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Mycobacterium tuberculosis continues to be one of the most successful pathogens on
earth. Upon inhalation of M. tuberculosis by a healthy individual, the host immune sys-
tem will attempt to eliminate these pathogens using a combination of immune defense
strategies. These include the recruitment of macrophages and other phagocytes to the
site of infection, production of cytokines that enhance the microbicidal capacity of the
macrophages, as well as the activation of distinct subsets of leukocytes that work in con-
cert to fight the infection. However, being as successful as it is, M. tuberculosis has evolved
numerous strategies to subvert host immunity at virtual every level. As a consequence, one
third of the world inhabitants carry M. tuberculosis, and tuberculosis continuous to cause
disease in more than 8 million people with deadly consequences in well over 1 million
patients each year. In this review, we discuss several of the strategies that M. tuberculosis
employs to circumvent host immunity, as well as describe some of the mechanisms that
the host uses to counter such subversive strategies. As for many other infectious diseases,
the ultimate outcome is usually defined by the relative strength of the virulence strategies
employed by the tubercle bacillus versus the arsenal of immune defense mechanisms of
the infected host.
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INTRODUCTION
Tuberculosis has affected human beings for centuries. Still, one-
third of the world’s population is infected with Mycobacterium
tuberculosis, of which close to 9 million people progress into active
disease while the rest remains asymptomatic (1–4). In recent years,
the problem of drug resistant strains of M. tuberculosis that fur-
ther limits the possibilities for therapeutic interventions has only
added to the global burden of tuberculosis.

The usual route of infection occurs via aerosols containing
mycobacteria. These aerosols are released into the environment
through coughing by individuals who suffer from active tuber-
culosis and are inhaled by recipients into the respiratory tract.
There, alveolar macrophages phagocytose the bacilli in an attempt
to eliminate the pathogen (5–7). However, M. tuberculosis, being
an extremely slowly growing microbe, with a generation time of
15–20 h, has evolved elaborate strategies to circumvent the innate
antimicrobial response that operates within macrophages, result-
ing in a long-term cohabitation of M. tuberculosis with their host
cells. Once inside the host, M. tuberculosis can meet several fates:
the bacteria can be killed and eliminated, they can survive and
proliferate, resulting in active disease, or the bacilli stop growing
but reside within the host in a latent state; as a result of the latter,
many individuals harbor life-long infections of slowly growing or
even dormant bacteria that have also the potential to become reac-
tivated; whether active tuberculosis results from reactivation or de
novo secondary infections remains unclear in many cases (8–12).

Once within the host, M. tuberculosis excels at circumventing
macrophage immune defense mechanisms and interferes at dif-
ferent levels with the generation of an effective acquired immune
response, largely through the modulation of and interference with
cytokine-mediated immune activation mechanisms (1, 13, 14).

However, other than the mycobacterial load itself, also the result-
ing immune activation that aims to control the infection can
contribute to the pathology associated with tuberculosis thereby
resulting in the development of active disease both at the site of
infection, in the lungs, and also within other organs following
mycobacterial dissemination (15–17).

Progression of an M. tuberculosis infection usually includes an
initial innate phase followed by an adaptive immune response
that can progress into a chronic state (2, 18–20). In this article,
the capacity of mycobacteria to evade the microbicidal activity of
macrophages as well as the response of the host through innate
and adaptive immune responses will be reviewed, with a focus on
those issues that determine whether the balance tips in favor of
the pathogen or the host.

ENTRY OF MYCOBACTERIA INTO MACROPHAGES
The primary cells in the respiratory tract that are in charge of
host defense are the alveolar macrophages, and due to the pres-
ence of a diverse number of ligands on the mycobacterial surface,
a large repertoire of macrophage receptors can be involved in
pathogen recognition and internalization. Such receptors include
complement receptors, mannose receptors, scavenger receptors,
and C-type lectins such as DC-SIGN, pattern recognition recep-
tors, and surfactant protein receptors. Any of these receptors can
lead to uptake through receptor-mediated phagocytosis by rec-
ognizing molecules on the mycobacterial surface (21–28). Several
lines of evidence implicate the so-called “mammalian cell entry”
proteins (Mce 1–4) expressed by mycobacteria in the internal-
ization of mycobacteria into phagocytes (29, 30). Mce proteins
contain a well characterized Arg-Gly-Asp (RDG) motif that is
responsible for binding to integrins at the mammalian cell surface
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(31); also, the Mce proteins have been suggested to represent ABC
transporters possibly involved in lipid import (32, 33). The pre-
cise mode of action of these Mce proteins remains unclear, as M.
tuberculosis strains lacking Mce1 are hypervirulent in mice whereas
disruption of Mce 2-4 results in attenuation (34–36). One other
key component regulating mycobacterial entry is plasma mem-
brane resident cholesterol, whose depletion from the macrophage
membrane prevents bacterial entry (37). Cholesterol could serve
to directly provide entry of mycobacteria via the plasma mem-
brane or allow the stable expression of receptor and/or signaling
molecules that assist mycobacterial entry (38, 39).

