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We investigated variations in cell growth and ATP Sulfurylase (ATPS) activity when two cyanobacterial strains—
Synechocystis sp. PCC6803 and Synechococcus sp. WH7803—were grown in conventional media, and media with low
ammonium, low sulfate and a high CO2/low O2 atmosphere. In both organisms, a transition and adaptation to the
reconstructed environmental media resulted in a decrease in ATPS activity. This variation appears to be decoupled from
growth rate, suggesting the enzyme is not rate-limiting in S assimilation and raising questions about the role of ATPS redox
regulation in cell physiology and throughout Earth history.
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Sulfur is a universal and integral component of metabo‐
lism and biomass. Able to vary oxidation states from +6 to
–2, and to populate the 3d orbitals, sulfur forms bonds with
both carbon and iron, creating a bridge between the inor‐
ganic and organic in the cell (Beinert, 2000). With this
redox and molecular versatility, sulfur is involved in diverse
and unique metabolisms across the tree of life (Dahl and
Friedrich, 2008). At the same time, it is found in conserved
co-factors and biomass components such as S-adenosyl
methionine (Marsh et al., 2010; Bridwell-Rabb et al., 2018),
coenzyme A (Strauss, 2010), and proteogenic cysteine resi‐
dues, with their attendant in Fe-S clusters (Beinert et al.,
1997; Rouault, 2019; Gao, 2020). With these properties, sul‐
fur involving reactions likely had a prominent role from the
origin of life onward (Wächtershäuser, 1990; De Duve and
De Neufville, 1991; Russell et al., 1994; Goldford et al.,
2017).

Much later in evolution, sulfur availability in the oxidized
form of sulfate may have influenced oceanic phytoplankton
primary productivity (Norici et al., 2005; Giordano and
Prioretti, 2016), and a considerable literature exists
describing sulfur in the metabolism, ecology, and evolution
of this group (Kopriva and Rennenberg, 2004; Giordano et
al., 2005, 2008; Ratti et al., 2011; Takahashi et al., 2011;
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Giordano and Prioretti, 2016). Prominent areas of discus‐
sion are the sulfonium compound metabolism of
DMSP/DMS (Giordano et al., 2005; Ratti and Giordano,
2008; Takahashi et al., 2011; Giordano and Prioretti, 2016),
protein Fe-S cluster biosynthesis (Rina et al., 2000; Cassier-
Chauvat and Chauvat, 2014; Gao, 2020), and sulfur acquisi‐
tion required for the thylakoid membrane in chloroplasts
(Ratti et al., 2011; Goss and Wilhelm, 2009). Chemical data
about different phytoplankton species underline how more
ancient cyanobacteria and green algae have a higher C:S
ratio than the diatoms, dinoflagellates and coccolithophores
which dominate ocean water today, and it has been hypothe‐
sized that the historical increases in sulfate availability in
the water column allowed the spread of S requiring species.
Specifically, Giordano’s laboratory and collaborators (Ratti
et al., 2011; Prioretti and Giordano, 2016) suggested that
variations in sulfate availability may have been an evolu‐
tionary constraint in the phytoplankton radiation (Ratti et
al., 2011; Prioretti and Giordano, 2016). Going further
through time, sulfate variability in the ocean may also have
recorded a linkage between animal evolution and the geo‐
chemical record of sulfate deposits derived from the stirring
action of benthonic organisms (Canfield and Farquhar,
2009).

In unicellular algae and cyanobacteria (and many other
organisms), S acquisition from the environment into bio‐
mass begins from sulfate (Giordano and Prioretti, 2016).
Sulfate is kinetically inert and requires activation, which is
then followed by reduction to biomass appropriate oxidation
states (Fig. 1). ATP Sulfurylase (ATPS—EC 2.7.7.4) has the
key role of SO4

2– activation at the beginning of the S assimi‐
lation pathway, hydrolyzing ATP and producing a sulfate-
ester (Schmidt, 1972, 1988; Ullrich et al., 2001; Takahashi
et al., 2011; Prioretti et al., 2014; Giordano and Prioretti,
2016). 

