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Abstract: The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Delta variant has
evolved to become the dominant SARS-CoV-2 lineage with multiple sub-lineages and there are also
reports of re-infections caused by this variant. We studied the disease characteristics induced by
the Delta AY.1 variant and compared it with the Delta and B.1 variants in Syrian hamsters. We
also assessed the potential of re-infection by these variants in Coronavirus disease 2019 recovered
hamsters 3 months after initial infection. The variants produced disease characterized by high viral
load in the respiratory tract and interstitial pneumonia. The Delta AY.1 variant produced mild
disease in the hamster model and did not show any evidence of neutralization resistance due to the
presence of the K417N mutation, as speculated. Re-infection with a high virus dose of the Delta and
B.1 variants 3 months after B.1 variant infection resulted in reduced virus shedding, disease severity
and increased neutralizing antibody levels in the re-infected hamsters. The reduction in viral load
and lung disease after re-infection with the Delta AY.1 variant was not marked. Upper respiratory
tract viral RNA loads remained similar after re-infection in all the groups. The present findings show
that prior infection could not produce sterilizing immunity but that it can broaden the neutralizing
response and reduce disease severity in case of reinfection.

Keywords: SARS-CoV-2; Delta AY.1; re-infection; pathogenicity; Syrian hamsters

1. Introduction

The B.1.617.2 lineage of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-
CoV-2) was first detected in India on 22 September 2020 [1]. The variant was later cat-
egorized as a variant of concern (VOC) and was named the Delta variant by the World
Health Organization on 31 May 2021 [2]. The variant spread at an alarming rate to become
the most dominant SARS-CoV-2 lineage circulating globally and spread to 201 countries
by 2 December 2021 [2]. The amino acid substitutions in the spike protein of the Delta
variant, such as D614G, T478K, P681R and L452R, are known to affect transmissibility and
neutralization [3]. The variant was responsible for the rise in Coronavirus disease 2019
(COVID-19) cases in 2021 in many countries, including India, the United Kingdom, Fiji,
South Africa, parts of Asia, the United States, Australia and New Zealand [2]. The Delta
variant has been further subdivided into Delta AY.1 and AY.127 according to the Pango
lineage designation system. Among these sub-lineages, AY.1 and AY.2 possess the K417N
substitution, which is also present in the B.1.351 variant, suggesting that it plays a role in
immune evasion. As of 6 December 2021, the AY.1 lineage has been detected in at least
43 countries and AY.2 in 8 countries. AY.1 has amino acid substitutions at T19R, E156G,
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157/158 del, W258L, K417N, L452R, T478K, D614G, D950N and P681R [1]. The information
on the biological characteristics of these sub-lineages, including transmissibility, disease
severity, and immune evasion, are still unknown.

SARS-CoV-2 generates a neutralizing antibody (NAb) response after infection in
humans, but the protective immune titre required to prevent subsequent infection is not
yet known [4]. In the case of other human coronaviruses (HCoV), waning of immunity is
observed in 1 to 3 years and re-infection events have been reported as a common feature
of HCoV-NL63, HCoV-229E, HCoV-OC43 and HCoV-HKU1 [5,6]. After natural SARS-
CoV-2 human infection, immune response is suspected to persist for about 90 days in
most patients [4]. SARS-CoV-2 re-infection cases with varied disease severity have been
reported in many countries [7–11]. The speculated reasons for re-infection are infection
with a higher virus dose/another virulent strain, antibody-dependent enhancement and
waning of immune response [8]. Laboratory studies have shown that the duration of
infection-acquired immunity is inconsistent and responses against VOCs also differ [12].
The risk of re-infection also depends on host susceptibility, vaccination status and exposure
to COVID-19 patients during the infectious phase [13]. Understanding the potential risk
of re-infection is important in improving COVID-19 prevention and control measures.
Re-infection studies in the population have not been widely reported and the rate of re-
infection is also unclear [14]. There are few reports of aggravated disease severity in the case
of Delta variant re-infection [15,16]. The impact of immunity on the threat of re-infection
posed by different variants still needs to be understood.

Animal models are important in understanding virus properties, disease pathogenesis,
measuring the efficacy of countermeasures, etc. Syrian hamsters have been widely used
in studying SARS-CoV-2 disease characteristics. Our previous studies have revealed
the pathogenicity and immune-evasive properties of the Delta variant in hamsters [17].
Few animal model studies have demonstrated that the NAb response generated after
primary SARS-CoV-2 infection can reduce the viral load and severity of re-infection [18,19].
The degree of protection against re-infection by Delta lineage variants is still unclear. A
recent study which evaluated the protection offered by infection-acquired immunity after
15 months in hamsters showed protection against re-infection with the Delta variant and
prevention of transmission to naive hamsters [20].

