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Glioblastoma multiforme (GBM) is characterized by high infiltration.The interpretation of MRSI data, especially for GBMs, is still
challenging. Unsupervised methods based on NMF by Li et al. (2013, NMR in Biomedicine) and Li et al. (2013, IEEE Transactions
on Biomedical Engineering) have been proposed for glioma recognition, but the tissue types is still not well interpreted. As an
extension of the previous work, a tissue type assignment method is proposed for GBMs based on the analysis of MRSI data and
tissue distribution information. The tissue type assignment method uses the values from the distribution maps of all three tissue
types to interpret all the information in one newmap and color encodes each voxel to indicate the tissue type. Experiments carried
out on in vivoMRSI data show the feasibility of the proposed method. This method provides an efficient way for GBM tissue type
assignment and helps to display information of MRSI data in a way that is easy to interpret.

1. Introduction

Glioblastoma multiforme (GBM), which typically consists
of three tissue types (i.e., normal, tumor, and necrosis),
is a type of extensively heterogeneous tumors. Accurate
diagnosis of GBMs is of great importance for guiding therapy
and planning operations. Being different from other brain
tumors which present similar spectral patterns, GBMs are
characterized by high infiltration [1, 2]. Such characteristic
brings huge difficulty in tumor typing and diagnosis.

Magnetic resonance spectroscopy imaging (MRSI) [3]
is a very useful noninvasive tool for brain tumor diagno-
sis, especially for highly heterogeneous tumors like GBMs.
Unlikemagnetic resonance imaging (MRI) which only shows
the brain structure, MRSI combines MRI and magnetic
resonance spectroscopy (MRS) [4] to provide the localized
biochemical information. By investigating the spectra from
multivoxels, the clinicians could have a better insight into the
pathological change of brain tissues.

However, the interpretation of MRSI data is still chal-
lenging which hinders its application in tumor diagnosis.
Efforts for exploiting MRSI data have been made using both

supervised and unsupervised methods. Nosologic imaging is
created using linear discriminant analysis [5, 6], canonical
correlation analysis (CCA) [7, 8], Bayesian frameworks [9,
10], and nonnegative matrix factorization (NMF) [11]. NMF
[11] is an alternative blind source separation technique with
only nonnegative constraint. It has shown great potentials in
brain tissue differentiation [2, 12–14]. In our previous work,
we proposed an unsupervised method, namely, hierarchical
nonnegative matrix factorization (hNMF), to interpret the
MRSI data for GBMs without prior knowledge and provided
an easy way to interpret MRSI data of GBMs for each tissue
type [15].

Unlike the supervised classification methods, which
labels each voxel based on large training sets [5–10], tissue
typing for NMF tissue differentiation is not usually consid-
ered [12, 13, 16]. Recently, a tissue typing method was carried
out by simply exploring which tissue contributes most to the
voxel [14]. Such an approach ignored the voxels with inten-
sively mixed tissues, that is, the different tissues contributing
fairly equal.We tried to integrate the distribution information
of each pure tissue in one image by encoding each of them as
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a color channel [16]. The obtained images, known as noso-
logic images, showed the spatial distribution of all tissue
types. However, the tissue distribution is only shown in
shading colors and the tissue type of each voxel is not
indicated clearly.

In this paper, we improved upon [15] by proposing an
approach forGBM tissue type recognition.Thepreviouswork
is extended by analyzing both the pure andmixed data labeled
by an expert. The spectral data labeled as each tissue type
is analyzed and the relationship of different tissue types is
studied. Then, we proposed criteria to assign each voxel to
a certain tissue type (i.e., pure tissue normal, tumor, necrosis,
mixed tissues normal/tumor, or tumor/necrosis, hereafter
noted as “C”, “T”, “N”, “C/T”, and “T/N,” resp.) using the tissue
distribution maps. In vivo experiments are performed using
short-TE 1HMRSI data fromGBMpatients.We then evaluate
its performance using the expert labeling.