In plants, S assimilation is regulated at different levels in
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Fig. 1. A) The role of ATP Sulfurylase in sulfate activation and the downstream steps leading to sulfide. The two step PAPS path can also reduce
adenosine phosphosulfate to sulfite but is not shown. B) Phylogeny of ATP sulfurylase in bacteria and archaea. Homologs from the
Vampirovibrionia (an ancestral non-photosynthetic cyanobacteria class) are in orange, while the oxygenic cyanobacteria are labelled in green as
the Syn/Pro clade with the ATPS-B isoform, and those cyanobacteria with the ATPS-A isoform. Remaining archaea and bacteria are colored in
black. The tree can be found as a file in the Supplemental Materials.

response to growth conditions and in accordance with C and
N metabolisms (Vauclare et al., 2002; Kopriva and
Rennenberg, 2004; Martin et al., 2005; Khan et al., 2010;
Takahashi et al., 2011; Koprivova and Kopriva, 2014). In
both algae and cyanobacteria, diverse regulatory mecha‐
nisms exist (Schmidt, 1988; Takahashi et al., 2011) and
have been investigated (MacRae et al., 2001; Kopriva et al.,
2002; Patron et al., 2008; Prioretti et al., 2014). At the stage
of sulfate activation, redox regulation of ATPS enzyme
activity was postulated and subsequently confirmed
(Prioretti et al., 2014, 2016). Within cyanobacteria, the
redox regulated isoform, ATPS–B, contains 5 conserved
cysteine residues (Prioretti et al., 2014), whereas ATPS–A,
with only 4 conserved cysteine residues (Prioretti et al.,
2014), appears to lack the critical regulatory S-residue
organization thought to allow disulfide bridge formation and
the modulation of enzyme activity.

It has been hypothesized that freshwater and marine cya‐
nobacteria species are characterized by different evolution‐
ary histories (Sánchez-Baracaldo, 2015; Sánchez-Baracaldo

et al., 2017). Consequently, the different environments in
which they evolved (perhaps including less or more
oxidizing) could have influenced the presence/absence of
redox regulation in specific proteins. The phylogenetic dis‐
tribution pattern of ATPS homologs (Fig. 1B—see Supple‐
mental Material for the explanation of how the tree was
constructed) is suggestive of this relationship. The tree
shows how the marine photosynthetic Syn/Pro clade
(Synechococcus, Prochlorococcus and Cyanobium—
Sánchez-Baracaldo, 2015) clade is well separated from
other photosynthetic cyanobacteria (including the freshwater
group). Further highlighting functional gene acquisition into
the cyanobacteria phylum, the Vampirovibrionia class,—
which represents an ancient and non-photosynthetic cyano‐
bacteria taxon (Soo et al., 2019)—is found on a different
branch of the tree (Fig. 1B). Within freshwater cyanobacte‐
ria species (and those marine species not enclosed in the
Syn/Pro clade) the ATPS–A isoform without redox regula‐
tion is found, while, in the more derived Syn/Pro clade
(which constitutes the picocyanobacteria plankton) the
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ATPS–B isoform with redox-regulation is found (Prioretti et
al., 2014, 2016; Giordano and Prioretti, 2016). This pattern
of distribution also corresponds to ribulose 1,5-bisphosphate
carboxylase/oxygenase (RubisCO), and carboxysomes
(Badger and Price, 2003; Rae et al., 2013) distribution pat‐
terns: cyanobacteria with ATPS–A match the freshwater and
brackish β-cyanobacteria which possess RubisCO-1B and β-
carboxysomes; while those with ATPS–B coincide with the
marine α-cyanobacteria that have RubisCO-1A and α-
carboxysomes (Prioretti et al., 2016).

Protein phylogenies can be linked with gene transfer
events during evolution, and several studies indeed con‐
firmed the importance of horizontal gene transfer (HGT)
during the evolution of the oxygenic photosynthesis in the
cyanobacteria (Fischer et al., 2016; Hohmann-Marriott and
Blankenship, 2011). It has been observed for example that
the Syn/Pro clade seems to have acquired a large number of
genes via HGT from Proteobacteria: several genes involved
in the formation of the α–carboxysome have been transfer‐
red from this group to cyanobacteria along with bacterio‐
chlorophylls synthesis genes (Bryant et al., 2012; Ward and
Shih, 2021). The ATPS phylogeny (where Proteobacterial
sequences are more numerous and more widely distributed
across the tree) is consistent with the theory that the ATPS
gene was part of this exchange (Fig. 1B and Supplemental
Materials), with the ATPS–B sequences nested within a
clade primarily made up of proteobacterial sequences and
very distant from the ATPS–A clade. Moreover, a small
number of Vampirovibrionia species having a different ver‐
sion of ATPS protein is consistent with them acquiring it via
HGT after their divergence from oxygenic cyanobacteria,
similar to how they acquired those proteins involved in
aerobic respiration (Soo et al., 2017, 2019).

