and/or of

the position of the hand. In such a situation, the motor internal model
does not necessarily need to be updated, but the sensory (visual and/or
proprioceptive) internal models do.

Credit assignment refers to the complex problem of attributing an
error to its causal source (Kluzik et al., 2008). It requires the nervous
system to take into account a large number of parameters, which could
include contextual cues, volatility of the environment, and uncertainty
in the estimates, predictions, and sensory observations. Computational
models incorporating a Bayesian estimator of the source of the error
signal have been able to successfully explain post-adaptation general-
isation (Berniker and Kording, 2008; Haith et al., 2009). For example,
using a Bayesian estimator of the visual, proprioceptive and motor
contributions to the overall perturbation, Haith et al. (2009) generated
and confirmed the unintuitive prediction that even a purely motor
disturbance, involving no intersensory conflict (force-field), would lead
to sensory adaptation, because of uncertainty in the source estimates.
Thus, to determine which internal model to update (visual, proprio-
ceptive, or motor), it appears crucial to have a computational archi-
tecture in which the uncertainty associated with each source of in-
formation is represented (Berniker and Kording, 2011). Fig. 6 illustrates
such architecture. Under most normal daily circumstances (e.g. not
wearing prisms), the uncertainty associated with the predicted landing
position of the finger (output of level 3 in Fig. 6) makes the motor
system the most likely source of the error, which should cause pre-
ferential updating of the motor inverse model (Kawato, 1999; Kording
et al., 2007; Inoue et al., 2016). If credit assignment proceeds in a
statistical fashion, a non-zero probability that the error arose from
faulty sensory internal models should be inferred. In order to determine
which of the visual or proprioceptive internal models is more likely to
be responsible for the prediction error, the modality-specific and cross-
modal levels of integration (levels 7 and 8 in Fig. 6 respectively) should
be considered. At the modality-specific levels of integration (i.e. visual
prior/likelihood, proprioceptive prior/likelihood, see levels 7a and 7b
of Fig. 6), information theory offers a way to determine whether the
prediction error (i.e. divergence between prior and likelihood) should
be attributed to faulty forward or inverse models. Low confidence in the
prediction (i.e. uncertain prior) and/or high confidence in the sensory
observation (i.e. certain likelihood) imply the need for a sensory for-
ward model update. Alternatively, high confidence in the prediction
(i.e. certain prior) and/or low confidence in the sensory observation
(i.e. uncertain likelihood) indicate the need for a sensory inverse model
update. Degrading the quality of the visual feedback of the reach
endpoint error (e.g. by blurring the target or by reducing the duration
of the terminal visual feedback) is a way to experimentally manipulate
the level of reliability of the visual observations, thus potentially
maximising sensory inverse model updating. At the cross-modal level of
integration (level 8 of Fig. 6), comparison of the uncertainty in the
visual versus proprioceptive estimates should guide the neural system
towards an update of the visual proprioceptive model. In the case of a
visuo-proprioceptive conflict (i.e. divergence between the visual and
proprioceptive estimates), the sensory internal models associated with
the most uncertainty (visual or proprioceptive) are the ones that should
be preferentially updated. Because this computational architecture
(Fig. 6) incorporates the level of uncertainty associated with each
source of information (width of the Gaussian curve) at every level of
integration, there is sufficient information to determine which internal
model (visual, proprioceptive and/or motor) should be updated, and
how it should be updated.

Compared to the traditional dual-process model, this framework
makes quantitative predictions and offers a principled explanation of
the predicted behavioural consequences of modulating the uncertainty
of specific information sources (for example, see: Kording and Wolpert,
2004a; Burge et al., 2010; Yamamoto and Ando, 2012). For example,
this can explain why terminal prism exposure (no visual feedback
during reaching movements, endpoint error feedback only) induces
greater visual than proprioceptive after-effects, while concurrent prism
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exposure (visual feedback during reach movements and endpoint error)
induces greater proprioceptive than visual after-effects (Redding and
Wallace, 1996, 2001, 2006b). The occlusion of visual feedback under
terminal prism exposure conditions increases the uncertainty of the
visual estimate of the hand position. Hence, when the prisms induce a
prediction error, the cause of this is more likely to be attributed to a
faulty visual internal model, thus resulting in greater visual than pro-
prioceptive model updating. By contrast, the presence of visual feed-
back in concurrent prism exposure conditions allows for continuous
state estimation to occur in both the visual and proprioceptive domains.
It is known in such condition that visual estimates are more certain
relative to proprioceptive estimates (Ernst and Banks, 2002, also see
section 4.2.1 on visual capture and Fig. 4; Burge et al., 2010). Hence,
when a prediction error is experienced at the reach endpoint (under
concurrent prism exposure), it is more likely to be attributed to a faulty
proprioceptive internal model, which is then updated accordingly.
Based on this interpretative framework, we predict that, across in-
dividuals, the magnitude of visual capture (which quantifies relative
confidence in visual versus proprioceptive information) should predict
the degree to which individuals update their visual relative to their
proprioceptive internal models under concurrent prism exposure (i.e.
the relative difference in after-effect magnitude between visual straight
ahead judgement and proprioceptive straight ahead pointing).

5. Conclusion

Prism adaptation is one of the oldest experimental paradigms used
in the sensorimotor adaptation literature (Von Helmholtz, 1867). Yet, it
has been studied mostly within a traditional cognitive psychology
theoretical framework, which has important explanatory limitations. In
this paper, we have advocated for the utility of a computational fra-
mework that re-conceptualises prism adaptation in terms of its con-
stituent algorithms. In our view, the advantages of a computational
approach are several. First, Bayesian decision theory allows a precise
quantitative re-formulation of 'strategic control' and 'spatial realign-
ment' concepts, within the same utility framework used in other task
contexts, such as reward-guided learning and decision-making (Frank
et al., 2004; Daw et al., 2006; Behrens et al., 2007). This shared con-
ceptual and mathematical language opens up the possibility to in-
vestigate experimentally potential commonalities in the functional and
neural mechanisms engaged across these very different task contexts.
For example, one could hypothesise that there are some shared neural
substrates responsible for aspects of the computation of expected utility
notwithstanding the different types of action outcome experienced in
these different classes of task. Second, Bayesian statistics provides a
mathematical framework that specifies how spatial realignment should
proceed, and thus offers quantitative explanation crucially lacking in
the traditional framework. Third, state-space models offer a simple
mathematical description of the temporal dynamics of internal esti-
mates thought to underlie prism adaptation behaviour, moving beyond
the categorical dualist approach of the traditional framework. This
approach enables quantitative questions about information processing
and neural implementation, such as: 1) how many processes best ex-
plain prism adaptation behaviour?, 2) is there a discrete number or a
continuum of processes/timescales which varies with task parameters?,
or 3) are distinct brain regions associated with distinct timescales, or
might a given brain circuit have the ability to perform similar compu-
tations over a range of differing timescales?

To conclude, we submit that progress in understanding the func-
tional and neural bases of prism adaptation behaviour requires this
experimental paradigm to be re-conceptualised at an algorithmic level
of description. Doing so offers our field the opportunity to capitalise on
explanatory gains generated by the literature on computational sen-
sorimotor control. Such insights are being leveraged in the literature on
other kinds of adaptation task, but the prism literature has so far re-
mained oddly immune. Given the distinctive features of prism

adaptation, and its applications in neuropsychology, we believe the
time for our field to start leveraging these gains is ripe.
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