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Cancer stem cells (CSCs) are a minority subset of cancer cells that can drive tumor
initiation, promote tumor progression, and induce drug resistance. CSCs are difficult to
eliminate by conventional therapies and eventually mediate tumor relapse and metastasis.
Moreover, recent studies have shown that CSCs display plasticity that renders them to
alter their phenotype and function. Consequently, the varied phenotypes result in varied
tumorigenesis, dissemination, and drug-resistance potential, thereby adding to the
complexity of tumor heterogeneity and further challenging clinical management of
cancers. In recent years, tumor microenvironment (TME) has become a hotspot in
cancer research owing to its successful application in clinical tumor immunotherapy.
Notably, emerging evidence shows that the TME is involved in regulating CSC plasticity.
TME can activate stemness pathways and promote immune escape through cytokines
and exosomes secreted by immune cells or stromal cells, thereby inducing non-CSCs to
acquire CSC properties and increasing CSC plasticity. However, the relationship between
TME and plasticity of CSCs remains poorly understood. In this review, we discuss the
emerging investigations on TME and CSC plasticity to illustrate the underlying
mechanisms and potential implications in suppressing cancer progression and drug
resistance. We consider that this review can help develop novel therapeutic strategies by
taking into account the interlink between TME and CSC plasticity.
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INTRODUCTION

Cancer stem cells (CSCs) are a unique subpopulation of cancer
cells that possess self-renewal and differentiation abilities. CSC
differentiation enhances the aggressiveness of tumors, thereby
aggravating cancer progression (1). CSCs are essential for
intratumoral heterogeneity and are responsible for tumor
relapse, metastasis, and therapeutic resistance. Moreover, these
cells are difficult to eliminate by conventional therapies,
rendering additional challenges in cancer management (2).
Recently, emerging evidence shows that CSCs can present
different phenotypes that render diverse functions with varying
degrees of mediating tumorigenesis and progression (3), which is
attributed to plasticity of CSCs. Notably, CSC plasticity hinders
successful cancer therapies, and it is indeed a pivotal area of
research to better understand CSC dynamics and thereby the
subsequent development of efficient targeting therapies (4).
Although CSCs display a high level of plasticity, how they
dynamically transit between non-CSC and CSC states or
among varied phenotypes of CSC subsets, and what are the
molecular mechanisms underlying these dynamic processes
remain poor ly understood (5–7) . Recent ly , tumor
microenvironment (TME) has been identified as a promising
target for cancer therapy, owing to its successful application in
clinical tumor immunotherapy. Interestingly, an emerging role
of the TME in remodeling CSC plasticity has been observed; the
CSC niche is critical in regulating CSC plasticity (8). Within this
niche, various cell types, including immune cells, mesenchymal
stem cells (MSCs), cancer-associated fibroblasts (CAFs), and
exosomes derived from live cells, in addition to the physical
and chemical composition of the microenvironment, play roles
in maintaining and promoting phenotypic transition of CSCs by
secreting factors or providing an immunosuppressive
environment (9). In this review, we comprehensively discuss
the recent advances with respect to the interaction between TME
and CSC plasticity and illustrate the underlying molecular
mechanisms. Further, this overview can help provide new
insights into the existing therapeutic approaches and designing
potential strategies for cancer therapy.
EMERGENCE OF PLASTICITY OF CSCs