To further our understandings of the ATPS protein and its
regulation in cyanobacteria, we grew two cyanobacteria spe‐
cies: the freshwater Synechocystis sp. PCC6803 (referred to
simply as Synechocystis from now on) with non-redox regu‐
lated ATPS–A and, and the marine Synechococcus sp.
WH7803 (referred to as Synechococcus from now on) with
redox-regulated ATPS–B in multiple growth conditions and
measured the resulting enzyme activity with a crude cell
extract assay. The experiments allowed a comparison of
enzyme activity levels between the two isoform types when
expressed in cells exposed (and adapted) to the modern
environment and a possible Precambrian condition. In par‐
ticular, we considered the Proterozoic Eon, which lasted
from 2.5 Gyr to 0.6/0.5 Gyr ago (refer to the following for
more description: Fischer, 2008; Rasmussen et al., 2008;
Lyons et al., 2014; Knoll and Nowak, 2017) and included
the oxygenation of Earth’s atmosphere (Lyons et al., 2014).
During this period is when most evolutionary theories place
the differentiation and radiation of the cyanobacteria taxon
(Sánchez-Baracaldo, 2015; Schirrmeister et al., 2016; Shih
et al., 2017)—despite most of the extant diversity of this
taxon having been accumulated during the Phanerozoic Eon
(Louca et al., 2018).

For each species, three experimental conditions (with
three biological replicates each) were set up in a growth
chamber (12 h light/12 h dark cycle, temperature 20°C and
light with a white LED lamp at 50 μmol photon m–2 s–1 of

irradiance). The cells were grown as semi-continuous cul‐
tures with the dilution volume based on growth rate data
(Gastoldi et al., unpublished) The three conditions analyzed
were: Standard Condition (ST—Table S1), the Possible Pro‐
terozoic Condition (PPr—Table S2) and the Transitional
Condition (TR—Table S3). AMCONA medium (Fanesi et
al., 2014) was used for the marine Synechococcus species
while the BG11 medium (Stanier et al., 1971) was used for
the freshwater Synechocystis. All the liquid cultures were
bubbled continuously with the atmosphere corresponding to
the specific condition and experiments were performed after
an adaptation period (2/3 months). The PPr condition had a
higher CO2/O2 ratio than today (10,000 ppm of CO2 ensured
by a controlled gas system) while the TR and PPr growth
media had a lower sulfate concentration, a switch from
nitrate to ammonium, and, in the case of the Synechococcus,
lowered Fe concentrations compared to the ST. TR and PPr
were identical except for the gas composition, with TR
using air and PPr bubbled with a CO2 mix (details available
in Supplemental Materials). The media compositions were
derived from literature survey and consideration of each
strain’s standard media. While the modified media might
capture some variability with historical relevance, this can
and should be debated.

Growth curves were determined as explained in other
works (Gastoldi et al., unpublished). ATPS activity was
measured using crude cell extracts (refer to Supplemental
Materials for a detailed procedure—which followed
Giordano et al., 2000): the activity was observed spectro‐
photometrically at 25°C for 15 min and the linear phase of
the assay was considered for the data analyses, as in previ‐
ous works (Burnell, 1984; Giordano et al., 2000; Prioretti et
al., 2016). The specific activity of ATPS in the crude extract
was then normalized to the concentration of protein
(expressed in mg mL–1) of the extract itself which was deter‐
mined through the Lowry/Peterson technique (Lowry et al.,
1951; Peterson, 1977).