The SARS-CoV-2 B.1 variant possessing the D614G mutation in the spike protein was
found to be highly transmissible and became the predominant variant during the early
phase of the pandemic [21]. High upper respiratory tract viral load with a lower disease
severity has been reported for this variant [21,22]. This ancestral variant with only the
D614G mutation in the spike protein has been used as a comparator virus in multiple
research studies [22,23]. We have also used the B.1 variant in the present study for the
comparison of the disease characteristics of other variants.

Here we have studied the pathogenicity of the Delta AY.1 variant in comparison with
the Delta and B.1 variants and also assessed the re-infection potential of these variants in B.1
infection-recovered hamsters 3 months after initial infection. In addition, the neutralization
potential of the infected hamster sera was assessed against the B.1, Delta, Delta AY.1, and
Beta variants.

2. Materials and Methods
2.1. Virus and Cells

SARS-CoV-2 variants B.1 (GISAID accession no: EPL_ISL_825084), Delta (GISAID
accession no.: EPI_ISL_2400521), Delta AY.1 (GISAID accession no. EPI_ISL_2671901),
and Beta (GISAID accession no. EPI_ISL_2036294) isolated from nasopharyngeal swabs
of COVID-19 patients were used for the study. The isolates were passaged twice in Vero
(ATCC® CCL-81TM) cells (ATCC, Manassas, VA, USA) and titrated to measure the 50% tis-
sue culture infective dose (TCID50) as per the Reed and Muench method. The variants used
in the study had the following amino acid substitutions in the spike protein. Delta AY.1
variant had D614G, E156G, F157del, K417N, L452R, P681R, R158del, T19R, T95I and T478K
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substitutions; the Delta variant had A222V, D614G, D950N, G142D, L452R, P681R, T19R,
T478K substitutions; and the B.1 variant had the D614G substitution in the spike protein.

2.2. Animal Experiments

The experiments were performed in the Containment Facility of ICMR-National
Institute of Virology, Pune. Three study groups of 17 female Syrian hamsters (procured
from a CPCSEA-authorized breeding facility) 12–14 weeks old were included in the study
to assess pathogenicity/virus shedding. A virus dose of 105 TCID50 (0.1 mL volume) of the
Delta/Delta AY.1/B.1 variants was used intranasally to inoculate the hamsters (Figure 1a).
Throat swab, nasal wash and faeces samples (n = 7) were collected on alternate days during
the study period. Hamsters were observed for a period of 14 days for body weight loss, and
five hamsters/group were sacrificed 3, 7 and 14 days post infection (DPI) to collect organs
(lungs, nasal turbinates, heart, liver, kidney, intestine, spleen and brain) and blood samples.

Figure 1. Study design. (a) Summary of the Delta AY.1 vs. Delta and B.1 pathogenicity study.
(b) Summary of the reinfection process.

For the re-infection study, 12 female hamsters, 16–18 weeks old, that were previously
infected with the B.1 variant of SARS-CoV-2 (with an infectious dose of 104.5 TCID50) were
used 3 months after initial infection (Figure 1b). IgG response and NAb levels were assessed
and the animals were randomly divided into three groups (four animals per group). The
hamsters were re-infected with the Delta/Delta AY.1/B.1 variants with a virus dose of 105

TCID50 (0.1 mL volume intranasally). Throat swab, nasal wash and faeces samples were
collected on 2, 4, 6 DPI and body weight change was monitored for 7 days. The hamsters
were sacrificed on 7 DPI to collect lungs, nasal turbinates and blood samples.

