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Progress in therapeutic strategies based on cancer lipid
metabolism

Lipids are widely distributed in cellular organelles and
comprise thousands of different types of molecules, includ-
ing fatty acids, phospholipids, triglycerides, sphingolipids,
cholesterol, etc. Normal cells acquire lipids through de
novo synthesis and uptake. In order to satisfy the demands
of growth and proliferation, cancer cells must rewire their
metabolism,1,2 especially lipid metabolism.3 Indeed, lipid
synthesis is strongly upregulated in cancers to satisfy the
demands of increased membrane biogenesis4 and even
acquire therapeutic resistance.5 Lipid uptake and storage
are also elevated in cancer cells.6,7 Targeting lipid metabo-
lism has become a novel anti-cancer strategy.

Past strategy: Blocking lipid
synthesis

Accumulating evidence has demonstrated that increased de
novo fatty acid (FA) synthesis is a hallmark of cancer.3,8 The
expression levels of enzymes responsible for FA synthesis
are usually upregulated in many types of cancer.9,10 Previous
studies revealed that pharmacologically inhibition of the key
enzymes of FA synthesis decreases cancer cell prolifera-
tion.11,12 Fatty acid synthase (FASN) was the first molecular
discovery linking lipid metabolism to cancer.13 Many studies
have since shown increased FASN expression in various
cancers,14 while inhibiting FASN by its inhibitors, such as
TVB-3166 and C93, significantly reduces FA synthesis and
suppresses tumor growth in the xenograft models of lung
cancer.15,16 Additionally, the acetyl-CoA carboxylase (ACC)
catalyzes ATP-dependent carboxylation of acetyl-CoA, gen-
erating malonyl-CoA for fatty acid synthesis following the
conversion of citrate and acetate to acetyl-CoA. The ACC
inhibitors TOFA, soraphen A and ND646 have also shown
significant anti-tumor effects in xenograft models of lung
and breast cancer.17–19 ATP citrate lyase (ACLY) converts
cytoplasmic citrate to acetyl-CoA, a precursor of lipid syn-
thesis and a substrate for protein acetylation. Inhibiting
ACLY at the genetic level or pharmacologically significantly
suppresses tumor growth.20,21

Current progress: Blocking lipid
uptake, intracellular lipolysis and
utilization of lipids

Recent studies have shown that blocking lipid uptake,
intracellular lipolysis and utilization of lipids are

potential approaches to inhibit tumor growth. Com-
pared to normal cell, cancer cells require more lipids
than normal cells, therefore, they obtain lipids by
upregulating cell surface receptors for plasma lipids.3

Cluster of differentiation 36 (CD36) is a cell surface
receptor that facilitates lipid uptake.22 It has been
established as a functional driver of metastasis in a lipid
metabolism-dependent manner.23 In addition, the
uptake of extracellular fatty acids in breast cancer and
glioblastoma cell lines is promoted under hypoxia via
the upregulation of heart-type fatty-acid-binding protein
3 and 7 (FABP3 and FABP7), thereby leading to ele-
vated lipid droplet (LD) formation.24 These findings
expand our knowledge of lipid metabolism in cancer
progression and add promising new targets for the
development of novel anti-cancer therapeutics.
Cytoplasmic fatty acids are usually stored as triglycer-

ides (TGs) in LDs and are released through intracellular
lipolysis.11,25 Adipose triglyceride lipase (ATGL)26,27 and
monoacyl glycerol lipase (MAGL)28 provide a stream of
intracellular free FA that play important and critical
roles in cancer cells proliferation and tumor progression
by de-esterification. Therefore, inhibiting intracellular
lipolysis shows promise as a therapeutic strategy for
cancer.
Abundant lipids in cancer cells provide essential

substrates for signaling molecules, and mitochondrial
oxidative metabolic fuels to support the rapid growth
and proliferation of cancer cells.29,30 Signaling lipids,
for example, phosphoinositides, eicosanoids and
sphingolipids, control important cellular processes and
dysfunction of their metabolism has been implicated in
cancer.31 As the critical roles of lipid signaling path-
ways in cancer have been established, compounds
targeting lipid signaling pathways, such as
Rapamycin,32 Curcumin,33 Tetracycline,34 ICI182780,35

etc., are becoming available for clinical use. Lipids also
supply energy to cancer cells through fatty acid β-oxi-
dation. Oxidative mitochondrial pathways such as fatty
acid β-oxidation and oxidative phosphorylation
(OXPHOS) have been implicated in cancer cell sur-
vival, and inhibiting fatty acid β-oxidation reduces the
tumor-initiating potential.36 This evidence suggests the
possibility of the fatty acid β-oxidation pathway as a
potential therapeutic target for cancer.
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Future perspectives: Blocking lipid
storage while limiting lipid
synthesis and utilization

In addition to limiting lipid synthesis and utilization, how to
block lipid storage is the future therapeutic direction in can-
cer. LDs are key organelles that function as storage of cellu-
lar surplus of lipid molecules in esterified form. Cancer cells
contain more lipid droplets than normal cells. The
upregulation of LD-decorating proteins, such as hypoxia-
inducible protein 2 (HIG2), Perilipin, adipose differentiation
-related protein (ADRP) and Tip47 exhibited in multiple
cancer cells have been shown to promote formation and accu-
mulation of LDs.37 Moreover, Savkovic and colleagues reported
that stimulation of LD density promoted proliferation in colon
cancer, whereas silencing perilipin 2 (PLIN2) or overexpression
of forkhead box O3 (FOXO3) inhibited proliferation. Thus,
they suggested that FOXO3 and LDs might serve as new targets
for therapeutic intervention of colon cancer.38 Furthermore,
Penrose et al. demonstrated that LD-depletion, through the
inhibition of lipid synthesis or silencing of PLIN2, significantly
attenuated proliferation of colon cancer cells.39 These studies
support LD-associated proteins as potential targets for cancer
treatment. However, the molecular mechanisms underlying
LD-associated stress responses need to be further elucidated.
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