2. Materials

2.1. Data Acquisition Protocol. The MRSI protocol had the
same imaging parameters as in our previous work [15, 16].
All theMRSI data were acquired at the University Hospital of
Leuven (UZLeuven, Belgium) on a 3 TMR scanner (Achieva,
Philips, Best, The Netherlands). A body coil for transmission
and eight-channel head coil for signal reception were used.
The MRSI protocol had the following imaging parameters:
point-resolved spectroscopy (PRESS) [17] that was used as
the volume selection technique; TR/TE = 2000/35ms; field
of view, 16 cm × 16 cm; volume of interest, 8 cm × 8 cm
(maximum size); slice thickness, 1 cm; acquisition voxel
size, 1 cm × 1 cm; reconstruction voxel size, 0.5 cm × 0.5 cm;
receiver bandwidth, 2000Hz; samples, 2048; number of
signal averages, 1; water suppression method, MOIST; shim-
ming, pencil beam shimming; first- and second-order parallel
imaging with SENSE factor: left-right, 2; anterior-posterior,
1.8; 10 circular 30mm outer-volume saturation bands in
order to avoid lipid contamination from the skull. Standard
anatomical MR images were also acquired.

2.2. Patients and Data. MRSI data sets from 6 GBM patients
(typically present three tissue patterns, i.e., normal, tumor,
and necrosis) were selected for this study.TheMRSI data was
acquired prior to any treatment from 6 patients with brain
tumors that were subsequently diagnosed as GBM based on
histological examination and followed the rules of the World
Health Organization (WHO) classification for tumor grading
[18]. The institutional review board approved the study.
Written informed consent was obtained from all patients
before their participation in the study. Data preprocessing
was done as in our previous papers [15, 16] using the in-house
software SPID [19].

2.3. Expert Labeling. MR spectra were judged by a spec-
troscopist (a radiologist with five years of experience). The
expert spectroscopist was presented with the real spectra in a
range from 4.3 to 0 ppm.

Firstly, spectral quality assessment was performed as
recommended by Kreis [20]. Spectra were judged acceptable

if the following criteria were met: FWHM of metabolites <
0.07–0.1 ppm, no unexplained features in the residuals, no
doubled peaks or evidence for movement artifacts, symmet-
ric lineshape, and no outer-volume ghosts or other artifacts
present.

Afterwards, the spectra with acceptable quality were
assigned to different tissue classes: normal appearing brain
parenchyma, tumoral tissue, or necrosis, based on the spectra
and the corresponding T1-weighted image after contrast
administration.

3. Method

3.1. Spectra Investigation for GBMsUsing Biomarkers. N-acet-
ylaspartate (NAA), choline (Cho), and lipids are known to
be the three most important biomarkers for investigating
brain tumorigenesis. The concentration of these metabolites
changes under disease condition. In the context of GBM
spectroscopy, necrosis mostly contains lipids. NAA concen-
tration is higher than Cho in normal tissue and gliomas
are characterized by decreased NAA and increased Cho and
lipids. But these biomarkers are not enough for MRSI spectra
differentiation. In a specific frequency region of a spectrum,
the peak height of the metabolite can be measured. Here, we
use the NAA-to-Cho index (NCI) and NAA-to-Lips index
(NLI), which measure the ratios of the peak heights of these
components, to investigate the spectra for all GBM patients.
We select all voxels containing pure tissues and mixed tissues
to observe if the biomarkers are capable of clustering the same
tissues. Each point represents a spectrum from a single voxel.
Its coordinate values (𝑥, 𝑦) correspond to the NCI value and
NLI value, respectively. The points are colored using expert
labeling to indicate their tissue types, blue for “C,” cyan for
“C/T,” green for “T,” yellow for “T/N,” and red for “N. ”

3.2. Spectra Variation Investigation Using Expert Labeling.
In this section, we investigate the relationship of spectral
variation and expert labeling, including two aspects: (1) the
variation of spectra labeled as the same tissue type and (2) the
variation of spectral difference between two tissue types.

The expert labeled spectrum in each voxel as a certain
tissue type “C,” “T,” “N,” “C/T,” and “T/N.” However, because
of the voxel size of MRSI data and the infiltration property
of GBMs, there is no clear boundary between different tissue
types, especially in the area of tumor proliferation.Therefore,
the spectra labeled as the same tissue type could have different
profiles. In order to investigate the spectra variation, we plot
all spectra of each pure tissue type and their mean spectra.

