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Abstract

The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio
fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization
of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host
expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and
shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ
epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification
technology (MudPIT) in an effort to understand the contribution of both partners to the maintenance of this association.
These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711
from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS) in
regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-
component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS) inside the light organ. This
study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the
identification of proteins important to the regulation of this beneficial association.
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Introduction

The light organ symbiosis between the Hawaiian bobtail squid,

Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, is

used as a model association for understanding host/microbe

interactions [1–3]. Hours after hatching from its egg case, the host

is colonized when environmental V. fischeri take up residence in

epithelia-lined crypt spaces located within a specialized light organ

[1]. V. fischeri is the sole bacterium that colonizes the light organ and

prior research has focused on understanding the mechanisms for

establishing and maintaining the high degree of specificity between

the partners [1–4]. While in the light organ, the bacteria are

connected directly to the external environment through ciliated ducts

and pores (Fig. 1). This conduit is important as it serves as an interface

between the host and the environment and is used in a daily venting

of the symbionts. The venting behavior is linked to the nocturnal

foraging activities of the host. At night the light organ crypt spaces

contain the highest densities of bacteria (109/adult squid; [5]), and the

light provided by these symbionts is used to avoid predation [6]. At

dawn the host expels 95% of its symbionts from the light organ, while

entering a quiescent state in which it buries in the substrate [5,7]. The

remaining bacteria repopulate the crypts ensuring a full complement

of symbionts by the following nightfall. This venting mechanism helps

regulate the symbiont population in the light organ as well as

increases the concentration of V. fischeri in the immediate squid

habitat, allowing future generations to be colonized [1,8].

The exudate of adult hosts emerges from the light organ pores

as a thick paste-like substance that can be easily collected for

experimental analyses (Fig. 1). This material represents the

immediate microenvironment of the light organ crypts and is

comprised of symbiont cells and a mixed population of host cells

(macrophage-like hemoctyes and shed epithelial cells), all sur-

rounded by an acellular matrix [5]. In order to understand the

host and symbiont contributions to this microenvironment,

previous studies have focused on the cellular and biochemical

components of the exudate [5,9]. Recent work has focused on

changes in host and symbiont gene expression during the daily

rhythm within the light organ [10]. Transcriptome analyses at

different time points during the day/night revealed dynamic

changes both metabolically and physiologically for the host and

symbiont, and identified a large number of differentially expressed

genes [10]. In addition, microscopy at these time points revealed

that the crypt epithelium also undergoes morphological changes

whereby apical surfaces are blebbed into the crypt spaces [10].

Many of these gene expression and cellular changes were most

dramatic in the hours just before and after dawn, reflecting the

dynamic turnover that occurs in the light organ upon venting.

In this study, we employed a number of techniques to

characterize the host and symbiont proteomes of the adult light

organ microenvironment at dawn when the association undergoes

a dramatic reduction in symbiont population. To date, proteomic
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analyses of the squid/Vibrio association are limited. A previous

study used two-dimensional polyacrylamide gel electrophoresis

(2D-PAGE) to reveal numerous differences in the soluble proteins

present in the light organs of juvenile aposymbiotic (uncolonized)

and symbiotic (colonized) squid during the development of the

symbiosis, however no proteins were identified [11]. Recent

advances in proteomics, including multidimensional protein

identification technology (MudPIT), have provided the tools to

allow the identification of a large number of host and symbiont

proteins in the squid/Vibrio association for the first time [12,13].

MudPIT utilizes strong cation exchange chromatography (SCX)

to separate peptides by charge prior to liquid chromatography

tandem mass spectrometry (LC MS/MS), thus increasing the

number of identified peptides. In this study we utilized MudPIT,

in addition to 1D- and 2D-PAGE, to describe both the host and

symbiont proteomes in the light organ exudate and the

surrounding host epithelial tissue. These analyses identified

components of the host’s innate immune system as well as

numerous proteins involved in the detoxification of reactive

oxygen species (ROS). Symbiont proteins detected were involved

in stress responses, quorum sensing, motility, and two-component

signaling pathways. Our data also highlight many proteins that are

presently uncharacterized with regard to the squid/Vibrio symbi-

osis. Identifying the host and symbiont proteins present in the light

organ represents a first step to understanding key functional

aspects of the association’s molecular dialogue that is responsible

for maintaining this highly specific relationship and complements

a number of other molecular and genetic techniques that have

been applied to this symbiosis.

Materials and Methods

Ethics statement
Euprymna scolopes is an invertebrate and is not regulated by

animal care regulations in the United States. All field collection of

research animals was done in accordance with state and federal

regulations. The State of Hawaii does not require collection

permits for this species outside of marine reserves. None of the

animals collected for this study were caught/collected within a

marine reserve or regulated area.

General methods
Adult animals were collected in shallow sand flats of Maunalua

Bay, Oahu, HI by dip net and were either maintained in the

laboratory in re-circulating natural seawater aquaria at the Hawaii

Institute of Marine Biology or at the University of Connecticut

with artificial seawater (ASW, Instant ocean) at 23uC. All animals

were acclimated at least 48 hours under laboratory conditions and

kept on an approximate 12 hr light/12 hr dark cycle before

sample collection. V. fischeri strain ES114 was grown in saltwater

tryptone (SWT) at 28uC as previously described [14].

Exudate and central core collection
Exudate was collected as previously described [5]. Briefly, adult

squid were anesthetized in a 2% ethanol/seawater solution and

ventrally dissected under red light within minutes prior to dawn. A

light stimulus (150 W halogen light) was used to induce venting

behavior. Within 1 h, the squid had expelled the light organ

contents, which were collected with a 10-ml disposable micropi-

pette (Drummond Scientific Company) and stored on ice after the

addition of a 16 protease inhibitor cocktail according to the

manufacturer’s protocol (Sigma Aldrich, P2714). Post-vented

central cores were also dissected and removed from the light

organ. All samples were flash frozen with liquid nitrogen and

stored at 280uC until further analysis. No differences were

detected between samples collected from animals maintained at

either the Hawaii Institute of Marine Biology or at the University

of Connecticut (data not shown).