Cellular plasticity is the ability of cells to differentiate into
multiple lineages, which occurs not only during embryonic
development but throughout life (10–12). Although plasticity is
a highly regulated process under physiological conditions, cancer
cells can utilize this adaptive ability for their survival and
progression (13). Recently, several studies have demonstrated
that CSCs exhibit varied states and can transition between states
dynamically during cancer progression, corroborating CSC
plasticity (14–16). Chaffer et al. observed that non-CSCs could
Abbreviations: CAFs, cancer associated fibroblasts; CRC, colorectal cancer; CSCs,
cancer stem cells; EMT, epithelial–mesenchymal transition; MSCs, mesenchymal
stem cells; TME, tumor microenvironment; TNBC, triple negative breast cancer;
VM, vasculogenic mimicry.
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spontaneously transit to CSC-like phenotype in vitro and in vivo
in breast cancer cells; this transition was regulated by ZEB1, a key
regulator of the epithelial–mesenchymal transition (EMT) (17).
Further, Dirkse et al. reported that the well-accepted CSC
markers, such as CD133, A2B5, SSEA, and CD15, are not
uniformly expressed among glioblastoma cells. Most of the
cancer cells adapt a plastic state in response to stimuli in the
TME (18). Conclusively, they proposed that CSC plasticity is an
adaptation of the cancer cells to the extracellular pressure in the
TME, which includes chemical signals, hypoxia-induced physical
pressure, or inflammatory environment. In melanoma,
JARID1B, a marker of melanoma stem-like cells, was
dynamically regulated, indicating the dynamic nature of CSCs
(19). Colorectal cancer (CRC), a classical disease model to study
CSCs, showed compelling evidence of CSC plasticity during
tumor evolution. LGR5, a characteristic marker of CRC stem
cells, was expressed in human colon cancer cell lines developed
by Kobayashi et al., confirming CSC properties in the established
cell lines (20). On treating one of these cell lines with an
anticancer drug, they observed transition from LGR5+ to
LGR5- state, while withdrawal of the drug resulted in the cells
reverting to the LGR5+ state, indicating the inherent plasticity of
CSCs. Interestingly, there are two contradictory opinions on the
effect of CSC plasticity on inducing liver metastases: one is that
CSC plasticity is primarily associated with tumorigenesis and not
cancer metastasis (21), whereas the other considers that a
majority of CRC metastases are seeded by CSCs (22). The
controversy indicates that the non-CSC-to-CSC transition and
plasticity of CSCs are crucial for both primary tumor and
metastatic growth. Reportedly, vasculogenic mimicry (VM), a
hallmark process of cancer cell switch by which cancer cells
transdifferentiate and acquire endothelial cell-like properties,
accompanies CSC plasticity (23). Zhang et al. revealed that in
renal cell carcinoma, high expression of the CSC markers CD133
and CD44 and VM correlated with poor survival (24). Taken
together, CSC plasticity mediates interconversion of CSC
subsets, as well as gives rise to non-CSC (differentiated) cells.
PLASTICITY OF CSCs CONTRIBUTES TO
TUMOR HETEROGENEITY

Tumor heterogeneity in cancer biology is widely investigated for
efficient clinical management of cancers (25–27). Intrinsic
intratumoral heterogeneity and acquired diversification under
therapy endow some tumor cells to gain aggressiveness,
rendering their survival and emergence of resistance to
therapy. These properties are the driving forces for the
development of therapy-resistant populations that ultimately
result in relapse and metastasis (28, 29). The origin of
intratumoral heterogeneity in tumor cells has been widely
considered to be resulting from two controversial explanations:
clonal evolution and the CSC model (30, 31). In 1976, Peter
Nowell first proposed the theory of clonal evolution for tumor
heterogeneity, suggesting that step-wise clonal selection is
essential for introducing mutations in tumor genes. In this
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process, a new tumor is derived from a single cell, and poorer
tumor outcomes result from multistep mutations, allowing the
selection of more aggressive subclones in the derived clonal
population. He hypothesized that in the main effective
subclone, cells may acquire identical tumorigenic abilities (32).
On the contrary, the CSC hypothesis proposes that only a small
portion of the tumor subclone have tumorigenic potential and
self-renewal ability (31, 33–36). CSCs can differentiate into non-
CSCs that develop into a bulk of tumor mass, in a fashion similar
to that of stem cell development (37). In 2001, Reya et al.
proposed that there exists a minority of subclones with stem
cell traits in the tumor tissue, with self-renewal and pluripotent
differentiation potential (38). Currently, CSCs have been isolated
from more than 10 tumor types, including breast and lung
cancers, CRC, melanoma, and glioma (39–42). The origin of
tumor cells remains vaguely understood, and tumor
heterogeneity augments the difficulties encountered in tumor
therapy. Tumor heterogeneity exists objectively, as supported by
the fact that some cells are tumorigenic, while others are not (43–
46). Therefore, questions over the origin of tumorigenic cells and
whether they are CSCs or normal cells still prevail. One opinion
is that tumorigenic cells emerge either from stem/progenitor cells
or normal somatic cells that acquire mitotic ability (26). Clonal
evolution and the CSC model are not necessarily mutually
exclusive. Notably, CSC plasticity enhances complexity of
intratumoral heterogeneity. However, the question whether
CSCs are tumor-initiating cells or primary tumor cells remains
to be clarified. The fact that CSCs can change phenotypes via
different programs, such as dynamic epithelial/mesenchymal
status, has led to the speculation that non-CSCs can transform
back to CSCs (47–49). Therefore, CSC plasticity can be
presumed as the cell state capable of being shaped by EMT,
wherein this process can allow interconversion of CSCs and non-
CSCs (50–53).
INFLUENCE OF TME ON CSC PLASTICITY

