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Multiple sclerosis is a chronic demyelinating disease of the central nervous system (CNS)
with an autoimmune component. Among the recent disease-modifying treatments
available, Natalizumab, a monoclonal antibody directed against the alpha chain of the
VLA-4 integrin (CD49d), is a potent inhibitor of cell migration toward the tissues including
CNS. It potently reduces relapses and active brain lesions in the relapsing remitting
form of the disease. However, it has also been associated with a severe infectious
complication, the progressive multifocal leukoencephalitis (PML). Using the standard
protocol with an injection every 4 weeks it has been shown by a close monitoring
of the drug that trough levels soon reach a plateau with an almost saturation of the
target cell receptor as well as a down modulation of this receptor. In this review,
mechanisms of action involved in therapeutic efficacy as well as in PML risk will be
discussed. Furthermore the interest of a biological monitoring that may be helpful to
rapidly adapt treatment is presented. Indeed, development of anti-NAT antibodies,
although sometimes unapparent, can be detected indirectly by normalization of CD49d
expression on circulating mononuclear cells and might require to switch to another drug.
On the other hand a stable modulation of CD49d expression might be useful to follow the
circulating NAT levels and apply an extended interval dose scheme that could contribute
to limiting the risk of PML.

Keywords: multiple sclerosis, natalizumab, biotherapy, drug modifying therapy, Mab therapy monitoring, Integrin,
neutralizing antibodies, PML

INTRODUCTION

Multiple sclerosis (MS) is a chronic, inflammatory autoimmune disease leading to demyelination.
It is a heterogeneous, multifactor disease with environment factors acting in a susceptibility genetic
background, still only partially described. Following a silent phase, the most common clinical
form of MS is the relapsing remitting MS (RRMS) with accumulation of lesions during relapse
phases. With time the disease may evolve as a progressive phase without remission (secondary
progressive MS, SPMS) although some patients may have a progressive disease from the onset called
primary progressive MS (1). Although few treatments are active on the progressive forms of MS,
the treatment of RRMS has been dramatically modified in the era of monoclonal antibodies and
other disease modifying therapies (DMT).
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Among them, Natalizumab (Tysabri R© , NAT) is a humanized
IgG4 antibody (Ab) that recognizes α4 chain (CD49d) of the
VLA4 (Very Late Antigen 4) antigen, a component of the α4β1
integrin, and of the α4β7 integrin. It is the clinical achievement
of the pioneer work of Yednok et al., who demonstrated the
role of this adhesion molecule in the interaction of leukocytes
with inflamed endothelium in the brain and had shown that
the injection of an anti-α4 monoclonal antibody prevents EAE
(experimental autoimmune encephalomyelitis) in a rat MS model
(2). Consequently, a mouse anti-human α4 chain Ab able to block
VLA4 interaction with its ligand VCAM1 (Vascular Cellular
Adhesion Molecule1) was selected for humanization (3). Two
phase III studies demonstrated the efficacy of NAT to improve the
evolution of RRMS in terms of annual relapses or development of
brain MRI lesions (4, 5). This success was not obtained in SPMS
(6). In addition, a severe adverse effect was then reported with
the appearance of progressive multifocal encephalopathy (PML)
(7) which was usually occurring in immuno-compromised or
immunosuppressed patients. The standardized protocol consists
in a 300 mg dose every 4 weeks but many schemes extending
interval dosing have been tested with similar efficacy (8–11).