Gel-based proteomic methods
Exudate sample preparation for 1D- and 2D-

polyacrylamide gel electrophoresis. For PAGE applications,

symbiont cells from freshly collected light organ exudate were

separated from the soluble fraction, a source of host proteins, by

centrifugation (Eppendorf 5810 R, 5,000 rpm, 10 minutes, 4uC).

The symbiont pellet was washed three times with 0.22 mm filtered

ASW to remove additional soluble proteins. Symbiont proteins were

extracted by a modified method from Ho and Hsu [15]. Briefly, 10

consecutive liquid nitrogen freeze/thaw cycles were performed in

the presence of a 16 protease inhibitor cocktail (Sigma Aldrich,

P2714) with 80 mM Tris, pH 8.0 for cell lysis. After separation from

Figure 1. Host and symbiont cells are expelled each morning as a thick exudate. A. A ventrally dissected adult squid reveals the bilobed
light organ (lo), which is located in the center of the mantle cavity. (Dashed box highlights the region of light organ in B and C) B. One half of the
light organ prior to expelling the light organ contents. C. One half of the light organ during the venting process. The exudate (e) emerges from a
lateral pore (p) as an opaque paste (dotted circle).
doi:10.1371/journal.pone.0025649.g001
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the bacterial pellet, soluble host proteins were quantified (see below)

and stored until further analysis. For cultured V. fischeri, cells were

grown to early stationary phase [14] and proteins were extracted as

described for the symbiont exudate pellet. Protein concentrations of

separate symbiont exudate and host soluble fractions, as well as

culture-grown V. fischeri, were determined spectrophotometrically

using the method of Whitaker and Granum [16] and/or a Bradford

assay (Bio-Rad). Typically, protein extractions of exudate resulted in

10–20 mg of protein combined from the host soluble and symbiont

pellet fractions. Comparison of 2D-PAGE gels from soluble proteins

of culture-grown V. fischeri and the host soluble fraction of the

exudate demonstrated that the soluble host fraction was devoid of

bacterial proteins (data not shown).

1D-polyacrylamide gel electrophoresis of light organ

exudate. Between 10 and 20 mg of exudate protein from

either the host (soluble protein separated from bacterial pellet)

or symbiont fraction (bacterial pellet) were resolved with 12.5%

polyacrylamide gels (Bio-Rad). Electrophoresis was performed

with a Hoeffer 250 mini-gel apparatus at 23 mA or a Bio-Rad

Mini PROTEANH Tetra cell at 200 V for 30 minutes. Gels were

either stained with Bio-Rad Brilliant Blue Coomassie R-250 or a

Bio-Rad Silver Stain Plus Kit (Bio-Rad). 1D-PAGE of both the

soluble host fractions and the bacterial pellets were shown to be

reproducible (n = 3, separate and fractionated pooled exudate

samples for each; data not shown).

2D-polyacrylamide gel electrophoresis of light organ

exudate. 2-D PAGE was performed using the Amersham

Pharmacia Biotech Multiphor II system as previously described

[11]. 40 mg of pooled exudate protein from either the soluble host

fraction or the bacterial pellet, originating from 2 or more adult

squid or culture-grown V. fischeri cells, were denatured 1:4 in 9 M

urea, 1% DTT, 2% Pharmalyte 3–10, 0.5% Triton-X-100, 0.14%

phenylmethylsulfonyl fluoride, loaded onto a first dimension gel

strip with an immobilized pH gradient (4–7) and focused over a

20 hour period. Samples were then separated by molecular weight

on pre-cast 12% to 14% polyacrylamide gradient gels (GE

Healthcare Life Sciences). Gels were silver stained as previously

described [11,17]. 2D-PAGE from the soluble host fractions and

the bacterial pellets or culture-grown cells were deemed to be

highly reproducible (n = 3, separate and fractionated pooled

exudate samples; data not shown). For comparison, 2D gels

were visually aligned and similarities and differences of the

molecular weights and individual protein species were noted. Five

spots of interest from the 2D-PAGE gel of the exudate bacterial

pellet were excised and successively washed in 50% acetonitrile,

50% acetonitrile/50 mM NH4HCO3, and 50% acetonitrile/

10 mM NH4HCO3. The five gel spots were then dried by speed

vacuum (Eppendorf Concentrator 5301) and resuspended in

10 mM NH4HCO3. Digestion was completed with 0.1 mg

trypsin (Promega, V5111) per each 15 mm3 of gel in a final

volume of 35 ml of 10 mM NH4HCO3 at 37uC for 24 hours. The

digested samples were stored at 280uC until submission to the W.

M. Keck Biotechnology Resource Laboratory, Yale University, for

LC MS/MS (See below, Mass spectrometry proteomics).

Mass spectrometry proteomic methods
Protein preparation for multidimensional protein

identification technology and liquid chromatography

tandem mass spectrometry. For MudPIT and LC MS/MS,

pooled host and symbiont fractions from freshly collected light

organ exudate were combined and quantified as described above.

Additionally, central cores were homogenized in the presence of a

16protease inhibitor cocktail (Sigma Aldrich, P2714) with 80 mM

Tris, pH 8.0 using a ground-glass homogenizer. Proteins from

central cores were collected from the supernatant of the

homogenate after centrifugation (Eppendorf 5810 R, 14,000 rpm,

30 minutes, 4uC) and quantified as described above. Extractions of

the central core tissue resulted in approximately 20 mg of soluble

protein per central core. Total protein from pooled exudate samples

(50 mg, n = 7 squid and 100 mg, n = 7 squid) and pooled central core

samples (40 mg, n = 3 squid) were precipitated with 10%

trichloroacetic acid (Fisher Scientific) at 4uC overnight. The

protein precipitates of the exudates and central cores were

collected by centrifugation (Eppendorf 5810 R, 11,0006 g,

30 minutes, 4uC) and washed twice with ice-cold acetone. The

protein pellets were briefly air-dried and then solubilized in 25 ml of

8 M urea, 0.4 M ammonium bicarbonate, pH 8.0. Both samples

were reduced and alkylated with 5 ml of 45 mM dithiothreitol

(DTT; Acros Organics) at 37uC for 20 minutes and 5 ml of 100 mM

iodoacetamide (Acros Organics) at room temperature in the dark

for 20 additional minutes. Sequencing grade trypsin was added 1:15

(w/w enzyme to protein; Promega, V5111). The solutions were

diluted in water to 100 ml (2 M urea final concentration). Both

samples were digested at 37uC for 18–24 hours and then stored at

280uC until submission to the W. M. Keck Biotechnology

Resource Laboratory, Yale University for LC MS/MS.