For many years, the emphasis of tumor therapy has been on the
tumor cells themselves, with a focus on inhibiting their innate
ability to adhere and migrate. However, in recent years many
studies have shown that tumor cells and peritumor cells (the
tumor niche) closely communicate through signaling pathways
(54–56). Cells in the tumor niche (such as fibroblasts and
immune cells) or cytokines secreted by these cells are
accomplices in tumor metastasis and chemoresistance (57).
Tumorigenesis and metastasis are closely related to the TME
(54), where the niche is not only involved in tissue function,
structure, and metabolism but also related to the intracellular
milieu of tumor cells (58). The TME can alter the conductions
such that they are conducive for tumor growth, survival, and
development through autocrine or paracrine secretion (58).
Local tissues or distant sites can in turn limit and influence
tumorigenesis as well as tumor growth and development through
metabolism, secretion, immunity, and structural and functional
changes. Both the tumor and the surrounding environment are
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interdependent and mutually promoting as well as not
antagonizing each other. Further, characteristics of the TME,
such as immunocyte and mesenchymal cell populations,
exosomes, hypoxia, low pH, nutritional deficiencies, and
angiogenesis, are key to tumor formation and progression
(59, 60).

Emerging evidence suggests that the immunocytes, a critical
component in the TME, can regulate phenotypic plasticity of
CSCs (61–63). Macrophages, an important cell type involved in
complex regulating networks in the TME, are crucial in
regulating CSC plasticity. Rao et al. emphasized the mutual
influence and interactions between macrophages and CSCs.
They reported that CD44 overexpressed by CSCs could induce
the macrophages in the TME to secrete the cytokine osteopontin
that can in turn bind to CD44 on the surface of tumor cells,
thereby promoting tumor cell subclone formation (64).
Moreover, analysis of clinical samples showed that osteopontin
and CD44 correlated with the survival rate of patients with colon
cancer. Additionally, macrophages can secrete oncostatin-M, a
pleiotropic cytokine belonging to the IL-6 family, during
chemotherapy. Oncostatin-M in turn can activate the
dedifferentiation of non-CSCs into aggressive CSCs in triple
negative breast cancer (TNBC) (65). Similarly, interplay
between macrophage polarization and CSC plasticity can alter
the status of cancer cells in terms of EMT, thereby modulating
plasticity of stemness in the TME (66). Reportedly, the stem cell
factor LIN28, identified in ovarian CSCs, correlates with tumor
growth and prognosis of ovarian cancer (67). Using advanced
gene sequencing technology, LIN28 and the signaling molecule
bone morphogenic protein-4, secreted by macrophages, were
observed to be mutually regulated.

CAFs are a predominant component in the TME and play an
important role in regulating CSC plasticity (68, 69). CAFs can
modulate CSC plasticity through the IGF-II/IGF1R signaling
pathway in lung cancer (70); FAK signaling in pancreatic
adenocarcinoma (71); and c-Met/FRA1/HEY1 signaling in
hepatocellular carcinoma (72). Normal non-cancerous
fibroblasts embedded in the TME, upon exposure to
chemotherapeutic drugs, undergo DNA damage and secrete a
series of cytokines that stimulate cancer growth. Reportedly, the
proteoglycan decorin, secreted by fibroblasts, inhibits tumor
growth and can induce the expression of tumor-suppressor
genes in the microenvironment surrounding TNBC, thereby
restraining tumor metastasis (73). GATA3 can also inhibit
cancer metastasis and is aberrantly expressed or deleted in
most patients with breast cancer (74). Moreover, GATA3 can
activate the downstream molecule miR-29b that can further
inhibit the synthesis of proteins required for tumor metastasis.
In the absence of GATA3, the metastasis of cancer cells cannot be
stopped, and metastatic tumor cells can induce inflammatory
responses, stimulate angiogenesis, and acquire nutrients for
metastasis. Nakasone et al. observed increased sensitivity
of breast cancer cells to drugs in mice after the selective
deletion of two distinct types of TME factors, MMP9 and
CCR2 (75). Moreover, treatment with HGF or combinatorial
inhibition of RAF and MET can be used as potential therapeutic
June 2021 | Volume 11 | Article 678333
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strategies in BRAF-mutant melanoma. MSCs, which are mature
progenitor cells, are essential components of the TME and
considered to assist in metastasis (76). Following contact with
MSCs, breast cancer cells activate lysyl oxidase expression
that can enhance their metastatic ability and promote
primary tumor dissemination to the lungs and bones. In a
recent study, NOTCH1 signaling activated by MSC-derived
dermal fibroblasts was observed to regulate plasticity and
stemness of melanoma stem/initiating cells (77). This finding
suggests that CAF-targeted strategies may aid in efficiently
eradicating CSCs.