The correlation coefficients between normal and tumor
spectra 𝑅CT and the correlation coefficients between tumor
and necrotic spectra 𝑅TN can evaluate the spectral difference
of different tissue types. For each spectrum labeled as a pure
tissue type, we calculate the correlation coefficient of this
spectrum and a spectrum labeled as another pure tissue type.
With box plots, the variation of spectral difference between
two different tissue types could be observed easily. Combined
data of all patients and also that of individual patients are
both analyzed to investigate the spectral difference between
different tissue types.
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3.3. Tissue Differentiation with hNMF. Spectra from a MRSI
grid can be approximated as a linear combination of 𝑟
constituent spectra. We define a data matrix 𝑋 containing
all spectra from the voxels of interest (VOI). Each column of
matrix 𝑋 represents a spectrum from one voxel. With con-
ventional NMF, 𝑋 can be factorized into a new nonnegative
matrix 𝑊 (each row represents a constituent spectrum of
normal tissue or necrosis) and a new nonnegative matrix𝐻,

𝑋
𝑚×𝑛
≈ 𝑊
𝑚×𝑟
𝐻
𝑟×𝑛

subject to 𝑊,𝐻 ≥ 0.
(1)

The reshape of each row of 𝐻, hereafter called “ℎ-map,” that
is, the “tissue distribution maps” we mentioned before, gives
the spatial distribution of the corresponding spectrum.

For the low grade gliomas, conventional NMF is able
to differentiate normal and abnormal (i.e., tumor) tissues.
While there are more than two tissue types (e.g., GBMs), the
conventional NMF sometimes fails to recover the biomean-
ingful constituent spectra robustly. Therefore, a hierarchical
approach based on NMF (i.e., hNMF) was proposed to
recover the spectra of MRSI data for GBMs which contains 3
constituent spectra [15]. HNMF firstly differentiates the data
matrix into normal and abnormal. Then, with an optimized
threshold, the abnormal part is further differentiated into
tumor and necrosis. As a result, the three constituent spectra
of normal, tumor, and necrosis are recovered and their ℎ-
maps for different tissue types are obtained simultaneously.
Note that, in each voxel, there are 3 values from the 3 ℎ-maps
ℎ
C
𝑖
, ℎT
𝑖
, and ℎN

𝑖
for each tissue type.

3.4. ℎ-Map Investigation Using Expert Labeling. As intro-
duced in the previous section, the ℎ-maps, which are nor-
malized between 0 and 1, can be obtained from the result
of hNMF. Then, the ℎ-map of each tissue type represents
the tissue distribution using a number for a voxel. However,
during expert labeling, each voxel is arbitrarily labeled as a
certain tissue type instead of a number. It is obvious that the
ℎ-values (hereafter, the value from a single voxel in an ℎ-map
referred to as “ℎ-value”) from the voxels, which are labeled
as the same tissue type, could be different. In this section,
we will exploit the ℎ-values of each tissue type. 𝐻-values of
all patients and each patient are also exploited to reveal the
extent of individual difference.

3.5. Tissue Type Assignment. Based on the data analysis of ℎ-
maps, each voxel could be assigned to a certain tissue type.
In each voxel, there are 3 ℎ-values from 3 ℎ-maps for “C,”
“T,” and “N,” respectively. Obviously, the ℎ-values of “C” (i.e.,
ℎ
C
𝑖
) should be bigger than the ℎ-values of “T” (i.e., ℎT

𝑖
) and

the ℎ-values of “N” (i.e., ℎN
𝑖
) for normal voxels. Analogically,

for voxels of tumor and necrosis tissue, ℎT
𝑖
and ℎN

𝑖
should

overwhelm ℎ-values of other tissue types, respectively.
However, there are mixed tissues where ℎ-values of each

tissue type vary significantly and thus the above criteria
cannot be simply used to decide the tissue type. To prop-
erly separate the different tissues from the mixed tissues,

a parameter 𝜌 should be added; that is, ℎC
𝑖
should be bigger

than ℎT
𝑖
+𝜌

CT for the voxel to be assigned to be “C.” Similarly,
ℎ
N
𝑖
should be bigger than ℎT

𝑖
+𝜌

TN for the voxel to be assigned
to be “N.”Therefore, we make the following criteria for tissue
type assignment.