For MudPIT, tryptic digests of pooled exudate proteins from E.

scolopes underwent strong cation exchange (SCX) on an Applied

Biosystems Vision Workstation at the W. M. Keck Biotechnology

Resource Laboratory at Yale University. During SCX, peptides

were separated by charge into fractions, which were then analyzed

by LC MS/MS. MudPIT analyses of separate pooled exudate

samples were run in duplicate. The first analysis used 10 SCX

fractions (50 mg, n = 7 squid) and the second used 20 SCX

fractions (100 mg, n = 7 squid), allowing greater coverage of lower

abundance peptides. The central core sample (40 mg, n = 3 squid)

and symbiont exudate 2D-PAGE spots (n = 5 spots) were analyzed

by one-dimensional LC MS/MS (see below).

For SCX, the tryptic digests of pooled exudate proteins were

acidified with 2 ml of 1 M phosphoric acid. A 2.1 mm6200 mm

PolySULFOETHYL ATM column (PolyLC Inc.) was used to

establish a linear gradient for 118 minutes. The gradient was

maintained in 10 mM potassium phosphate, 25% acetonitrile

(pH 3.0) and the same buffer with the addition of 1 M potassium

chloride. Fractions were collected every 2 minutes at a flow rate of

150 ml/min. All fractions were dried, dissolved in 5 ml of 70%

formic acid, and diluted to 15 ml in 0.1% trifluoroacetic acid for

subsequent LC MS/MS.

Liquid chromatography tandem mass spectrometry. LC

MS/MS of each exudate SCX fraction, central core peptides, and

2D gel spot peptides was completed at the W. M. Keck

Biotechnology Resource Laboratory at Yale University. A LTQ

Orbitrap mass spectrometer (Thermo Fisher Scientific) equipped

with a Waters nanoAcquity UPLC system operated with a Waters

SymmetryH C18 180 mm620 mm trap column, and a 1.7 mm,

75 mm6250 mm nanoAcquityTM UPLCTM column (35uC) was

used for peptide separation. Trapping was performed at 15 ml/min

with Buffer A (100% water, 0.1% formic acid) for 1 minute. Peptide

separation was performed at 300 nl/min with Buffer A and Buffer B

(100% CH3CN, 0.075% formic acid); a 51 minute linear gradient

was established starting with 5% Buffer B, increasing to 50% B at

50 minutes, and finally 85% B at 51 minutes. MS was acquired in

the Orbitrap using 1 microscan followed by four data dependent

MS/MS acquisitions. Neutral loss scans (MS3) were also obtained

for 98.0, 49.0, and 32.7 amu.

Data analysis. All MS/MS spectra were analyzed using the

Mascot algorithm for uninterpreted MS/MS spectra [18]. The

Mascot Distiller program used the MS/MS spectra to generate

Characterizing the Host and Symbiont Proteomes
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Mascot compatible files by combining sequential MS/MS scans

from profile data that have the same precursor ion. A charge state

of +2 and +3 were preferentially located with a signal to noise ratio

of 1.2 or greater and a peak list was created for database searching.

The peak list was searched by Mascot using V. fischeri amino acid

sequence and juvenile E. scolopes light organ expressed sequence

tag (EST) databases [19]. Search parameters included partial

methionine oxidation, carboxamidomethylated cysteine, a peptide

tolerance of 620 ppm, MS/MS fragment tolerance of

60.6 Daltons (Da), and peptide charges of +2 or +3. Normal

and decoy database were also searched. Mascot significance scores

are based on a MOlecular Weight SEarch (MOWSE) scores and

rely on multiple matches of more than one peptide to the same

protein [20]. The MOWSE based ions score is equal to

(210)*(Log10P), where P is the absolute probability that a match

is random. For a match to be significant, the probability of it being

a random match should be below 5% (E-value,0.05) [21]. The

protein threshold score depends on the size of the database being

searched, therefore, Mascot determined that scores greater than

68 were significant when searching the juvenile light organ EST

database and scores greater than 48 were significant when

searching the V. fischeri ES114 amino acid database. Proteins

were considered identified when 2 or more peptides matched the

same protein and if the Mascot score was above the respective

significance threshold. Proteins with putative identifications

contained two or more peptide matches, but had a Mascot score

below the threshold for the respective database (E-value.0.05).

Mascot also calculates the exponentially modified protein

abundance index (empai) which estimates the abundance of

protein species by using the number of peptides detected in the

analysis compared to the number of possible peptides for a

particular protein [22,23].

Host proteins identified by Mascot using the juvenile light organ

EST database were further analyzed using the Bioinformatics

Utility for Data Analysis of Proteomics using ESTs (BUDAPEST)

which removed any peptides matching to non-coding reading

frames [24]. BLASTx (E-value cutoff 1026) against the NCBI nr

database was used to determine the top protein hit for each EST

[25]. In addition, BUDAPEST calculated a peptide score for each

protein identified. This score was equal to the number of correct

reading frame peptides squared divided by the total number of

peptides (all reading frames) identified for that EST. BUDAPEST

scores greater than 1 can be considered significant, however, in

our study scores of 2 or greater were chosen to represent

significant protein identifications.