MECHANISMS OF ACTION

The underlying MS pathological process involves both antigen
specific and non specific inflammatory mechanisms. Part of
the knowledge is coming from animal studies using the EAE
model (12) but contradictory features concerning the human
pathology have emerged from several therapeutic trials. For
example, the central role of antigen specific T cells observed in
EAE has been extended from CD4+ T cells in EAE to more
numerous CD8+ T cells in human with autoreactivity against
myelin derived peptides, and from a critical role of Th1 cells
secreting IFNγ to the participation of Th17 cells producing
GM-CSF (13, 14). The importance of B cells has long been
recognized with the presence of oligoclonal bands in CSF,
but the recent evidence of the efficacy of therapies depleting
these cells without significant effects on immunoglobulins shifts
their role toward their ability to present antigens to T cells
(15). Furthermore a complex inflammatory infiltrate in central
nervous system (CNS) and CSF is described including various
innate cells that complete the role of the locally activated
microglia. Whatever the mechanisms, the activation of antigen
specific lymphocytes either in the periphery or not, and the
secondary colonization of CNS need cell interactions and
migration which are dependent on chemokines and adhesion
molecules. The rationale for using anti-α4 Abs in EAE was
their blocking effect on the adhesion of leukocytes leading to
inhibition of inflammatory migration to CNS. Although a large
body of results strengthen this strategy, some pre-clinical data
suggest that according to the timing of monoclonal Ab (Mab)
administration or the experimental model, anti-α4 Abs can
be inefficient or deleterious despite VLA4 blockade (16, 17),
possibly because of agonistic properties of anti-VLA4 Abs (17).
Nevertheless the activating effect of anti-VLA4 Abs has not
been described in NAT treated patients (18–20). In addition, in

EAE models, infiltration of Th17 cells or GM-CSF-producing
Th1/Th17 cells into the CNS has been shown to be mediated
by lymphocyte function associated antigen 1 (LFA1) adhesion
molecules and not VLA4 integrin, thereby suggesting more
differential effects of anti-VLA4 blockade, at least, in animal
models (21, 22).

By preventing the interaction of α4β1 integrin expressed on
lymphocytes to its ligand VCAM1 on endothelial cells, NAT
inhibits the migration through the brain blood barrier into the
CNS parenchyma. There are two ways to confirm this effect: in
the blood compartment, an increase of leukocytes has already
been observed (23) whereas a decrease of infiltrating cells could
be assessed in the CSF. Evidently, CNS infiltrating lymphocytes
were decreased in patients treated with NAT as compared to
untreated patients or pre-treatment levels. This was observed for
T lymphocytes, mainly for CD4+ cells, and for B cells (24–28)
and led to a diminished level of immunoglobulins (IgM, IgG)
including oligoclonal bands, with a decrease of local production
(24, 27–29). These effects were confirmed in longitudinal studies
and disappeared – albeit slowly (within 6 months) – after
treatment interruption (26). Monocytes were increased relatively
to lymphocytes during treatment suggesting that their migration
might be less VLA4-dependent (30, 31). Few reports analyzed the
effects of NAT on antigen presenting cells, but a reduced number
of dendritic cells (DCs) had been observed in perivascular
spaces in post mortem samples of a NAT treated patient (32).
Furthermore, in addition to a decreased expression of CD49d,
both myeloid and plasmacytoid DCs had impaired capacities to
stimulate T lymphocytes (33).

As a consequence of this extravasation blockade, mononuclear
cells accumulate in the circulation. In addition, some
haematopoietic precursors might be released from the bone
marrow due to loss of VLA4-VCAM1 interactions with the
stromal cells or altered homing (34, 35). The net result is an
important lymphocytosis following the first injection which
soon reached a stable plateau. The more altered cells were B
lymphocytes (more than 3 times pre-treatment values), NK and
T lymphocytes (2 and 1.8, respectively) without modification
of the CD4+/CD8+ ratio (36–38). Cell numbers decreased after
8 weeks of treatment interruption and returned to basal levels
around 16 weeks after this interruption (38). The phenotype
and function of the circulating cells have been explored and
inconstantly showed an increase of memory T cells which might
reflect their higher CD49d expression, and of activated cells
(18, 39, 40). Although Th17 or Th1/17 cell migration has been
suggested to be partially VLA-4 dependent (31), it is mostly
observed that under NAT treatment these cells also accumulate
in the circulation (41, 42). Furthermore, the frequencies or
proliferative capacities of potential encephalogenic myelin basic
protein reactive cells were not modified under NAT treatment
(39). Some variations in cytokine production merely pro-
inflammatory were also observed, especially in the early phases of
treatment (39, 43, 44). In contrast, no quantitative nor qualitative
effect was noted on regulatory T cells (Tregs) (18, 45). These
cells constantly showed a strong decrease of CD49d expression
(46, 47) but their migration was still efficiently blocked and their
suppressive effects preserved (47). B cells were the most impacted
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circulating cells and also demonstrated a memory phenotype,
prone to activation, and pro-inflammatory profile (25, 40, 48).