Another class of molecules, essential for microbial recognition
in both macrophages and dendritic cells, are Toll-like receptors
(TLRs). The cytoplasmic domain of TLRs is linked to adap-
tor proteins including not only myeloid differentiation primary
response gene (88) product (MyD88) but also MyD88 adapter-
like (Mal), TIR (Toll/Il1 receptor)-domain-containing adapter-
inducing interferon-β(TRIF) and TLR 4 adaptor protein (TRAM)
in case of TLR4. Those adaptors then recruit interleukin-1
receptor-associated kinase (IRAK) 2 and 4, leading to the acti-
vation of nuclear factor ‘kappa-light-chain-enhancer’ of activated
B-cells (NFkB) (40–42). Mycobacterial peptidoglycans, lipopep-
tides, and mycobacterial DNA are recognized by TLR2, 4, and
9, respectively (43). TLR activation has numerous consequences,
including the production of inflammatory mediators, the regula-
tion of phagocytosis, as well as connecting the phagosomal path-
way with autophagosomes thereby inducing rapid mycobacterial
killing (44–49). Whereas a functional connection between phago-
cytosis and autophagosome formation has been mainly demon-
strated using model particles (48). It has also been shown that
macrophages harboring M. tuberculosis eliminate the pathogen
via autophagy (50). One additional advantage of TLR-mediated
activation of phagocytosis and autophagosome formation may be
a more efficient regulation of antigen processing and presenta-
tion by infected macrophages (47). Also, in human macrophages,
TLR activation was shown to result in upregulation of a vita-
min D-induced antimicrobial pathway that inhibits the growth of
M. tuberculosis (51, 52).

BALANCING SURVIVAL STRATEGIES EMPLOYED BY
M. TUBERCULOSIS AGAINST HOST DEFENSE STRATEGIES
Following receptor recognition and phagocytosis of M. tuberculo-
sis by alveolar macrophages, a plethora of reactions are initiated by
both the host and the mycobacteria, which together determine the
outcome of the infection. In general, macrophages tend to destroy
anything that is phagocytosed; however, pathogenic mycobacte-
ria have developed an elaborate range of strategies to combat the
bactericidal milieu encountered upon ingestion.

BLOCKING THE DELIVERY OF M. TUBERCULOSIS TO LYSOSOMES
Several host factors are involved in the modulation of intracellu-
lar trafficking of mycobacteria within macrophages. One of these
is the protein coronin 1 (also known as P57 or TACO, for tryp-
tophan aspartate containing coat protein) that is present at the
cell cortex of macrophages, and is actively recruited and retained
at the cytosolic face of nascent mycobacteria-containing phago-
somes (7, 8, 37, 53). Coronin 1-dependent blockage of phagosome

maturation occurs through activation of the Ca2+/calcineurin
pathway, possibly involving dephosphorylation of molecules nor-
mally involved in the regulation of intracellular trafficking of
phagosomal cargo (54–59). The exact mechanisms of coronin 1
retention at the mycobacterial phagosome remain to be deter-
mined and may involve the enzyme lipoamide dehydrogenase that
is secreted by mycobacteria and is also known to be involved in
resisting the toxic effects of nitrogen intermediates generated by
host cells (60, 61). In line with an important role for calcineurin in
promoting mycobacterial survival, it was shown that calcineurin
inhibitors such as cyclosporin A and FK506 can induce mycobac-
terial transfer to lysosomes and their killing (54, 55, 62). Whether
or not blocking of this pathway may be useful for the treatment
of mycobacterial infections is unclear, since both calcineurin and
coronin 1 are important molecules involved in T-cell homeostasis
(56, 59, 63, 64).

Mycobacteria-containing phagosomes are known to contin-
uously shed off phosphatidylinositol-3-phosphate (PI3P), a key
phosphoinositide known to regulate the phagosomal acquisition
of lysosomal constituents (65). Also, dephosphorylation of the
vacuolar protein sorting protein 33B prevents membrane fusion
events that are crucial for phagosome maturation (66). It is
quite possible that different host factors are being hijacked at
distinct phases of the infection process, and future work may
shed further light on the precise kinetics of the above mentioned
processes.

ROLE OF MYCOBACTERIAL VIRULENCE FACTORS IN PREVENTING
PHAGOSOME–LYSOSOME FUSION
In the course of the co-evolution with their host cell, the
macrophage, M. tuberculosis has built up a large arsenal of vir-
ulence factors that can interfere with host immune functions at
different levels. The virulence repertoire of mycobacteria com-
prises distinct kinases, phosphatases, metalloproteinases, and pore
forming proteins, which together constitute a potent infectious
challenge.