Results

Exudate samples collected from adult E. scolopes light organs

were analyzed using a number of proteomic techniques. 1D- and

2D-PAGE revealed that the host soluble fraction of the exudate,

derived from host hemocytes and apical surfaces of shed light

organ crypt epithelial cells, was comprised of a complex mixture of

proteins and peptides, the majority of which are represented

between the isoelectric points of 4 to 7 and a size of 7 to

100 kilodaltons (kD) (Fig. 2A, B). Similar analyses of the symbiont

fraction of the exudate also revealed a complex protein profile

(Fig. 3A, B). Comparison of the host and symbiont PAGE gels

support previous observations that the exudate appears enriched

in bacteria. When comparing proteins expressed by V. fischeri in

the light organ to proteins expressed by V. fischeri in culture, a

protein with an isoelectric point of 5.5 and a molecular weight of

10 kD was present in the light organ, but not in solubilized

proteins from culture-grown V. fischeri (Fig. 3C). The protein spot

of interest (Fig. 3C, spot 2) and four surrounding protein spots

(common to both the light organ and culture) were excised and

identified by LC MS/MS (Table 1). The unique symbiont light

organ protein was determined to be a quorum sensing-regulated

protein (QsrP), which has been previously identified as being

expressed by V. fischeri in the light organ, but remains functionally

uncharacterized [26].

In an effort to further characterize the proteins expressed by the

host and symbiont we utilized shotgun proteomic techniques (LC

MS/MS and MudPIT). These methods allowed us to putatively

identify a combined 1581 host and symbiont proteins present in

the light organ. For MudPIT, light organ exudate samples of 10 or

20 SCX peptide fractions (see Materials and Methods) were

analyzed (Table 2). In addition, to increase our representation of

host proteins we analyzed post-vented central cores by single

fraction LC MS/MS (Table 2). A total of 870 unique symbiont

proteins were putatively identified by Mascot from all the light

organ samples (exudates and central cores; Table S1). 516 of these

proteins were above the significance threshold set by Mascot (E-

value,0.05). For the host, we utilized BUDAPEST, a software

program developed specifically to identify proteins in the correct

open reading frame in cases when only EST databases are

available [24]. 676 host proteins with more than 2 peptides

matching to the correct reading frame and a BUDAPEST score of

greater than or equal to 2 were identified from combining the LC

MS/MS and MudPIT data of the exudate and central core

samples (Table S2).

All host and symbiont proteins, including putative identifica-

tions, were organized functionally according to the Clusters of

Orthologus Groups database (COG and KOG; Fig. S1, Table S1,

Table S2) [27,28]. In order to achieve a more thorough

understanding of the functions represented by the proteins in

our data, we first analyzed the relative abundance of each

symbiont protein. The 25 most abundant symbiont proteins

determined by empai include the protein subunits of luciferase

(LuxAB), QsrP, alkyl hydroperoxide reductase C22 (AhpC), and

several cold shock proteins (Table 3). Our analyses also identified a

number of symbiont proteins related to functions involved in stress

responses, quorum sensing, motility, and signaling pathways, all of

which have been previously implicated as being important in the

squid/Vibrio association (Table 4, Table S3; see discussion).

Figure 2. PAGE analysis of the soluble host fraction from light
organ exudate. A. 1D-PAGE of the host fraction of the exudate on a
12.5% polyacrylamide gel. B. 2D-PAGE of the host fraction of the
exudate on a 12–14% polyacrylamide gel.
doi:10.1371/journal.pone.0025649.g002
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Several of these identified proteins including AhpC and the cold

shock proteins have symbiotic roles yet to be characterized.

Host proteins detected in the light organ highlight the innate

immune system, oxidative stress, and signaling pathways (Table 5).

Identified proteins include those involved with the NFkB signaling

pathway and the recognition of microbial associated molecular

patterns (MAMPs) such as peptidoglycan recognition proteins

(PGRPs) and a carbohydrate binding protein, galectin (Table 5).

Proteins related to oxidative stress consist of superoxide dismutase,

peroxiredoxins and numerous peroxidases, including the E. scolopes

halide peroxidase (EsHPO) (Table 5; see discussion). Additionally,

several host proteins involved iron-sequestration were detected in

the light organ.

Discussion

The daily expulsion of V. fischeri from the light organ of E.

scolopes provides a unique opportunity to characterize the

interactions between the host and symbiont in a natural

microenvironment. Previous analyses of this exudate have focused

on the cellular and biochemical composition of the expelled matrix

[5,9]. In this study we characterized the light organ exudate and

surrounding epithelial proteome using MudPIT and PAGE. A

total of 1581 unique host and symbiont proteins were putatively

identified from the light organ, offering the first proteomic analyses

of this symbiotic microenvironment.

Innate immune system
MAMPs and host pattern recognition receptors (PRRs) are two

components underlying host/microbe interactions and are signif-

icantly involved in the development of this association [29].

MAMPs including lipopolysaccharide (LPS), and peptidoglycan

and its derivatives, function in determining the specificity of the

squid/Vibrio symbiosis as well as initiating morphogenetic changes

to the light organ [30–32]. We identified several host proteins

related to pattern recognition in both the exudate and central core

tissues (Table 5). E. scolopes PGRP2 and 3 (EsPGRP2 and

EsPGRP3) are involved in detecting peptidoglycan, a major cell

wall component of bacteria [33]. EsPGRP2 is secreted into the

crypts of the light organ where it is thought to degrade tracheal

cytotoxin (TCT), a monomer of peptidoglycan [34]. The role of

EsPGRP3 in the symbiosis is currently under investigation, but has

been detected in adult and juvenile hemocytes (unpublished data).

Certain carbohydrates, such as beta-galactosides, are another type

of MAMP that are recognized by carbohydrate binding proteins

known as galectins [35]. A putative galectin was identified in both

the exudate and central core tissue (Table 5, Table S2) and may

have an uncharacterized role in the squid/Vibrio symbiosis.

Aside from PRRs and MAMPs, cellular adhesion is often

important for host/microbe cell-to-cell interactions. Outer mem-

Figure 3. PAGE analysis of the soluble proteins originating
from the symbiont fraction of the exudate. A. 1D-PAGE of
symbiont fraction of the exudate on a 12.5% polyacrylamide gel. B. 2D-
PAGE of the symbiont fraction of the exudate on a 12–14%
polyacrylamide gel. Black box highlights the region of the gel compared
in C. C. 2D-PAGE comparison of bacterial soluble proteins from the
exudate and culture-grown V. fischeri. Numbered protein spots were
identified by LC MS/MS (Table 1).
doi:10.1371/journal.pone.0025649.g003

Table 1. Exudate proteins identified by LC MS/MS from symbiont 2D-PAGE analysis (Fig. 3).