A direct activation role of natalizumab through CD49d has
been excluded for all types of cells (25, 39) arguing for a mere
accumulation in the circulation of cells potentially activated, due
to the inhibition of migration. It might favor the recurrence of the
disease after treatment interruption, observed in approximately
one third of the cases, which needs a switch to another treatment
(49). In some cases a more severe relapse is observed as compared
to the pre-treatment status of the patient, described as a rebound
effect (50) and can be related to the migration of autoreactive Th1,
Th17, or Th1/17 cells accumulated in the circulation during NAT
treatment (41, 42).

PML COMPLICATION

Progressive multifocal encephalopathy, a demyelinating disease
caused by the John Cunningham virus (JCV), was soon observed
in NAT treated patients although it was previously associated
with immunodeficiency or immunosuppression (7). Despite a
high incidence (1/1000) with an 18-month treatment, (51), a clear
benefit/risk balance reinstated it after a short market withdrawal.
In MS treatment, other drugs such as anti-B cell Mabs (anti-CD20
Mabs), dimethyl fumarate, or fingolimod had an increase of PML
risk, but far less than NAT (52). Another anti-adhesion molecule,
efalizumab (anti-LFA-1) used in psoriasis, has been withdrawn
because of PML complications (53). The concept of altered
immune surveillance to virus in CNS due to the cell circulation
migration inhibition has long been the main argument described
as the cause of this increased risk. However, some properties
of NAT might facilitate this disease. The JCV infection is a
very frequent asymptomatic disease usually occurring during
childhood, then remaining latent until a possible reactivation,
which remains a very rare event. Although the knowledge of JCV
biology has greatly improved, some critical issues persist about
the process of latency and reactivation (54). It has been suggested
that the increase of circulating haematopoietic precursors and/or
the accumulation of pre-B and B cells (34, 35, 55–58) might
represent a potential virus reservoir for JCV (59, 60). Analysis of
JCV in these cells showed some conflicting results (35, 60–63),
probably depending on method sensitivity. Nevertheless, when
detectable, it should be mentioned that the virus is detected at low
levels or under inactive form; and sometimes in asymptomatic
patients (60, 61, 64). These data are consistent with a latency
phase of the virus. In addition, normal brain might also be
another site of latent viral persistence (65).

It has been shown that NAT is able to upregulate transcription
regulators POU2AF1 and Spi-B in B cells (59, 66). Consequently,
transition from latent archetype to prototype virus variant, viral
transcription and replication are suspected to be facilitated in
lymphoid cells (60, 62, 67). Spreading to CNS through B cells
or free virions is speculated but has not been proven (68). But,
even if this hypothesis is true in immunocompetent people,
it is likely that the spreading would be inhibited under NAT
treatment. On the target cell side, NAT has not been shown to
facilitate neural cell infection, at least in vitro (69). In the context

of immune modulation induced by NAT, there is a decrease in
antigen presenting cells in the CNS (32), and the trafficking of
memory T cells is not selectively inhibited by NAT. It has also
been shown that the anti-viral Th1 compartment is retained in
the circulation hampering the JCV elimination (41). At this stage,
the main parameters for susceptibility to JCV infection are NAT
treatment longer than 2 years, prior immunosuppression and
anti-JCV seropositivity.