2.3. Viral Load Estimation

Nasal wash, throat swab and organ tissue samples were used for viral load estimation.
Organ samples collected during necropsy were weighed and homogenized in sterile media
using beads in a tissue lyser machine (Qiagen, Hilden, Germany). The lysate was used for
RNA extraction using the MagMAX™ Viral/Pathogen Nucleic Acid Isolation Kit (Thermo
Fisher Scientific, Waltham, MA, USA) as per the manufacturer’s instructions. Quantitative
real-time RT-PCR was performed for the E gene of SARS-CoV-2 using published primers
to estimate the genomic viral RNA (gRNA) load and for the N gene of SARS-CoV-2 using
published primers to estimate the subgenomic viral RNA (sgRNA) load [24,25]. The lung
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samples collected 7 days post primary infection and re-infection were used for virus titration
in Vero (ATCC® CCL-81TM) cells (ATCC, Manassas, VA, USA). Lung tissue homogenates
were centrifuged at 1984× g for 10 min and 0.1 mL of the supernatant was used for the
titration. The supernatant was added onto 24-well tissue culture plate cell monolayers
and incubated at 37 ◦C. The cells were washed with phosphate-buffered saline after the
incubation period of one hour. Maintenance media containing 2% fetal bovine serum
(Sigma Aldrich, St. Louis, MO, USA) was added onto the cells and further incubated in a
CO2 incubator at 37 ◦C. The cells were examined for cytopathic effects for 4 days. The titres
were determined by the Reed and Muench method.

2.4. Anti-SARS-CoV-2 IgG Detection

The serum samples were tested for IgG antibodies by an in-house developed quali-
tative ELISA [26]. Briefly, inactivated SARS-CoV-2 antigen/Vero (ATCC® CCL-81TM) cell
lysate-coated microtitre plates were blocked with liquid plate sealer. The diluted hamster
sera samples (1:100 to 1:10,000) were added and incubated for 60 min at 37 ◦C. The plates
were washed following incubation and 1:3000 dilution of anti-hamster IgG horseradish
peroxidase (Thermo Fisher Scientific, Waltham, MA, USA) was added and incubated for
60 min. The plates were washed and substrate was added to each well for color develop-
ment. The reaction was terminated with sulfuric acid and the absorbance was measured at
450 nm using an ELISA reader. The assay was performed in duplicate and the assay cutoff
was set at an optical density (OD) value of 0.2 and positive/negative ratio of 1.5.

2.5. Serum Neutralizing Antibody Level Estimation

A plaque reduction neutralization test (PRNT) was performed against the B.1, Delta,
Delta AY.1 and Beta variants, as described previously [27]. Diluted sera were mixed with
50–60 plaque forming units/0.1 mL virus and the virus–sera mixture was incubated for
60 min. The mixture was then added on to a tissue culture plate with a Vero (ATCC® CCL-
81TM) monolayer (ATCC, Manassas, VA, USA). After 60 min, the mixture was aspirated
and media with 2% carboxymethyl cellulose with 2% fetal bovine serum (Sigma Aldrich,
St. Louis, MO, USA) was added. After an incubation period of 4 days, the media was
decanted and amido black staining was performed. The plaques were counted and PRNT50
titres were calculated.

2.6. Serum Cytokine Level Estimation

ELISA-based estimation (Immunotag, St. Louis, MO, USA) was performed to as-
sess the levels of IL-4, IL-6, IL-10, IFN-γ and TNF-α in hamster sera samples as per the
manufacturer’s instructions.

2.7. Lung Histopathological Evaluation

Formalin-fixed lung tissue samples were processed using an automated tissue pro-
cessor and were stained by routine hematoxylin and eosin staining. The samples were
coded and blindly scored by a pathologist. The bronchiolar (degeneration, epithelial loss),
alveolar parenchymal (edema, exudation, mononuclear infiltration, emphysema, pneu-
mocyte hyperplasia, septal thickening) and vascular lesions (congestion, hemorrhages,
perivascular infiltrations) were graded for severity on a score from 0 to 4 (0 = no changes,
1 = minimal, 2 = mild, 3 = moderate, 4 = severe). The cumulative scores for each group on
3, 7 and 14 DPI were compared and statistically analyzed. The scores of the re-infected
animals on 7 DPI were compared with the scores of the primary infection group on 7 DPI.

2.8. Data Analysis

GraphPad Prism version 9.2.0 (GraphPad software Inc., San Diego, CA, USA) software
was used for the descriptive statistics and statistical analysis. Nonparametric Mann–
Whitney tests were used for the analysis. p-values less than 0.05 were considered statistically
significant. For the primary infection study, the comparison was performed daywise among
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Delta, Delta AY.1, and B.1 infected groups for viral load, virus shedding, body weight loss,
NAb titres and histopathological scores. For cytokine response, the comparison was
performed with the uninfected control hamster sera. For the re-infection study with each
variant, the comparison was performed with the data for the primary infection of the
corresponding variant.