The Rules for Tissue Type Assignment

While ℎC
𝑖
> ℎ

T
𝑖
, ℎC
𝑖
> ℎ

N
𝑖
, and ℎC

𝑖
> ℎ

T
𝑖
+ 𝜌

CT, assign
the voxel to be “C”;
While ℎN

𝑖
> ℎ

T
𝑖
, ℎN
𝑖
> ℎ

C
𝑖
, and ℎN

𝑖
> ℎ

T
𝑖
+ 𝜌

TN, assign
the voxel to be “N”;
While ℎT

𝑖
> ℎ

C
𝑖
+ 𝜌

CT and ℎT
𝑖
> ℎ

N
𝑖
+ 𝜌

TN, assign the
voxel to be “T”;
Else if ℎN

𝑖
< ℎ

C
𝑖
and ℎN

𝑖
< ℎ

T
𝑖
, assign the voxel to be

“C/T”;
Else if ℎC

𝑖
< ℎ

T
𝑖
and ℎC

𝑖
< ℎ

N
𝑖
, assign the voxel to be

“T/N.”

According to the above criteria, we can have all the
voxels assigned to a certain type, including the ones originally
labeled as “B” by expert.

3.6. Validation. The efficacy of the proposed tissue type
assignment approach is validated using expert labeling infor-
mation. The computed tissue type of each voxel is compared
with the tissue type labeled by expert. We use the correct
rate, false alarm rate, and the omission rate to evaluate the
performance of the proposed approach.

Correct rate describes correct assignment among all the
assignment,

Correct rate =
𝑁correct
𝑁assigned

, (2)

where 𝑁assigned represents the number of voxels which are
assigned to a certain tissue type using the proposed method.
And 𝑁correct represents the number of voxels assigned to a
certain tissue type that our assignment is the same as that of
an expert.

False alarm rate describes the wrong assignments which
should not be counted,

False alarm rate =
𝑁error
𝑁assigned

, (3)

where 𝑁error represents the number of voxels which are
assigned to be a certain tissue type using the proposed
approach but not labeled by an expert as the same tissue type.

Omission rate describes the wrong assignment which is
missed,

Omission rate =
𝑁omission
𝑁assigned

, (4)

where 𝑁omission represents the number of voxels which are
labeled by an expert to be a certain tissue type but not
assigned as the same tissue type using the proposed approach.
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Figure 1: Investigation of in vivo 1HMRSI data fromGBMpatients.
𝑥-axis is the NAA-to-Cho index (NCI) and 𝑦-axis is the NAA-
to-Lips index (NLI). Blue, green, and red points indicate normal,
tumor, and necrotic tissue, respectively. Mixed colors represent
mixed tissue. Blue for “C,” cyan for “C/T,” green for “T,” yellow for
“T/N,” and red for “N.”

4. Results and Discussion

4.1. Spectra Investigation for GBMs Using Biomarkers. We
investigated all the 6 data sets which were pathologically
confirmed to beGBMby clinicians. Figure 1 shows the overall
tissue types of all the GBM data sets. Each point represents a
spectrum from one voxel among all the data sets. The points
are colored using expert labeling, same color for same tissue
type. Due to the variation of the spectra, the distributionmap
shows serious overlap between tissue types.Though there are
two vaguely centralized clusters for normal (higher NLI and
NCI) and necrosis (very low NLI and lower NCI), there are
no clear dividing lines between tissue types. Tumor cannot be
separated from normal and necrosis. Mixed tissues cannot be
differentiated from other tissue types, either.

4.2. Spectra Variation Investigation Using Expert Labeling.
The spectral variation of pure tissues labeled by an expert is
investigated by plotting all spectra of the same tissue from all
GBM patients in one figure. As shown in Figure 2, the green
spectra are from all the voxels labeled as normal, tumor, and
necrosis by an expert. Serious spectral variations for the same
tissue type can be observed. It demonstrates that spectra for
the same tissue type are possibly not identical. The red bold
line plots themean spectrum for normal, tumor, andnecrosis,
respectively. We can observe that most of the green spectra
have great difference with the mean spectra.

The spectral relationships of different tissue types are
investigated using correlation coefficients. The correlation
coefficients of each spectrum labeled as “C” by expert and
the spectrum labeled as “T” by expert, noted as 𝑅CT, are
calculated to investigate the difference of normal spectra and
tumor spectra and its variation. Figure 3(a) shows the 𝑅CT
for all the GBM patients and each individual patient. As
shown, most of the correlation coefficients 𝑅CT are between
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Figure 2: Spectral variation of pure tissues. Each green spectrum is
from a voxel. The red bold line represents the mean spectrum.