DRUG MONITORING

Circulating and CSF Levels of NAT
As for most drugs, the measurement of concentrations is a tool
to determine the best dosage. Various methods have been used to
measure NAT concentrations. Due to its heterodimeric structure,
cellular assays have been developed using cells expressing CD49d
and FACS analysis with a standard curve of NAT (70, 71).
Alternatively ELISA methods have been set up. A particular
property of the IgG4 isotype that has been uncovered is that
due to the absence of covalent links between the two heavy
chains, “Fab arm exchange” occurs between IgG4, rendering
them monovalent (72). In addition to potentially modifying NAT
functional effect, it can directly interfere with detection assays.
Accordingly, an alternative to classical bridging test has been
developed (73) but no strict comparison measurements have
been thoroughly published yet. The variable median results of
NAT free circulating levels observed among studies (from 18 to
51 µg/ml) may be assay dependent, but a common characteristics
noted within each study was the high variability among patients
(less than 4 µg and up to 100 or 200 µg) (71, 74, 75). No clear
relationship has been evidenced to identify factors involved in
this heterogeneity although body weight might contribute (76,
77). Nevertheless, for a given patient, trough levels soon reach
a plateau and remain stable whatever the number of infusions
(9) and for more than 90% of them were over 10 µg/ml (78). In
comparison, levels within CSF were a hundred times lower from
45 to 110 ng/ml (71, 74).

In the serum, free NAT was measured, but the cell bound part
can also be determined. Cytometry allows determining the level
of NAT bound to cells using a fluorescent anti-IgG4 antibody,
as well as the free CD49d molecules on the cells that are not
covered by the administered drug, using an additional incubation
with an excess of NAT. This assay is suitable for determining the
saturation level of CD49d on the cells which, although slightly
different according to the circulating cell type analyzed, is around
70% (79, 80). Surprisingly, and despite the low levels of free
NAT measured in CSF, nearly the same degree of saturation was
observed in CSF (79).

These assays were performed during ongoing treatment
but the disappearance of NAT was also evaluated in studies
performed after interruption of treatment (38, 81). In the
RESTORE study designed to evaluate the consequences of
treatment interruption, NAT circulating levels after the last
injection differed from patients still treated 8 weeks after
interruption of treatment, and it takes 16 weeks for the NAT levels
to become undetectable (38). In parallel, at the same time, the
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saturation of circulating cells started to decrease (68% vs 87% for
treated patients) but some antibody remains detectable on the
cells between 16 and 28 weeks after interruption (38).

When the clearance of NAT needs to be very rapid, for instance
because of PML, protocols of plasma exchange are used and
allows almost 90% elimination of circulating NAT within 1 week.
In these conditions, the saturation of the cells falls under 50%
when NAT is <1 µg/ml, and partial restoration of migratory
capacities is obtained 3 weeks after plasma exchange treatment
(82). It should be mentioned that this strategy is not without
risk. In addition to a potential reactivation of the disease, it
may represent a worsening factor in PML, inducing an immune
reconstitution inflammatory syndrome (IRIS) that leads to a
poorer prognosis that in case of spontaneous NAT clearance (83).

Pharmacodynamic Analysis
These pharmacokinetics parameters have been completed by
pharmacodynamic analysis checking some dose-dependent
functional effect. Parallel to the receptor saturation, it could be
noticed that CD49d expression, as determined using a fluorescent
anti-CD49d antibody recognizing another epitope, was decreased
around 50% of the pre-treatment level soon after treatment
initiation (19, 70, 71, 84). It then remained stable all along
treatment except in cases of immunization (cf infra). This
diminished expression, associated with a decrease of CD29, the β1
chain of this heterodimer, (84) might contribute to the inhibition
of VLA4/VCAM interactions. The recovery of the expression
after treatment interruption is slower than the decrease of
receptor occupancy (9).