For both organisms, the specific activity of the ATPS
enzyme in the cells was very different between conditions.
In Synechocystis, the mean activity value was
1459 nmol·min–1·mg–1 in the ST condition, higher than in
the TR condition (164 nmol·min–1·mg–1—ANOVA, P-
value=0.0007, Post hoc: Tukey’s t-test, STvsTR, P-
value=0.0006; STvsPPr, P-value=0.0067; TRvsPPr, P-
value=0.0717, n=9, Fig. 2), where S and Fe were lowered in
concentration compared to the standard media and N
changed from nitrate to ammonium. The TR condition also
showed a lower value than the PPr condition, where the
value was 634 nmol·min–1·mg–1, though the difference
between TR and PPr was less significant judged by a Tukey
test (used as post hoc) which gave a higher P-value (P-
value=0.0717). 

In Synechococcus, the average value was 2689 nmol
min–1 mg–1 in the ST condition while in the TR condition
was only 32 nmol·min–1·mg–1 (Welch’s t-Test, P-
value=0.052, n=6). The experiment was not possible for the
seawater PPr condition since the Synechococcus species was
not able to survive in that condition despite several attempts
for its adaptation.

In both Synechocystis and Synechococcus, the difference
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Fig. 2. ATP sulfurylase activity. A) Each box represents the
interquartile range of a specific condition and the black dots are the
biological replicates for each one: the black line is the median and
represents the second quartile Q2. Above the line is the upper quartile
Q3 while below the line is the lower quartile Q1. The lines that come
out from each box represent the minimum (lower) and the maximum
(higher) value in the data. B) Each point represents a biological
replicate of ATPS activity measurement; each condition is
characterized with different shape and color. The black dot in each set
of values is the mean of both the ATPS activity and the Growth Rate
for the specific dataset. For each mean a Standard Deviation (SD) was
also added, black SD for the ATPS activity value and red SD for the
Growth Rate value. Single values used for this figure can be found in
Table S4 in the Supplemental Materials.

between the ATP sulfurylase activity in the ST and the TR
conditions points out that media components other than sup‐
plied gas can have strong effects on the enzyme activity and
growth, since the atmosphere was the same in both condi‐
tions. It may be that, in these organisms, a limitation in
more than one nutrient (in our work we lowered sulfate and

switched from nitrate to ammonium between ST and TR
conditions), could decrease ATPS expression. This result is
contrary to previous results where sulfate alone was varied
and the activity increased in Synechococcus sp. WH7803
(Prioretti and Giordano, 2016). Further work is needed to
address the factors that regulate ATPS, but we can now see
that nutrients supplied as dissolved salts can strongly affect
the enzyme specific activity.

Plotting enzyme activity vs. growth rate for both the
organisms, a trend between growth rate and ATPS activity
was not observed, suggesting that the enzyme activity itself
is not limiting growth in these conditions (Fig. 2B). In the
marine Synechococcus, the growth rate in the low sulfate
TR condition was higher than the ST condition, but the
ATPS enzyme activity was much lower. In the case of
Synechocystis, which could grow in the PPr condition and
does not have a redox regulated ATPS (Prioretti et al.,
2016), a higher value of ATPS activity was found in the PPr
condition than in the TR condition, despite a lower growth
rate value in the PPr condition (Fig. 2B). One hypothesis
stemming from this observation is that the lower O2 availa‐
ble, which occurred in the PPr environment, promotes the
activity of the enzyme or its expression. Although still pre‐
liminary, more data of this type, together with sulfur quota
data which can be related with growth rates for some algae
(Prioretti and Giordano, 2016), will aid in assessing the rela‐
tionships between ATPS enzyme activity, growth rate, and
sulfur cell content. It is curious that in Synechococcus, while
the enzyme activity decreased the S content of the cells
increased (Gastoldi et al., unpublished). This could again
imply that the enzyme is not limiting in the uptake of S.
Together, our results pose questions as to why the enzyme is
redox regulated in some organisms, and also why the activ‐
ity varies so greatly between conditions.

We analyzed the phylogenetic distribution, and regulation
of enzyme activity at the first step in ATP and electron
requiring sulfate assimilation. By studying two organisms—
one with redox regulation at the ATPS step and one without,
our motivation was to gain insight into intra-cell redox
responses in relationship to environmental redox. Our
results highlight that cyanobacterial lineages display unique
phenotypes in these conditions. This variability adds rich‐
ness—and some complication—to theories about cyanobac‐
teria evolution and adaptation to the oxygenation of the
planet, as other works started recently to point out
(Herrmann et al., 2020; Uchiyama et al., 2020). A long term
goal is to investigate the possible linkages between meta‐
bolic regulation and Earth history.
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