One of these virulence factors is the exported repeated protein
(Erp) that is required for intracellular replication of pathogenic
mycobacteria (67). Erp proteins have three domains, where the
amino terminus harbors a signal sequence, a central variable
domain containing PGLTS repeats, and a proline–alanine rich C-
terminus. Erp is important to maintain the cell wall integrity of
mycobacteria through the riboflavin metabolism pathway and is
required for its survival both in macrophages and in vivo (68, 69).

Another mycobacterial factor, the eukaryote-like serine/
threonine protein kinase protein kinase G (PknG), is released by
mycobacteria into the host cytosol, thereby blocking phagosome–
lysosome fusion (39, 70, 71). As a consequence, mycobacteria
lacking PknG are rapidly transferred to lysosomes and degraded
(70, 72–75). Interestingly, although highly homologous to eukary-
otic serine/threonine protein kinases, PknG contains a binding
pocket for substrates that is shaped by a unique set of amino acid
side chains that are not found in any human kinase. Therefore,
PknG is well amenable to specific inhibition without the risk of
targeting host kinases, thereby possibly allowing the inhibition
of intracellular replication of pathogenic mycobacteria without
adverse effects on host cells (73, 76, 77).
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Within macrophages, mycobacteria also release a phosphatase,
called secreted acid phosphatase of M. tuberculosis (SapM), that
hydrolyzes phosphatidyl inositol 3 phosphate (PI3P), which, as
mentioned above, is involved in regulating phagosome–lysosome
fusion. As a consequence of depleting PI3P locally, mycobacterial
SapM contributes to the inhibition of phagosome maturation and
thereby intracellular mycobacterial survival (78, 79). Furthermore,
a putative zinc-dependent metalloprotease (Zmp1) released by
mycobacteria interferes with phagolysosome biogenesis by inter-
fering with caspase 1-dependent activation. Activated caspase 1
is known to cleave pro-interleukin-1β in order to generate active
interleukin-1β and activating the inflammasome complex (80, 81).
The absence of Zmp1 suppresses this activation and thereby pro-
motes phagosome–lysosome fusion and elimination of mycobac-
teria (82). Also, the enhanced intracellular survival (Eis) protein
is known to prevent natural killer (NK) cell-dependent reactive
oxygen species (ROS) generation via its aminoglycosyl amino-
transferase activity (83). Eis protein dampens tumor necrosis
factor-α (TNFα) and interleukin-10 production thereby prevent-
ing macrophage activation. Macrophage activation through TNFα

or interferon-γ results in phagosome–lysosome fusion. Eis protein
inhibits the generation of ROS in the cell and thereby prevents the
onset of macrophage activation and autophagy (84).

Finally, although not directly involved in the modulation
of phagosome–lysosome fusion, the type VII secretion system
encoded by the RD1 locus is known to produce and secrete the
early secretory antigenic target (ESAT) 6 and culture filtrate pro-
tein (CFP) 10, which are key components for promoting cytosolic
escape of mycobacteria (85–88). The ESX-1 gene cluster exhibits
higher expression when mycobacteria encounter a reduced pH,
and perhaps the ESX-1 system is therefore a mechanism allow-
ing the cytosolic escape of those mycobacteria that may have been
transferred to the lysosome (89–92).

MACROPHAGE ACTIVATION AS A MECHANISM TO COUNTERACT
MYCOBACTERIAL INFECTIONS
One of the consequences of infection is the activation of innate
immune responses through the release of macrophage-activating
molecules such as various cytokines including interferon-γ (93–
97). Activated macrophages then modulate intracellular trafficking
of mycobacteria and promote phagolysosome formation result-
ing in mycobacterial destruction (98, 99). Macrophage activation
allows the replenishment of phosphoinositides at mycobacteria-
containing vesicles and thereby promotes the exchange of Rab5 by
Rab7, which is crucial to its fusion with the lysosome (79). Also, the
natural resistance-associated macrophage protein1 (Nramp1), a
metal ion transporter that scavenges metal ions from the microbe-
containing vesicles (100–103), is modulated by macrophage-
activating cytokines such as interferon-γ (104). Defects in Nramp
production lead to susceptibility to mycobacterial infections (103,
105, 106).

A recent study shows that inflammatory stimuli such as induced
by interferon-γ or TNFα result in the phosphorylation of the
protein coronin 1, which as described above is crucial to allow
mycobacterial survival in non-activated macrophages. Activation-
induced phosphorylation of coronin 1 results in its delocal-
ization from the cell cortex to cytoplasmic punctae, thereby

reprograming the macrophage endocytic pathway from receptor-
mediated phagocytosis to macropinocytosis (107). Interestingly,
relocated coronin 1 activates phosphatidylinositol (PI)-3-kinase,
which is required for an early burst of PIP3 that is known to
be essential for membrane ruffle formation and induction of
macropinocytosis (107–110).