Spot Mw (kD)/pIa Top Protein Hit to NCBI nr Database ORFb gi Scorec

1 13.3/5.4 50S ribosomal protein L9 VF_2310 59712917 1045

2 11.0/5.5 Quorum sensing regulated protein QsrP VF_A1058 59714241 628

3 14.7/5.7 Transcriptional dual regulator H-NS VF_1631 59712238 712

4 8.8/5.7 Cold shock protein VF_2561 59713168 473

5 9.3/6.1 30S ribosomal protein S6 VF_2312 59712919 501

aPredicted molecular weight (Mw) and isoelectric point (pI) for the proteins identified.
bOpen reading frame (ORF) locations of the respective genes on the chromosomes of V. fischeri.
cScores were assigned by Mascot. Scores greater than 83 were significant (E-value,0.05) for searches of the NCBI nr database.
doi:10.1371/journal.pone.0025649.t001

Table 2. Number of host and symbiont proteins identified by
shotgun proteomicsa.

Sample Vibrio fischeri Euprymna scolopesb

Exudate (10 Fractions) 214 163

Exudate (20 Fractions) 708 591

Central Core (1 Fraction) 90 234

Total unique proteins 870 711

aProtein identifications required 2 or more peptides per protein. Total unique
proteins summarize the combined unique proteins from all samples. Numbers
include putative identifications (see Materials and Methods).

bHost protein identifications counts are post-BUDAPEST analysis.
doi:10.1371/journal.pone.0025649.t002
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brane proteins (OMPs) are localized at the bacterial cell surface

and are good candidates for mediating recognition between the

partners. OmpU, a symbiont outer membrane protein that we

have identified in the light organ (Table S3), was shown to be

important in mediating adhesion to adult host hemocytes and

during the early stages of colonization [36,37]. Other OMPs

identified, such as a hypothetical protein VF_1010, have roles yet

to be characterized in binding and adhesion, but may have similar

functions (Table S3). Understanding how the symbiont outer

membrane proteome varies in the light organ vs. the free-living

environment and between symbiosis-competent and incompetent

strains may shed light on mechanisms of mediating specificity in

this symbiosis.

An immune pathway highlighted by our proteomic data

includes NFkB signaling (Table 5). The role of NFkB signaling

during the establishment of the squid/Vibrio symbiosis is currently

under investigation, however, many important members of the

pathway have been identified from juvenile light organ ESTs [33].

We detected NFkB repressing factor (see below) and importin

alpha 3, a protein involved in shuttling proteins into the nucleus by

recognizing nuclear localization signals (Table 5) [38]. In vitro and

in vivo studies using cancer cell lines reveal this protein is a member

of the NFkB signaling pathway and aids in the transport of NFkB

transcription factors into the nucleus [39].

Recently, E. scolopes has been shown to have a complement

pathway that in other systems is involved with mediating

inflammation and opsonization [29,40,41]. The function of this

pathway has yet to be described in the squid/Vibrio symbiosis,

however, we detected putative components of the complement

cascade in both the exudate and the central core (Table 5, Table

S2). Although one of these identifications was annotated as a

complement component C3 precursor (Table 5, Table S2), closest

to the cnidarian Nematostella, further analysis of these peptides using

E. scolopes transcriptomic data revealed that this protein did not

align with the previously described E. scolopes C3 (data not shown).

Instead, this protein, along with two others, were identified as

thioester-containing proteins (TEPs). Among invertebrates, TEPs

play an important role in innate immune response as members of

the complement system or as protease inhibitors [42,43].

Reactive oxygen and nitrogen stress response
The chemical microenvironment of the light organ crypts likely

influences the maintenance of the association and helps to ensure

specificity. Although oxygen is critical for the bioluminescence

reaction, reactive oxygen species (ROS) and toxic oxygen

intermediates have been shown to be abundant in the light organ

[44]. Host-derived ROS, such as hypohalous acid, are thought to

play key roles in initiation and persistence of the squid/Vibrio

Table 3. The 25 most abundant symbiont proteins present in light organ exudates and central cores identified by MudPIT and LC
MS/MS in descending empai order (excluding ribosomal proteins).

# gi ORFa Gene Protein Name empai Scoreb

1 59714104 VF_A0921 luxA luciferase alpha chain LuxA 28.74 2840

2 59712269 VF_1662 - DNA-binding protein 21.59 257

3 59712346 VF_1739 acpP acyl carrier protein 19.95 290

4 59714241 VF_A1058 qsrP LuxR-regulated periplasmic protein QsrP 13.61 691

5 59712582 VF_1975 ahpC alkyl hydroperoxide reductase, C22 10.54 994

6 59711657 VF_1050 - hypothetical protein 9.35 179

7 59711351 VF_0744 ybeD hypothetical protein 7.94 194

8 59712374 VF_1767 cspD DNA replication inhibitor 7.66 309

9 59714005 VF_A0822 - hypothetical protein 7.55 101

10 59711823 VF_1216 infC protein chain initiation factor IF-3 6.86 378

11 59711844 VF_1237 ihfA integration host factor subunit alpha 6.41 193

12 59712727 VF_2120 arcA two-component response regulator 6.32 799

13 59711232 VF_0625 Ndk nucleoside diphosphate kinase 5.92 245

14 59712758 VF_2151 - iron(III) ABC transporter 5.3 1109

15 59711304 VF_0697 - putative lipoprotein 5.22 72

16 59711049 VF_0442 Pgk phosphoglycerate kinase 5.08 1747

17 59711497 VF_0890 grxA glutaredoxin 1 4.88 216

18 59710869 VF_0262 rpoA DNA-directed RNA polymerase alpha 4.84 647

19 59713778 VF_A0595 - cold shock protein 4.78 273

20 59712703 VF_2096 - hypothetical protein 4.77 146

21 59714277 VF_A1094 cspG DNA-binding transcriptional regulator 4.64 776

22 59712568 VF_1961 Tsf elongation factor Ts 4.36 794

23 59714103 VF_A0920 luxB luciferase beta chain LuxB 3.93 1434

24 59710881 VF_0274 - immunogenic protein 3.87 442

25 59711114 VF_0507 deoD purine nucleoside phosphorylase 3.86 140

aOpen reading frame (ORF) locations of the respective genes on the chromosomes of V. fischeri.
bScores were assigned by Mascot. Scores greater than 48 were significant for V. fischeri.
doi:10.1371/journal.pone.0025649.t003
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Table 4. Symbiont proteins detected in light organ exudates and central cores by MudPIT and LC MS/MSa.