Recent studies have shown that exosomes derived from tumor
cells or non-tumor cells are prominent messengers in regulating
CSC plasticity (78, 79). For instance, exosomes secreted from
CAF contr ibute to CSC pro l i f e ra t ion and induce
chemoresistance in colorectal cancer (80). Exosomes also play
an important role in tumor metastasis through the premetastatic
niche formation (81, 82). Exosomes secreted by stromal cells
within the TME facilitate the transformation of non-CSCs into
CSCs (83). Hu et al. demonstrated that CAF-derived exosomes
significantly promote clonogenicity and increase the percentage
of colorectal CSCs by activating the WNT pathway (80).
Furthermore, exosomes can regenerate stem cell phenotypes by
regulating the stem cell-related signaling pathways, including the
Notch pathway, Wnt pathway, and Hedgehog pathway (84). In
addition, exosomes derived from CSCs promote the proliferation
and metastasis of clear cell renal cell carcinoma by transporting
miR-19b-3p (85). Colorectal CSC-derived exosomes also
facilitate tumorigenesis through mediating neutrophils (86).

The physical and chemical composition of the CSC niche,
such as hypoxia and acidity, can also contribute to the regulation
of CSC plasticity (87, 88). It is known that hypoxia modulates
various aspects of cancer development and progression,
including CSC plasticity. Reportedly, hypoxia could increase
the plasticity of CSCs in glioblastoma by upregulating
important molecules related to stem cell pathways, such as
OCT4, NANOG, and c-MYC (89). The hypoxic niche can also
determine the fate of CSCs in vivo. Tumor cells in the hypoxic
niche show enhanced CSC properties compared to those in the
non-hypoxic niche, which is attributed to activation of the ROS/
HIF−1a/c−Met pathway (90). Similarly, tumor-derived acidosis
can also promote the invasion and metastasis of tumor cells via
metabolic reprogramming (91). Furthermore, the acidic TME
can facilitate immune invasion by inhibiting the activation of
effector T cells and inducing M2 macrophage polarization (91,
92). Estrella et al. found that survival of CSCs depends on low pH
environments that promote autophagy (93). Furthermore,
Spugnini et al. demonstrated that a highly acidic TME can lead
to chemoresistance, and targeted proton pumps with inhibitors
can improve anti-tumor responses (94). Additionally,
accumulating evidence demonstrated that the release of
exosomes is significantly improved in an acidic TME, thereby
leading to malignant tumor phenotypes (95–97). Collectively,
CSCs are the key players in tumor recurrence and metastasis,
wherein the TME provides conditions favorable for the growth
of CSCs.
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THERAPEUTIC STRATEGIES
ENCOMPASSING PLASTICITY AND
NICHE OF CSCs
Intratumoral heterogeneity and complexity of the TME are the
major challenges in effective cancer treatment. CSC plasticity
augments tumor heterogeneity, further enhancing and rendering
difficulty in regulating drug resistance, relapse, and metastasis
(98). Although chemotherapeutics can eliminate most tumor
cells, a minority of CSCs and resistant cancer cells tend to escape
the lethal effect of these drugs, eventually rendering tumor
recurrence (1). It is even more difficult to completely eradicate
CSCs with plasticity. Anticancer drugs normally only target
tumor cells within their cell cycle; as plasticity of CSCs varies
between the stationary and dynamic states, they are not affected,
which is the primary reason for treatment failure (99).
Consequently, CSC plasticity is now recognized as a major
“target cell population” in oncology (4). Recent studies have
shown that therapies targeting both plasticity and niche of CSCs
may be promising strategies in suppressing tumor progression.
For example, CAFs could activate stem cell pathways and are
highly abundant in the TME. Targeting the relevant CAF–CSC
signaling axis should therefore eliminate CSCs via induced
differentiation and/or promoted apoptosis, contributing to
tumor regression. Recently, a neutralizing monoclonal
antibody against GPR77 was observed to effectively control
tumor formation and reverse chemoresistance by eliminating
CD10+ GPR77+ subpopulation of CAFs, proposing a CAF-
targeted therapeutic strategy (100). Another research reported
that CCL2 mediates a crosstalk between cancer cells and stromal
fibroblasts that regulates breast CSCs. CCL2 secreted by CAFs
activates the NOTCH1 pathway that further induces CSC
phenotype in the breast cancer cells, granting them self-
renewal potential, indicating CCL2 as a potential target to
block non-CSC-to-CSC switch (101). Luo et al. observed that
co-inhibition of glycolysis and thioredoxin and glutathione
antioxidant pathways suppresses tumor-initiating potential,
tumor growth, and metastasis of breast cancer cells under
metabolic stress or hypoxia. The probable reason is that the
combination strategy eliminates both quiescent mesenchymal-
like and proliferative epithelial-like states of breast CSCs (102).
Further, programmed cell death protein 1 blockade, combined
with a granulocyte-macrophage colony-stimulating factor-
modified CSC vaccine, was observed to enhance a specific
antitumor immunotherapy response against bladder cancer
(103). Exosomes, hypoxia, and acidity are indeed pivotal for
CSC-niche development, and molecules capable of targeting
exosomes or acidity or inducing hypoxia are potential
therapeutic regimens for eliminating CSCs by reprograming
the TME.