3. Results
3.1. Body Weight Changes in Hamsters after Primary Infection

The Delta AY.1- and B.1-infected group animals showed the maximum weight loss
[mean ± standard deviation (SD)] of −2.048 ± 8.557% and −0.566 ± 9.432%, respec-
tively, on 14 DPI, whereas in the Delta variant-infected group, the peak weight loss
(−10.886 ± 3.46%) was observed on 8 DPI. The body weight loss observed in the Delta AY.1
group was significantly lesser in comparison to the Delta variant infection (Figure 2a).

Figure 2. Body weight loss and immune response in hamsters post infection. (a) Line graph depicting
body weight loss in hamsters post first infection. (Delta vs. Delta AY.1 on 6 DPI, p = 0.0248 and
Delta vs. B.1 on 6 DPI, p = 0.0082). The error bars depict the standard deviation (SD). (b) Scatter
plot depicting IgG ELISA titre in hamsters post first infection (n = 5) on days 7 and 14. Scatter plot
depicting (c) PRNT50 titres against variants in Delta AY.1-infected hamsters (n = 5), Delta-infected
hamsters, (p = 0.0066 (Delta vs. Beta), Mann–Whitney test, n = 5) and B.1-infected hamsters (p = 0.0080
B.1 vs. Beta, Mann–Whitney test, n = 5). The bars represent the mean and the error bars depict the SD.
Limit of detection of assay is depicted as the dotted line and ** represents p value < 0.001.

3.2. Immune Response in Hamsters after Primary Infection

Anti-SARS-CoV-2 IgG response could be observed from day 7 in all primary in-
fected groups (Figure 2b). A mean optical density (OD) ± SD of 0.65 ± 0.45, 1.00 ± 0.67,
1.02 ± 0.40 on 7 DPI and 1.25 ± 0.55, 0.62 ± 0.13 and 0.62 ± 0.11 on 14 DPI for the Delta
AY.1, Delta and B.1 variant, respectively, was observed with 1:100 dilution of sera. Cross
NAbs were detected in hamster sera against the Delta AY.1, Delta, B.1 and Beta variants
(Figure 2c). The mean ± SD of NAb titre on 14 DPI in the Delta AY.1-infected group against
the Delta AY.1, Delta, B.1 and Beta variants were 5265 ± 1504, 4544 ± 2824, 4159 ± 3062
and 3735 ± 2804, respectively. In the case of the Delta- and B.1-infected groups, mean NAb
responses against the Delta AY.1, Delta, B.1 and Beta variants were 2848 ± 978, 2667 ± 1275,
680 ± 234, 73 ± 57 and 1020 ± 59, 485 ± 269, 925 ± 398 and 109 ± 77, respectively. Thus, a
significant reduction in NAb titre against the Beta variant was observed with the Delta and
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B.1 variant infected animal sera, whereas a comparable response was observed in the case
of the AY.1-infected group.

The serum IL-6 level was elevated in all the infected groups. The B.1 group hamsters
showed a significantly higher IL-6 level on 3, 7 and 14 DPI than the Delta group on 14 DPI
(Supplementary Figure S1). In the case of the Delta AY.1 group, the increase was not
statistically significant. Among the other cytokines analyzed in serum, i.e., IL-4, IL-10,
IFN-γ and TNF-α, no significant increase was observed in comparison to the control
animal sera.

3.3. Viral Shedding in Hamsters after Primary Infection

In the throat swab and the nasal wash samples, genomic RNA (gRNA) was detected
with a decreasing trend until 12 DPI in the Delta AY.1- and the B.1-infected groups and
until 14 DPI in the Delta variant-infected group. The average viral gRNA levels in the
throat swab were significantly lower in the Delta AY.1-infected group on 6, 8 and 10 DPI, as
were the subgenomic (sg) RNA levels on 8 DPI in comparison with the Delta variant group
(Figure 3a,b). The nasal wash and faeces viral RNA loads were also significantly lower in
the Delta AY.1-infected group (Figure 3c–f).