Category gi ORFb Protein Name Scorec

Quorum Sensing

59714104 VF_A0921 luciferase alpha chain LuxA 2840

59714103 VF_A0920 luciferase beta chain LuxB 1434

59714241 VF_A1058 LuxR-regulated periplasmic protein QsrP 691

59711956 VF_1349 subtilisin-like serine protease 491

59714105 VF_A0922 acyl transferase LuxD 463

59714077 VF_A0894 putative surface protein 304

59714106 VF_A0923 acyl-CoA reductase LuxC 225

59711152 VF_0545 S-ribosylhomocysteinase LuxS 167

59712332 VF_1725 secretory tripeptidyl aminopeptidase 123

59712784 VF_2177 LitR 78

59714102 VF_A0919 long-chain-fatty-acid ligase LuxE 62

59712585 VF_1978 AcfA-like protein 50

59711772 VF_1165 macrolide ABC transporter 45

59714108 VF_A0925 LuxR 21

Oxidative Stress

59712582 VF_1975 alkyl hydroperoxide reductase, C22 994

59711509 VF_0902 thioredoxin reductase 238

59713192 VF_A0009 hydroperoxidase HPII(III) KatA 184

59711528 VF_0921 superoxide dismutase, Fe 83

59712527 VF_1920 thioredoxin-dependent thiol peroxidase 54

59712923 VF_2316 nitric oxide dioxygenase 46

59714073 VF_A0890 thioredoxin peroxidase 19

Two-Component Signaling

59712727 VF_2120 ArcA 799

59713744 VF_A0561 two component response regulator 207

59712949 VF_2342 periplasmic protein CpxP 154

59712177 VF_1570 TorR 111

59711061 VF_0454 transcriptional regulator VpsR 83

59712516 VF_1909 DNA-binding response regulator NarP 63

59712234 VF_1627 response regulator GacA 59

59710721 VF_0114 osmolarity response regulator OmpR 54

59712981 VF_2374 two-component response regulator 46

59713399 VF_A0216 two component response regulator 36

59714199 VF_A1016 two component sensory histidine kinase 32

59711755 VF_1148 response-regulatory protein YehT 23

59712226 VF_1619 hybrid sensory histidine kinase TorS 20

59712008 VF_1401 sigma-54 dependent response regulator 16

59712950 VF_2343 DNA-binding response regulator CpxR 15

Flagellar-related proteins

59712463 VF_1856 FlrA 107

59712488 VF_1881 flagellar anti-sigma-28 factor FlgM 81

59712471 VF_1864 flagellin 65

59712473 VF_1866 flagellin 62

59712478 VF_1871 flagellar basal body L-ring protein 34

59711322 VF_0715 flagellar motor protein MotB 29

59712477 VF_1870 flagellar basal body P-ring protein 18

59712484 VF_1877 flagellar basal body rod protein FlgB 14
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symbiosis [44]. Hypohalous acid, produced by an abundant light

organ peroxidase similar to a halide peroxidase, is believed to help

to create an oxidative environment that V. fischeri must overcome

to colonize the host [45,46]. In addition to the previously

described EsHPO, a number of other host peroxidases were

present, suggesting that additional ROS may be important to this

association (Table 5). Peroxiredoxins are antioxidant proteins,

which are abundant in the host proteome and have been shown to

detoxify reactive molecular species derived from oxygen and

nitrogen [47,48]. Therefore, these ROS mediators may indicate a

means by which the host protects its own tissues in the oxidative

microenvironment of the light organ.

Another role of host ROS may be maintaining specificity by

preventing non-symbiotic bacteria and potential pathogens from

infecting the host. The light organ crypts are open to the

environment via pores on the surface of the light organ, yet V.

fischeri is thought to be the sole symbiont of this highly specific

association [1]. Proteins expressed by the symbiont reveal

functions involved with protecting cells from host ROS (Table 4).

V. fischeri utilizes a periplasmic catalase (katA) to sequester hydrogen

peroxide from the host, which can be used by EsHPO to generate

hypohalous acid [49]. We identified, in addition to KatA, the

antioxidant enzymes AhpC and thioredoxin-dependent thiol

peroxidase (Bcp) (Table 4). A V. fischeri katA mutant showed no

additional catalase activity in culture suggesting that KatA is the

major scavenger of H2O2 [49]. The additional antioxidant

proteins identified in this study may indicate a mechanism by

which the symbiont can protect itself from other types of ROS or

Table 5. Host proteins detected in light organ exudates and central cores by MudPIT and LC MS/MSa.