Using fluorescent beads allowing quantification (Quantibrite,
BD), a more precise evaluation has been performed to compare
the number of membrane expressed CD49d molecules and
the number of bound NAT molecules (85). It allows a direct
estimation of the level of saturation in patients receiving
standard protocol (Standard interval dosing SID, 4 weeks)
or protocols with an extended interval (EID) between two
injections. This schedule was evaluated in order to limit the
risk of PML. Using a regular treatment, T CD4, CD8, B cells
expressed, according to the cell type, around 1300–1400 CD49d
molecules. In contrast with an interval of 6 weeks between
injections, the number of CD49d was 2000–2400 molecules/cell.
Nevertheless, the number of NAT bound molecules was not
different between the 2 groups leading to decreased receptor
occupancy (RO) from 76–84% to 54–62% (85). Using a simple
measurement of the mean fluorescence intensity of an anti-
CD49d antibody, a modest increase of CD49d expression
was observed in EID (9%) as compared to SID, still at
60% of the pre-treatment levels, and it was associated with
a decrease of NAT circulating levels from 36 to 18 µg/ml
(9). These trough levels are still over the levels needed for
an almost receptor saturation. With these EID protocols, no
worsening of the clinical status was noticed suggesting that
increasing the time between injections is not altering efficacy
(10, 11).

So, biological parameters for monitoring the interval injection
duration are available. As far as now, no studies have determined
a critical level for saturation or modulation of CD49d required

for clinical efficacy. These parameters might be useful for an
adaptation of dose or timing on a case by case basis to limit the
adverse biological effects of NAT.

Anti-drug Antibodies
Therapeutic strategies were greatly completed by introducing
monoclonal antibodies but despite the molecular engineering
of humanized molecules these proteins keep a potential
immunogenicity especially when used as monotherapy. In the
case of NAT, nearly 9% of the patients were identified with
anti-NAT antibodies, and 6% are immunized permanently (4).
For some patients the injection related side effects suggest
immunization, that needs to be investigated, whereas for many
of them the process is silent or relapses might occur by
therapy inhibition. For these patients, a systematic screening for
immunization has been suggested at 6 months. The presence of
high titers of anti-NAT antibodies is suggestive of a permanent
immunization. Depending on the test used, no clear cut-off
has yet been defined (75, 86, 87). However, in our experience,
transient anti-NAT Ab were detected at rather low levels (10
times less) as compared to patients with persistent neutralizing
antibodies (70). The neutralizing effect of immunization can
also be suggested by using the monitoring parameters previously
discussed. Among them, the end of CD49d expression down-
modulation is suggestive of the immunization (70) which can be
either transient or permanent.

Immunization is also responsible of NAT clearance, and
complete disappearance of circulating free NAT was observed
in immunized patients with clinical relapse (75). Depending on
the local laboratory practice, it can be easier and more flexible
to measure modulation of CD49d for a given patient than to
perform complete series of natalizumab and anti-natalizumab
ELISA. The measurement of the lymphocytosis has also been
suggested to be a potential biomarker of efficacy (88) but
has not been related to NAT levels, saturation, or anti-NAT
antibody appearance.

In-depth analysis of the immune response of two patients
has allowed the characterisation of the B and T cell responses.
In contrast to the large polyclonal anti-idiotypic B response,
an immunodominant T cell epitope was identified in the FR2-
CDR2 region of NAT light chain. In addition this epitope
could be modified to avoid T cell recognition without loosing
the binding to CD49d (89) providing a deimmunized antibody
(90). Such a modified molecule could be an alternative for
immunized patients.

In conclusion NAT is one of the recent therapies that
have changed the evolution of RRMS. However, long term
treatment has been associated with PML, a severe infectious
complication. No specific biologic risk linked to NAT properties
has been definitively identified in this susceptibility, which
is also observed in other immunosuppression states either
related to HIV or monoclonal antibody treatments or
other DMT. In the context of NAT, no drug overdose was
noticed at the time of infection (77) and risk evaluation
remained to be assessed on treatment duration and anti
JC antibody status. In order to limit the risk of PML, EID
protocols seem to maintain a sufficient efficacy, although
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the real benefit on large cohorts has not yet been reported, and
the ongoing NOVA study might contribute to this evaluation
(91). On the other side, inefficient treatment might not always
be clinically detectable until new release. In both circumstances,
to offer an optimized treatment with potential therapeutic switch
and to improve the cost/benefit, it might be interesting to
develop an adapted biological monitoring using an easy-to-
measure parameter such as modulation of the expression of

CD49d, which is a good and robust functional reflect of the
circulating levels of NAT.
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