Figure 3. SARS-CoV-2 viral RNA shedding in hamsters after infection. Scatter plot depicting viral
gRNA load in the (a) throat swabs (c) nasal washes and (e) faeces of hamsters post infection, (Mann–
Whitney test, n = 7). Scatter plot depicting viral sgRNA load in (b) throat swabs, (d) nasal washes and
(f) faeces of hamsters post infection, (Mann–Whitney test, n = 7). The bars represent the mean and
the error bars depict the standard deviation. The p values < 0.05, <0.001 and <0.0001 are represented
as *, ** and *** respectively.
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3.4. Viral Load in Organs in Hamsters after Primary Infection

In the nasal turbinates, gRNA and sgRNA could be detected until 14 DPI in all the
groups. The Delta AY.1 group did not show any significant differences in the gRNA or
sgRNA levels of the nasal turbinates in comparison with the other groups (Supplementary
Figure S2a,b). gRNA and sgRNA was detected in the lungs of hamsters in both the Delta
and B.1 groups until 14 DPI. In the Delta AY.1 group, a comparatively lower viral load
(mean ± SD = 4.55 × 104 ± 9.0 × 104) was observed on 7 DPI in the lungs, and complete
clearance was seen by 14 DPI (Supplementary Figure S2c,d). Other organs, such as the brain
(1/5), heart (2/5) and large intestine (2/5), in hamsters in the Delta AY.1-infected group
showed sgRNA positivity on 3 DPI but none of the hamsters in the Delta- and B.1-infected
groups showed positivity in non-respiratory organs.

3.5. Lung Pathological Changes after Primary Infection

Grossly, the lungs of 2/10 animals in the Delta AY.1 group and of 7/10 animals in
the Delta variant group sacrificed on 7 and 14 DPI after the primary infection showed
hemorrhagic lesions. A few focal hemorrhages were only seen in the case of B.1 infection.
On 3 DPI, the vascular pathological changes in the lungs were minimal in all groups, and
mild pneumonic changes were observed in the alveolar parenchyma. The pneumonic
changes were minimal in the Delta AY.1 group on 7 DPI, which became pronounced by
14 DPI (in three out of five animals infected). By 7 DPI, inflammatory changes became severe
in the Delta variant group, characterized by severe congestion/hemorrhages, alveolar
consolidation, loss of bronchial epithelium, septal thickening, pneumocyte hyperplasia
and cellular infiltration in the alveolar interstitial space, peribronchial and perivascular
area. In the case of B.1-infected hamsters, pneumonic changes became more pronounced
by 7 DPI. The highest lung cumulative score was observed in the Delta-infected group on
7 DPI (Supplementary Figure S2e).

3.6. Reduced Disease Severity in Hamsters Post Re-Infection

After re-infection, body weight loss in all the infected groups was minimal irrespective
of the variant used for infection (Figure 4a). The mean (±SD) body weight change on 7 DPI
post re-infection was 1.74 (±3.9), 0.67 (±3.8) and −0.3 (±3.05)% in the Delta, Delta AY.1
and B.1 groups, respectively. The geometric mean IgG titre as determined by ELISA was
316, 316 and 562.3 against the Delta, Delta AY.1 and B.1 variants, respectively, on the day of
re-infection, and rose to 104 on 7 DPI in all the groups (Figure 4b). Post re-infection, the
PRNT50 titres showed a rise in titres against all the variants, i.e., B.1, Beta, Delta and Delta
AY.1 variants (Figure 4c–e). Serum IL-6 levels did not show any significant elevation, as in
the case of the primary infection in the re-infected groups. Other cytokines did not show
any significant increase either (Supplementary Figure S3).

In the re-infected animals, only focal hemorrhagic foci were seen in the lungs, contrary
to the pronounced gross lesions seen with primary infection (Supplementary Figure S4).
The lung–body weight ratio, which was found to have increased in the Delta variant ham-
sters after primary infection, was found not to have increased in the re-infected hamsters
(Supplementary Figure S5).

In the case of the Delta- and B.1-re-infected group, the lung pathological changes ob-
served on 7 DPI were milder in comparison to those observed with primary infection. The
lungs from the B.1-re-infected group showed mild alveolar parenchymal inflammatory cell
infiltration, septal thickening and bronchiolar epithelial loss, whereas the lungs from the
hamsters of the Delta variant-re-infected group showed mild bronchial/vascular changes
and moderate alveolar changes (consolidation, alveolar septal thickening and pneumocyte
hyperplasia). In the case of AY.1-re-infected animals, similar disease severity to that of
two out of five naive AY.1-infected animals were observed, characterized by mild conges-
tion/hemorrhages and moderate alveolar parenchymal consolidation, septal thickening
and pneumocyte hyperplasia, as well as mononuclear cellular infiltration (Figure 5).
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Figure 4. Body weight loss and immune response in hamsters post re-infection. (a) Line graph
representing percent body weight change in hamsters on 2, 4 and 6 DPI. The error bars depict the
standard deviation (SD). (b) Scatter plot depicting IgG ELISA titre in hamsters before and after
re-infection on days 0 and 7. PRNT50 titres in (c) Delta-, (d) Delta AY.1- and (e) B.1-infected hamsters
before and after re-infection on 7 DPI. The bars represent the means and the error bars depict the SDs.
Limit of detection of the assay is shown by the dotted line.