Category gi Top protein hit to NCBI nr database e-valueb Scorec

Immunity

225906399 Galectin [Pinctada fucata] 4E-69 10

63033995 Peptidoglycan recognition protein 2 [E. scolopes] 1E-121 7

223670954 C3 precursor [Nematosella vectensis]d 4E-12 6

144952812 Thioester-containing protein [Chlamys farreri] 4E-14 6

113931358 NFKB repressing factor [Xenopus tropicalis] 2E-17 4

42741753 Importin alpha 3 [Aplysia californica] 9E-6 4

63033997 Peptidoglycan recognition protein 3 [E. scolopes] 9E-49 3

85822201 TEP2 [Glossina morsitans morsitans] 3E-16 2

Oxidative stress

306451460 Thioredoxin peroxidase [Cristaria plicata] 1E-92 13

110734438 Superoxide dismutase [Haliotis discus discus] 7E-61 7

229366436 Peroxiredoxin-5 [Anoplopoma fimbria] 2E-51 5

67083759 Glutathione-type peroxidase [Ixodes scapularis] 8E-50 5

2239176 Melanogenic peroxidase [Sepia officinalis] 3E-59 4.5

209171295 Peroxiredoxin 4 precursor [Biomphalaria glabrata] 1E-101 4

159008 Halide peroxidase [Euprymna scolopes] 1E-141 4

157136354 Peroxiredoxins, prx-1, prx-2, prx-3 [Aedes aegypti] 5E-72 3.2

77166828 Glutathione peroxidase [Rhipicephalus microplus] 4E-62 3

149688674 Peroxiredoxin [Chlamys farreri] 2E-58 2

126697356 Thioredoxin peroxidase 2 [Haliotis discus discus] 1E-54 2

Iron-Binding

318067980 Transferrin [Ictalurus punctatus] 4E-34 6

4768842 Ferritin [Enteroctopus dofleini] 7E-74 3

157786780 Melanotransferrin [Rattus norvegicus] 6E-21 3

aFor more complete information on MudPIT and LC MS/MS host protein identifications refer to Table S2.
bE-value represents the alignment of the light organ EST with the top protein hit in the NCBI nr database.
cScores were assigned by BUDAPEST and correlate the number of reading frame peptides matched to the light organ EST to the number of overall peptides. Scores
greater than 2 were significant.

dNo alignment with Euprymna scolopes C3 (Putatively identified as a thioester-containing protein; see discussion).
doi:10.1371/journal.pone.0025649.t005

Table 4. Cont.

aFor more complete information on MudPIT and LC MS/MS symbiont protein identifications refer to Table S1 and Table S3.
bOpen reading frame (ORF) locations of the respective genes on the chromosomes of V. fischeri.
cScores were assigned by Mascot. Scores greater than 48 were significant for V. fischeri.
doi:10.1371/journal.pone.0025649.t004
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RNS. AhpC, a peroxiredoxin capable of reducing hydrogen

peroxide, organic peroxides, and peroxynitrite, is the most

abundant antioxidant symbiont protein present in the light organ

(Table 3). In Vibrio vulnificus, AhpC functions along with another

subunit, AhpF, which supplies the reducing equivalents in the

form of NADH, to reduce peroxides [50]. However, AhpF is

absent from the V. fischeri genome, suggesting that another protein

is necessary to reduce peroxides by this pathway. Studies involving

Treponema pallidum show that thioredoxin reductase can substitute

for organisms lacking an AhpF homolog [51]. For V. fischeri, a

thioredoxin reductase FAD/NAD(P)-binding protein (TrxB) was

present in our MudPIT data (Table 4) and may have the potential

of interacting with AhpC. Along with AhpC, proteins implicating

that V. fischeri also detoxifies RNS, include nitric oxide dioxygenase

(Hmp), and two peptide-methionine (S)-S-oxide reductases (MsrA

and VF_A0005; Table S1) [52,53].

Reactive nitrogen species, such as nitric oxide (NO), contribute

to signaling and development in the squid/Vibrio symbiosis [54].

The role of NO as a toxic product to pathogens has been well

studied; however, the function of NO in beneficial associations has

only been recently analyzed [54,55]. In juvenile squid the

epithelial tissue lining the ducts entering the light organ crypts

contain high levels of NO, suggesting that the symbionts must

overcome NO in order to colonize the light organ [56]. The

detection of nitric oxide dioxygenase (Hmp), recently shown to

play a role in NO detoxification, suggests that V. fischeri also

maintains the ability to manage NO related stress in adult squid

(Table 4) [53]. Once V. fischeri colonizes the light organ, nitric

oxide synthase (NOS) is down-regulated and lower levels of NO

likely allow the symbiont to grow in the crypt spaces under

reduced RNS stress [56]. We identified NFkB repressing factor,

which in addition to other immune functions, has been shown in

vitro to negatively regulate transcription of NFkB pathway

effectors, including NOS, by directly interacting with promoter

region sequences (Table 5) [57,58]. The results of this study

provide a number of new host and symbiont targets involved in

mediating ROS and RNS for further analyses.

The availability of iron has also been shown to be an important

factor in squid/Vibrio symbioses [53,59,60]. Free iron plays a

critical role in host/microbe interactions and under certain

circumstances may allow development of pathogenic associations

[61,62]. Host proteins involved in sequestering free iron such as

ferritin, transferrin, and melanotransferrin were identified

(Table 5). These iron-binding proteins provide supporting

evidence that iron remains limiting in the light organ and suggest

a possible role for these proteins in regulating the growth of V.

fischeri [59]. In contrast to the host, putative proteins that the

symbiont may utilize for acquiring iron include receptors for the

siderophores aerobactin and anguibactin (Table S3). Symbiont

proteins involved in utilizing heme, another source of iron, are also

present, and include HutZ, HutA, HuvX, and HmuT (Table S3).

It is likely that V. fischeri employs several different strategies to meet

its necessary iron requirements.

Quorum Sensing
First described in V. fischeri, quorum sensing regulates

bioluminescence, the light from which provides the host with an

anti-predatory mechanism known as counterillumination

[6,63,64]. Lux proteins involved in light production were

identified and among the most abundant symbiont proteins

(Table 3). Previous PAGE and transcriptomic analyses first

revealed additional quorum sensing-regulated proteins, which

were also detected by our characterization of the adult light organ

proteome [26,65]. QsrP is one of the most abundant proteins

present in the symbiont proteome (Table 3), yet this novel protein

remains functionally uncharacterized. Another quorum sensing-

regulated protein identified in this study is a putative surface

protein (VF_A0894) with immunoglobulin-like domains (Table 4).

This putative surface protein is similar to the Leptospira immuno-

globulin-like proteins (LigA, LigB and LigC) of pathogenic

Leptospira spp., which are thought to mediate adhesion to host cells

[66]. These quorum sensing-regulated proteins may be important

to a symbiotic lifestyle. We also detected LuxS, AI-2 synthase,

which is involved in a second quorum sensing system in V. fischeri

and has been implicated in regulating motility in Vibrio alginolyticus

[67–69]. A link between LuxS and motility, may implicate a role

for quorum sensing and the onset of motility prior to symbiont

expulsion from the light organ (see below).