0.3 and 0.7. However, some values are extremely small or
big because of the variation of tumor spectra. Differences
between patients are not significant except for two patients,
that is, patients 4 and 6. It demonstrates that the serious
variation among patients is not common but possible. The
lower quartile of 𝑅CT, 𝑄1CT = 0.2167, could be used to
describe the relationship between normal and tumor.

Similarly, the correlation coefficients of each spectrum
labeled as “T” by expert and the spectrum labeled as “N”
by expert, noted as 𝑅TN, are calculated to investigate the
difference of tumor spectra and necrotic spectra and its
variation, as shown in Figure 3(b). Compared to 𝑅CT, the
variation of 𝑅TN is more serious. However, the 𝑅TN values of
all patients inside the box are between 0.3 and 0.8. The lower
quartile of 𝑅TN,𝑄1TN = 0.2950, could be used to describe the
relationship between tumor and necrosis.

4.3. ℎ-Maps Variation for Different Tissue Types. The values
in ℎ-maps for each labeled specific tissue type are analyzed.
Figure 4 gives the ℎ-values from the 6 GBM patients. For the
6 data sets, there are 6 normal ℎ-maps, 6 tumor ℎ-maps, and 6
necrosis ℎ-maps. For ℎ-maps of each tissue type, we analyzed
the data distribution of tissue types for all patients.

Figure 4 illustrates the ℎ-values of normal ℎ-map. Each
plot contains a box for all patients and 6 boxes for 6 GBM
patients. Figure 4(a) depicts the ℎ-values taken from ℎ-maps
of normal tissue. The values from voxels labeled as “C,” “T,”
“N,” “C/T,” and “T /N” are depicted. As shown, the values for
“C” are mostly between 0.6 and 1. The values for “N” and
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Figure 3: Correlation coefficients of different spectra.

“T/N” are all quite small. It implies that good separation of
normal and necrosis is possible using ℎ-maps. For the other
two types “T” and “T/N”, the values vary greatly. Figure 4(b)
depicts the ℎ-values taken from tumor ℎ-maps. As shown,
values for all tissue types vary seriously, even for tumor.
Figure 4(c) depicts the ℎ-values taken from necrosis ℎ-maps.
The values for “N” are mostly between 0.5 and 0.9.The values
for “C” and “C/T” are quite small. It also implies that good
separation of normal and necrosis is possible using ℎ-maps.
The values for “T” and “T/N” vary greatly. In general, the ℎ-
values taken from tumor ℎ-maps varymore seriously than the
ℎ-values taken from ℎ-maps of normal and necrosis, and the
values for “T,” “C/T,” and “T/N” taken from all three ℎ-maps
vary significantly. It implies that the separation of tumor and
mixed tissue is more difficult than normal and necrosis.

4.4. Tissue Type Assignment for GBMs. The proposed tissue
type assignment method described in Section 3.5 is applied
to the ℎ-maps of 6 GBM data sets. 𝑄1CT = 0.2167 and
𝑄1

TN = 0.2950 are used as 𝜌CT and 𝜌TN, respectively. The
results are compared with expert labeling information. For
both the results and the expert labeling, the distribution map
is color-coded blue for “C,” cyan for “C/T,” green for “T,” yel-
low for “T/N,” red for “N,” and black for “B” which is spectra
of low quality of which the tissue type cannot be decided by
expert. As shown in Figure 5, the assigned tissue types are
approximately in accordance with the expert labeling. The
regions of normal and necrosis are more accurate than the
regions of tumor andmixed tissues like “C/T” and “T/N.”This
is mainly because the high infiltration character of gliomas
brings higher variation to the spectral profiles of tumor and
mixed tissues. The black voxels labeled as “B” by expert can
be estimated using the proposed method. After analyzing
localization of these voxels and their surrounding voxels, the
assignment of these voxels was confirmed to be correct.

4.5. Validation. For each patient, the correct rate, false alarm
rate, and the omission rate are calculated for each pure tissue

and mixed tissue types by comparing results with expert
labeling.The “N/A” in Table 1 represents the situations which
do not exist.

Aswe observe, the assignments of pure tissue “C” and “N”
are almost always more accurate than “T.” The correct rate of
“C” and “N” can be as good as above 0.9 or even 1.The correct
rate of mixed tissues (i.e., C/T and T/N) is lower than pure
tissues.