Figure 5. Histopathological changes observed in lungs after primary infection and re-infection. Lung
sections from hamsters infected with the B.1 variant showing (a,b) Diffuse interstitial pneumonia
and (c) large foci of alveolar interstitial thickening, inflammatory cell infiltration, loss of bronchial
epithelium and congestion in the parenchyma on 7 DPI after primary infection, as revealed by H&E
staining, scale bar = 100 µm. Lung sections from hamsters infected with the Delta AY.1 variant
showing (d) diffuse alveolar capillary engorgement, (e) peribronchial inflammatory cell infiltration
and (f) diffuse alveolar capillary engorgement and hemorrhages on 7 DPI after primary infection,
H&E, scale bar = 100 µm. Lung sections from hamsters infected with the Delta variant showing
(g) diffuse alveolar damage with hemorrhage in the parenchyma, (h) diffuse alveolar septal thickening
and exudation and (i) alveolar interstitial thickening, congestion and peribronchial inflammatory
cell infiltration on 7 DPI after primary infection, H&E, scale bar = 100 µm. Lung sections from
hamsters re-infected with the B.1 variant showing (j,k) a small amount of focal alveolar interstitial
thickening and (l) alveolar interstitial thickening and congestion on 7 DPI after re-infection, H&E,
scale bar = 100 µm. Lung sections from hamsters re-infected with the Delta AY.1 variant showing
(m–o) diffuse alveolar interstitial thickening, congestion and inflammatory cell infiltration on 7 DPI
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after re-infection, H&E, scale bar = 100 µm. Lung sections from hamsters infected with the Delta
variant showing (p) diffuse congestive changes, (q) alveolar septal thickening, peribronchial inflam-
matory cell infiltration and loss of bronchial epithelium and (r) diffuse engorgement, hemorrhages
and peribronchial inflammatory cell filtration on 7 DPI post re-infection, H& E, scale bar = 100 µm.
(s) Scatter plot depicting cumulative lung histopathology scores in hamsters post primary infection
and re-infection with Delta, Delta AY.1 and B.1 on 7 DPI. The samples were scored on a scale of 0 to +4
for vascular changes, bronchial changes, alveolar parenchymal changes and inflammatory cellular
infiltration. The bars represent the means and the error bars the standard deviations.

3.7. Reduced Viral RNA Shedding and Lung Viral RNA Load in Re-Infected Hamsters

The viral RNA shedding through the nasal and oral cavity was reduced post re-
infection in the hamsters. On 2, 4 and 6 days post re-infection, viral RNA shedding in the
throat swabs and nasal washes was significantly lesser in the Delta- and B.1-re-infected
hamsters in comparison to the viral RNA load observed in hamsters post primary infection
(Figure 6a–f). In the faeces samples of the B.1- and Delta-re-infected groups, also, the
reduction was evident. Although the viral RNA load in the AY.1 group showed a reduction,
the values were not statistically significant.

Figure 6. SARS-CoV-2 viral RNA shedding in hamsters after re-infection. Superimposed scatter plot
depicting viral gRNA and sgRNA load in (a) throat swabs (p = 0.0286, Mann–Whitney test, n = 4) and
(b) nasal washes (p = 0.0286, Mann–Whitney test, n = 4) and (c) faeces of the Delta variant group; the
(d) throat swabs, (e) nasal washes and (f) faeces of the Delta AY.1 group; and (g) the throat swabs
(p = 0.0286, Mann–Whitney test, n=4), (h) nasal washes (p = 0.0286, Mann–Whitney test, n = 4) and
(i) faeces (p = 0.0286, Mann–Whitney test, n = 4) of the B.1-infected hamsters during primary infection
and re-infection on 7 DPI. The bars represent the means and the error bars the standard deviations.
p value < 0.05 is represented as *.
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Unlike the viral RNA shed through the nasal cavity, the viral RNA load in the nasal
turbinates was comparable in both the re-infected and the primary infected groups on 7 DPI
in all the groups (Figure 7a–c). However, the viral RNA load in the lungs was reduced.
Lung gRNA levels were significantly lower in the B.1-re-infected group, whereas in the
case of Delta variant re-infection, only a minimal reduction was seen, and in the AY.1 group
a viral RNA load was observed comparable to that of the primary infection on 7 DPI. Live
virus titration was performed on the lung samples collected on 7 DPI from all the groups
and no titre could be detected.