Symbiont Signaling
Two-component signaling pathways are important mechanisms

by which bacteria can sense the environment and have been

identified in V. fischeri [70–73]. The roles in colonization for some

of these regulators, which were present in our proteomic data

(Table 4), such as GacA and ArcA, have been studied in detail,

and mutagenesis of these genes has demonstrated that they are

important in the association [71–73]. Although many regulators

have already been characterized with respect to the symbiosis,

many proteins involved in two-component signaling have

unknown functions in the light organ. For example, CpxP, an

abundant symbiont protein (Table 4), is a periplasmic component

of Escherichia coli and Vibrio cholerae and involved in modulating the

cell envelope stress response through CpxAR signaling, thus

providing an appealing target for future studies [74,75].

Other Related Stresses
Although several were identified in this study, cold shock

proteins have yet to be described with respect to the light organ

symbiosis. Of the top 25 most abundant symbiont proteins present

in the light organ, three were cold shock proteins (CspD, CspG,

and VF_A0595; Table 3). Cold shock proteins often bind nucleic

acids and function in general stress responses. Furthermore, they

have been shown to play a role in regulating bacterial growth at

stationary phase and may even serve as MAMPs recognized by

hosts [76,77]. One cold shock protein identified in the light organ,

CspD, prevents replication from occurring in stationary phase E.

coli cells by binding to single stranded DNA and blocking

replication [78]. Prior to expulsion at dawn, the symbiont

population is at its most dense during the day/night cycle.

Therefore, cold shock proteins may play a role in either

maintaining high cell densities in the light organ and/or assisting

during the transition between the symbiotic and free-living state.

Motility
Research involving the role of motility in the squid/Vibrio

symbiosis has focused on the initiation of colonization. Within the

light organ V. fischeri cells become differentiated with the loss of

their flagella [79]. Upon release from the light organ at dawn, V.

fischeri cells are believed to fully regenerate their flagella within

several hours [79]. Our proteomic data show the presence and

putative identification of several proteins related to flagellar

structure including filamental proteins (FlaA, FlaC), basal body

proteins (FlgB, FlgH, FlgI), and a motor protein (MotB; Table 4).

Proteins related to flagellar regulation (FlrA and FlgM) and

chemotaxis (CheW and CheZ) were also detected. A recent study

indicated an increase in flagellar gene expression by light organ

symbionts in the hours preceding dawn and V. fischeri mutants of

FlaA and FlrA have been shown to be important for symbiotic
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competence [10,80,81]. FlrA was also found to be expressed by V.

fischeri in the light organs of E. scolopes and a different squid species,

E. tasmanica, but not in strains grown in seawater [82]. Together,

the data from this present study and others suggests that V. fischeri

cells are generating flagella prior to expulsion from the light organ

and may be preparing for the transition from the symbiotic to the

free-living state. Future studies should focus on signals in the

changing microenvironment that may initiate this transition.

Symbiont Metabolism
Within the light organ, V. fischeri employs a number of metabolic

strategies [9,10,83,84]. The daily rhythm of the light organ

symbiont population coincides with fluctuations in symbiont

metabolism [10]. Transcriptomics revealed a unique pattern in

which during the night the symbiont ferments chitin as a means of

obtaining energy. After the majority of the symbiont population is

expelled from the light organ, the remaining symbionts anaero-

bically respire glycerol during the hours in which the light organ

becomes replenished with a full symbiont population. The results

of this study show abundant symbiont chitin binding proteins and

chitinases, thus supporting these previous findings (Table S3). The

diel shift in metabolism is one piece of evidence that supports the

light organ as being a dynamic microenvironment that is under the

regulation of both the host and symbiont [10].

Summary
Proteomic studies of symbioses utilizing high-throughput

techniques are becoming more common and have been used for

analyses of the pea aphid-Buchnera symbiosis, nitrogen fixing

symbioses of leguminous plants, human gut microbiota, and in

characterizing the function of uncultivable symbionts in hydro-

thermal vent symbioses [85–89]. Characterization of the light

organ proteome with high-throughput techniques allowed for the

identification of a large number of host and symbiont proteins

using little starting material and demonstrates the value of

proteomic analyses in an effort to understand the relationship of

a symbiotic association. The results of this study complement prior

transcriptomic data, but have also identified a number of proteins

of previously unknown function in the squid/Vibrio symbiosis [10].

The high-throughput techniques used here offer new methods for

identification of host and symbiont proteins likely important for

the maintenance of this and other host/microbe associations.

Supporting Information

Figure S1 Functional analysis of host and symbiont
light organ proteomes. A. COG category counts for all

symbiont proteins present in the light organ (including putative

identifications). B. KOG category counts for all host proteins present

in the light organ (including putative identifications) using represen-

tative light organ ESTs. (COG/ KOG key: J- translation, ribosomal

structure, and biogenesis, A- RNA processing and modification, K-

transcription, L- replication, recombination and repair, B- chromatin

structure and dynamics, D- cell cycle control, cell division and

chromosome partitioning, Y- nuclear structure, V- defense mecha-

nisms, T- signal transduction mechanisms, M- cell wall, membrane

and envelope biogenesis, N- cell motility, Z- cytoskeleton, W-

extracellular structures, U- intracellular trafficking, secretion and

vesicular transport, O- posttranslational modification, protein

turnover and chaperones, C- energy production and conversion,

G- carbohydrate transport and metabolism, E- amino acid transport

and metabolism, F- nucleotide transport and metabolism, H-

coenzyme transport and metabolism, I- lipid transport and

metabolism, P- inorganic ion transport and metabolism, Q-

secondary metabolites biosynthesis, transport and catabolism, R-

general function prediction only, S- function unknown).

(DOC)

Table S1 Symbiont proteins detected in light organ
exudates and central cores by MudPIT and LC MS/MS.
(XLS)

Table S2 BUDAPEST analysis of host proteins detected
in light organ exudates and central core by MudPIT and
LC MS/MS.
(XLS)

Table S3 Additional symbiont proteins detected in light
organ exudates and central cores by MudPIT and LC
MS/MS categorized by functions relevant to survival in
the light organ crypts.
(DOC)
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