The omission rates of the pure tissue “C” and “N” for all
patients are lower than 0.5, mostly lower than 0.4. But for “T”
and mixed tissue “C/T,” “T/N,” the omission rate is higher.

For all results, the pure tissues “C” and “N” perform
better than “T” and “T” performs better than the mixed
tissues “C/T” and “T/N.” Inaccurate assignment of a tissue
type influences the assignment of the tissues near it. In other
words, the correct rate or error rate of “C,” “T,” and “N” will
be affected by the inaccurate assignment of “C/T” and “T/N.”

5. Discussions

This study continued with our tissue typing work using
hNMF [15]. We explored the possibility of only using several
most representative biomarkers for tissue differentiation.The
results showed that the different tissue types cannot be well
separated, especially for tumor and mixed tissues. Therefore,
a new approach for tissue type assignment using hNMF is
developed.

Then we evaluated the relationship between spectra of
different tissue types. The spectra labeled as a certain tissue
type by expert are compared to the spectra labeled as
another tissue type. The variation of the different correlation
coefficients for both intra- and interpatient indicates the
difference of spectra which are labeled as the same tissue type.
This implies that the spectra are not identical even if they are
labeled as the same tissue type, especially for tumoral spectra.
This could be due to the fact that glioblastoma are known to
be very heterogeneous lesions. Invasion, regions of increased
cellularity, necrosis on amicroscopic and amacroscopic scale,



6 BioMed Research International

0

0.2

0.4

0.6

0.8

1

All 1 65432
Patients 

0

0.2

0.4

0.6

0.8

1

All 1 65432
Patients 

0

0.2

0.4

0.6

0.8

1

All 1 65432
Patients 

0

0.2

0.4

0.6

0.8

1

All 1 65432
Patients 

0

0.2

0.4

0.6

0.8

1

All 1 65432
Patients 

h-values of  voxels T h-values of  voxels C h-values of  voxels N

h-values of  voxels T/Nh-values of  voxels C/T
h

-v
al

ue

h
-v

al
ue

h
-v

al
ue

h
-v

al
ue

h
-v

al
ue

(a) ℎ-value variations of normal ℎ-maps

h-values of  voxels C 

h-values of  voxels C/T h-values of  voxels T/N 

h-values of  voxels T h-values of  voxels N 

0

0.2

0.4

0.6

0.8

1

All 1 65432
Patients 

0

0.2

0.4

0.6

0.8

1

All 1 65432
Patients 

0

0.2

0.4

0.6

0.8

1

All 1 65432
Patients 

h
-v

al
ue

h
-v

al
ue

h
-v

al
ue

h
-v

al
ue

h
-v

al
ue

0

0.2

0.4

0.6

0.8

1

All 1 65432
Patients 

0

0.2

0.4

0.6

0.8

1

All 1 65432
Patients 

(b) ℎ-values of tumor ℎ-maps

Figure 4: Continued.
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Figure 5: ℎ-maps and tissue type assignment results compared with expert labeling. All the results are overlaid on the T2-weighted MRI. For
each patient, the first 3 images are the ℎ-maps for normal, tumor, and necrosis. The fourth image is the assigned tissue types. The last image
is the expert labeling.

hemorrhage, and microvascular proliferation are hallmarks
of the most malignant of gliomas. This heterogeneity is
reflected in the variation of the spectra, related to tumoral
tissue. A voxel in the chemical shift imaging (CSI) protocol
used in this study is approximately 0.25 cm3.Thus, thousands
of metabolites will contribute to the measured signal. The

spectra in MRS are only indirect indicators of metabolism.
For example, regions of tumoral tissue are characterized by
high cellularity and are perceived as spectra with strongly
elevated choline and decreased NAA. Regions with tumoral
tissue with necrosis on a microscopic scale will be perceived
with moderately elevated lipids and lower values of choline
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Table 1: Result validation.