Figure 7. SARS-CoV-2 viral RNA load in organs after re-infection. Superimposed scatter plot
depicting viral gRNA and sgRNA loads in the nasal turbinates and lungs of (a) Delta-, (b) Delta
AY.1- and (c) B.1- (p = 0.0286, Mann–Whitney test, n = 4) infected hamsters during primary infection
and re-infection on 7 DPI. The bars represent the means and the error bars the standard deviations.
p value < 0.05 is represented as *.

4. Discussion

The Delta variant and its sub-lineages have become the dominant SARS-CoV-2 lineages
world-wide. The higher rate of transmissibility, increased disease severity and immune
evasion potential of the Delta variant has alerted the scientific community to be vigilant
about the mutating variants [2,3]. We have studied properties of the Delta AY.1 variant in
comparison with the Delta and B.1 variants in Syrian hamsters and the potential for re-
infection in hamsters by Delta variants 3 months post recovery from SARS-CoV-2 infection,
the period for which antibodies are reported to persist in humans after infection.

Delta AY.1 variant infection in Syrian hamsters produced mild disease characterized
by negligible weight loss, lower viral load in upper and lower respiratory tracts and mild
pneumonic changes in the lungs. Comparable cell entry efficiency was reported by a recent
study for the Delta sub-lineages with K417N mutation in comparison with the wildtype
SARS-CoV-2 with the D614G mutation. This mutation tends to affect ACE2 binding affinity
moderately [28]. The lower prevalence rate of the variant worldwide, i.e., less than 0.5% to
date after its initial detection, points to the less efficient transmission/binding affinity of the
variant [3]. Increased disease severity or risk of hospitalization has been reported for Delta
variant infection compared to the earlier SARS-CoV-2 strains [29,30]. We also observed a
higher degree of disease severity induced by the Delta variant in hamsters. Pathological
changes observed in the lungs were similar to those reported during the acute phase of
infection in humans [31,32]. Diffuse congestion and hemorrhages were observed grossly
in the lungs and the histopathological changes were mostly of epithelial and vascular
types. Microthrombi formation was not observed in the lungs of hamsters, unlike humans.
Hamsters exhibited weight loss as the characteristic symptom of severe disease, unlike flu
like symptoms and respiratory distress in humans [31].
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The K417N mutation in the Delta AY.1 variant was found to be critical for neutraliza-
tion resistance against some potent NAbs against SARS-CoV-2 [33,34]. Here, we observed a
comparable neutralization efficiency in Delta AY.1-infected hamster sera against the Delta,
B.1 and Beta variants, suggesting that the presence of the K417N mutation may not confer
an advantage in terms of immune evasion, at least against these variants. Similar results of
comparable neutralization efficiency of the Delta variant with the K417N mutation and the
Delta variant has been reported in pseudo-virus neutralization studies [28]. Yadav et al.
2021 have reported comparable neutralization for the Delta AY.1 and Delta variants with
the sera of naive BBV152 vaccinees, recovered cases with full vaccination and breakthrough
cases in comparison to the B.1 variant [35]. The available vaccines against SARS-CoV-2 have
shown reduced protection against symptomatic disease/infection by the Delta variant [2].
We observed cross NAbs against the variants studied here after infection and a boost in
titres after re-infection. However, a significantly lower neutralization titre was observed
against the Beta variant in the case of the Delta and B.1 variant-infected animal sera after
primary infection. The B.1.351 variant is known worldwide for its immune escape property
due to the mutations K417N, E484K and N501Y in the RBD of the spike region [33].

Many cytokines have been reported to be increased in severe COVID-19 patients and
a few of them, such as IL-6, IL-8, IL-10 and TNF-α, are considered to be indicators of
severe disease [36,37]. The increased production of cytokines can lead to cytokine storm
and worsening of the disease prognosis [38]. IL-6, IL1-beta and TNF-α increase has been
reported in hamsters infected with SARS-CoV-2 [39]. Here, we have observed increased
IL-6 cytokine levels after primary infection in hamsters with SARS-CoV-2 variants. IL-6 is
an important cytokine in host responses against viral infection [40]. The increase in IL-6
levels observed here could have contributed to the host response in control of infection.
Other inflammatory cytokines, such as IL-4, IFN-γ and TNF-α, were also increased in
comparison to control animals during the acute phase of infection. IL-6 level increase was
independent of the lung histopathological score. The B.1 variant-infected animals showed
the highest average lung sgRNA loads on 7 and 14 DPI and the highest increase in serum
IL-6 levels. We found no aggravation in cytokine responses post re-infection. A detailed
study of cell-mediated response was not possible because of the non-availability of reagents
specific for hamsters.