CSCs can gain or lose stemness and switch their status by
adapting to the physical conditions (hypoxia and acidity), and
communicate with stroma and immune cells, corroborating the
crosstalk between intrinsic CSC plasticity and niche complexity.
Therefore, combination strategies that target CSC plasticity
together with immunotherapy or TME-modulating agents
June 2021 | Volume 11 | Article 678333
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could be promising in inhibiting tumor progression and
metastasis. However, whether CSC plasticity arises as a
consequence of the microenvironment-exerted selection
pressure or whether it is an intrinsic, default feature of cancer
cells that enables them to adapt to varying conditions of the TME
remains poorly unknown. Although most cancer cell
subpopulations are capable of phenotypic transition, they vary
in their speed and ability of adaptation. Recent studies on
glioblastoma suggest that the intrinsic plasticity of tumor cells
renders them to randomly switch between different phenotypes
(defined by varied expression of CSC markers) and adapt to the
TME (18, 104). In summary, these studies underscore that
alterations in the CSC niche play important roles in restraining
plasticity of CSCs and highlight the need to better understand the
crosstalk between TME and CSC plasticity. Collectively,
targeting CSCs and their niches is a promising strategy for
efficient cancer therapy.
CONCLUSIONS

In this review, we present the recent advances in oncology that
relate TME and CSC plasticity. All the observations pinpoint to
the fact that developing novel CSC plasticity-suppressing
strategies by targeting TME can improve cancer prognosis and
patient survival. Therefore, we propose that exploiting the
intrinsic dependence of CSCs to interact with non-tumor cell
types in the CSC niche is a potential strategy for cancer therapy.
The need-of-the-hour is, therefore, to understand the
fundamental mechanisms underlying CSC plasticity and to
illustrate the effect of the dynamic properties of CSCs; these
Frontiers in Oncology | www.frontiersin.org 5
aspects can subsequently help improve clinical management of
cancers. Further investigation on the interactions of CSC
plasticity, tumor, and TME, particularly clarifying the
associated signaling pathways, will greatly facilitate our
understanding of the invasive and metastatic features of
malignant tumors. Regarding application in clinical treatment,
combination TME-targeted therapy with the molecular drugs
that reverse or block CSC plasticity should be envisaged to
provide new insights into effectively inhibiting tumor
metastases and efficiently managing cancer. Finally, this
combination therapy can be applied in neoadjuvant
chemotherapy and postsurgical resection, to help eradicate
residual, dormant, and distantly located CSCs, potentially
preventing distant metastases.
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