C T N C/T T/N
Patient 1

Detected number 38 12 13 5 9
Correct detected number 38 11 12 0 6
Number of voxels labeled by expert 38 19 12 0 8
Correct rate 1 0.9167 0.9231 0 0.6667
Error rate/false alarm rate 0 0.0833 0.0769 1 0.3333
Omission rate 0 0.4210 0 N/A 0.2500

Patient 2
Detected number 14 4 13 2 7
Correct detected number 12 3 13 1 5
Number of voxels labeled by expert 13 3 14 0 7
Correct rate 0.8571 0.7500 0.9231 0.5000 0.7142
Error rate/false alarm rate 0.1429 0.2500 0.0769 0.5000 0.2857
Omission rate 0.0769 0 0.1429 N/A 0.2857

Patient 3
Detected number 108 13 9 9 4
Correct detected number 108 5 7 3 2
Number of voxels labeled by expert 115 5 11 6 6
Correct rate 1 0.3846 0.7778 0.3333 0.5000
Error rate/false alarm rate 0 0.6153 0.2222 0.6667 0.5000
Omission rate 0.0608 0 0.3636 0.5000 0.6667

Patient 4
Detected number 27 4 9 7 9
Correct detected number 14 4 9 1 4
Number of voxels labeled by expert 16 21 11 4 4
Correct rate 0.5185 1 1 0.1429 0.4444
Error rate/false alarm rate 0.4815 0 0 0.8571 0.5556
Omission rate 0.1250 0.8095 0.1818 0.7500 0

Patient 5
Detected number 38 19 10 4 6
Correct detected number 20 17 8 0 0
Number of voxels labeled by expert 20 44 11 0 2
Correct rate 0.5263 0.8947 0.8000 0 0
Error rate/false alarm rate 0.4737 0.1053 0.2000 1 1
Omission rate 0 0.6136 0.2727 N/A 1

Patient 6
Detected number 21 5 6 0 1
Correct detected number 21 3 3 0 0
Number of voxels labeled by expert 21 4 3 2 3
Correct rate 1 0.6000 0.5000 N/A 0
Error rate/false alarm rate 0 0.4000 0.5000 N/A 1
Omission rate 0 0.2500 0 1 1

and NAA. Tumoral regions with moderately elevated cel-
lularity will be perceived as regions with only moderately
elevated Cho and moderately lowered NAA. In the end,
these spectra represent all tumoral tissue, as designated by
the histopathologist as well as by the expert labeling in MR
spectroscopy [21–25].Therefore, spectral variation within the
same tissue type, which is introduced by the nature of tumor
proliferation and the volume of CSI voxels, could happen and
influence the performance of tissue typing method.

As demonstrated, the lower quartiles of correlation coef-
ficients 𝑄1CT and 𝑄1TN could imply the “least spectral

similarity” between different tissue types. Additionally, the
scale of correlation coefficients 𝑅CT and 𝑅TN is in the same
scale of ℎ-values. Therefore, in the tissue typing assignment
experiment, where 𝑄1CT = 0.2167 and 𝑄1TN = 0.2950, which
were calculated using 6 GBM patients, were used as the
parameters 𝜌CT and 𝜌TN, respectively. Though the patients
were few, the value of 𝑄1CT and 𝑄1TN will not change
significantly since the voxel number for calculating them
is large enough to be stable. Another important point we
must stress is that, as long as we have decided the value
for parameters 𝜌CT and 𝜌TN, we do not need to calculate
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𝑄1
CT and 𝑄1TN every time there is a new patient. The tissue

assignment method is still automatic since the values used as
𝜌
CT and 𝜌TN will be fixed numbers. Here, we just proposed a

potential way to decide 𝜌CT and 𝜌TN.
As the tissue type assignment is based on the ℎ-maps of

hNMF, the results could be affected by both the ℎ-maps and
the typing criteria. As shown, the results for tumor andmixed
tissues are worse than the results for normal and necrosis.
On the one hand, there is the serious variation of tumor
spectra. On the other hand, the spectral profile of C/T and
T/N is highly correlated with the tumor spectra. These facts
lower the typing results. However, the assignments of each
tissue type shown in Section 4.4 have shown the efficacy of
the proposed method.

6. Conclusions

In this paper, we investigate the spectra variationwith expert’s
labeling. Tissue type assignment criteria are proposed to
assign each voxel to 5 different tissue types, including 3 pure
tissue types “C,” “T,” and ”N” and 2 mixed tissue types “C/T”
and “T/N,” using the ℎ-maps of normal, tumor, and necrosis
obtained by hNMF. Experiments show the feasibility of the
proposed method for tissue type assignment.
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