The protective immunity conferred by prior SARS-CoV-2 infection is similar to that
of vaccination [41]. Natural infection generates an effective mucosal immune response,
unlike intramuscular vaccination [42]. Re-infection with SARS-CoV-2 and other human
coronaviruses has been reported [6–11]. The re-infections are common 12 months after
initial infection in the case of seasonal HCoVs. A trend of reduced virus replication and
an increase in NAb titres were observed in hamsters following re-infection irrespective
of the variants used for infection. The neutralizing titres against the Beta variant were
also comparable following re-infection, contrary to the differences observed after primary
infection. Polyclonal antibody response is generated by natural infection. Antibody evolu-
tion through somatic mutations and repeated antigen exposure could improve protection
against newer emerging variants [43]. Thus, reinfections tend to improve neutralizing
abilities against multiple variants.

Earlier research has shown that prior COVID-19 infection reduces virus replication and
thus decreases transmission efficiency in Syrian hamsters re-infected 29 days after initial
infection [19]. A recent re-infection study performed 15 months post primary infection in
hamsters demonstrated protection against lung disease caused by the Delta variant and the
prevention of transmission to naive hamsters [20]. Even though a reduction was seen in
viral shedding, the nasal turbinate viral load remained comparable in the present study.
We have used a high virus dose of 105 TCID50 for reinfection studies here which also might
have contributed to this. This finding highlights the importance of maintaining COVID-19-
appropriate behavior till herd immunity is achieved in the population. Reinfection studies
with lower virus doses and studies on the persistence of mucosal responses after infection
need to be explored for better understanding of respiratory tract protection following
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re-infection. The hypothesis of high virus dose infection as a cause of re-infection is proved
here. Furthermore, studies with lower virus doses for primary infection should be explored
to understand whether the protective immune response generated by a low virus dose
exposure could prevent further infection, as the majority of human SARS-CoV-2 infections
are mild and asymptomatic.

Prior infection did not confer sterilizing immunity in the present study, as reported
earlier in rhesus macaques and hamster models [18,43,44]. These studies were performed
within a month after recovery from the primary infection, in contrast to our study. Ex-
perimentally re-infected or vaccinated animals can shed SARS-CoV-2 through the upper
respiratory tract [19,44–47]. The exact immune correlates of protection from infection are
still not known. Other than the NAb levels post infection, the cellular as well as the local
mucosal response tends to play an important role in protection against reinfection [48]. Lim-
ited mucosal immunity could be a probable reason for the high viral RNA load observed in
the upper respiratory tract.

There are reports of varying disease severity in re-infected individuals [9,11,15,16].
Wang et al., 2021 have reported 68.8%, 18.8% and 12.5% of similar, worse and mild disease
severity in re-infection cases [11]. Severe disease has also been reported with Delta variant
re-infection [15,16]. We did not observe any aggravation of lung disease in the re-infected
animals with any of the variants used in this study. In the case of the Delta AY.1-re-infected
group, sgRNA clearance was observed in 75% of the animals by 7 DPI but the average
viral RNA load remained comparable to that of primary infection and with the viral RNA
load of animals of the Delta- as well as the B.1-re-infected group. The lung histopathology
score severity was similar to that of the Delta variant-re-infected group in the animals.
Considering all these observations, it seems that there was some amount of protection
conferred, and a study with a large sample size would be appropriate to reach more
definitive conclusions.

To conclude, the Delta AY.1 variant produced mild disease in a hamster model and did
not show any evidence of neutralization resistance, as speculated previously. Re-infection
with higher virus doses of the Delta variant or the B.1 variant 3 months after B.1 variant
infection reduced virus shedding/disease severity and increased NAb levels, irrespective of
the variants studied. The findings of this study indicate that primary SARS-CoV-2 infection
can reduce the severity of secondary infection by the Delta variant, although it cannot
confer sterilizing immunity or guarantee protection from a secondary infection.
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