Macropinocytic uptake of mycobacteria along with the upreg-
ulation of the interferon-γ response genes plays a critical role
in pathogen elimination (111–113). These interferon-γ-induced
genes include the LPS-stimulated RAW 264.7 macrophage pro-
tein 47 homolog (LRG-47), also known as Irgm1 (114–116),
as well as a series of guanylate-binding proteins (GBPs) that
are involved in the activation of diverse host defense mecha-
nisms, including activation of the phagocyte oxidase, generation
of antimicrobial peptides, and induction of autophagy (117, 118).
Interestingly, recent work suggests that Irgm1/LRG-47 fails to asso-
ciate with mycobacterial phagosomes (119) and that deficiency
of Irgm1/LRG-47 results in an interferon-γ-dependent collapse
of the lymphomyeloid system, causing general susceptibility to
pathogens (120–122). Thus, these immunity-related GTPases may
have a rather broad function in shaping the immune system as
also exemplified by recent work implicating Irgm1/LRG-47 in
hematopoietic stem cell proliferation (116, 123).

KEY HOST DEFENSE FACTORS INVOLVED IN THE ELIMINATION OF
MYCOBACTERIA UPON MACROPHAGE ACTIVATION
Once in the phagosome, a number of antibacterial molecules
directly threaten mycobacterial viability. Among these, reactive
oxygen intermediates in the form of hydrogen peroxide are gener-
ated by macrophages via the oxidative burst, and effectively limits
mycobacterial growth within macrophages (124, 125). Interest-
ingly, vitamin C along with the antibiotic isoniazid was recently
shown to effectively kill extreme and total drug resistant M.
tuberculosis through the induction of ROS (126).

Reactive nitrogen intermediates are generated by cytokine-
activated macrophages through inducible nitric oxide synthetase
using l-arginine as the substrate (127, 128). Upon mycobacterial
infection, mycobacteria upregulate macrophage arginase, which
then catalyzes l-arginine to l-ornithine and urea and thereby
prevents nitric oxide generation (129). In addition, the mycobac-
terial proteasome is also involved in resistance against nitric oxide
stress (130, 131), and specific inhibition of mycobacterial pro-
teasomes may be useful to prevent mycobacterial growth within
macrophages (132).

As mentioned above, induction of autophagy that is involved
in the clearance of many intracellular pathogens is also used by
infected host cells to eliminate M. tuberculosis (133, 134). Shuttling
of M. tuberculosis into autophagosomes can occur via a ubiquitin-
mediated pathway; recent work has implicated a ubiquitin ligase
termed parkin, mutations of which are associated with increased
risks for Parkinson disease, in the transfer of M. tuberculosis as well
as other pathogens to the autophagic pathway (135).

FORMATION OF GRANULOMAS
The survival strategies of mycobacteria and the innate and adap-
tive immune response elicited to restrict mycobacterial survival
and growth come together in a dynamic combat zone called

www.frontiersin.org October 2014 | Volume 5 | Article 455 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


BoseDasgupta and Pieters M. tuberculosis and host immunity

the granuloma (8, 136). Within granulomas, the host attempts
to control mycobacterial dissemination, while at the same time
propagation of mycobacteria can occur (107, 137–139). Within
granulomas, macrophages harboring viable bacteria are being sur-
rounded by a layer of activated macrophages that ensure mycobac-
terial elimination. These activated macrophages can process and
present mycobacterial antigens to an outer layer of T lympho-
cytes upon which these T-cells secrete cytokines and chemokines
that keeps the macrophages in an activated state (5, 13, 20). Thus,
granuloma formation represents a delicate balance that is easily
disturbed either by enhanced virulence of the mycobacteria or a
deteriorating host immunity, such as under immunocompromised
conditions (140). New research into the biology of granulomas
using different model systems may allow a better understanding of
these important structures involved in balancing the host versus
the pathogen. TNF-α is essential for the formation and main-
tenance of granulomas, promoting the release of chemokines,
cytokines, and adhesion molecules, which in turn activates and
recruit neutrophils required for enhancing the microbicidal activ-
ity of macrophages. As a result, anti-TNF-α therapy for the
treatment of inflammatory conditions can result in the reacti-
vation of granulomatous infections by inhibiting microbicidal
activity (141, 142).

CELLULAR IMMUNE RESPONSE AGAINST MYCOBACTERIA – ROLE OF
LEUKOCYTE SUBSETS AND CYTOKINES
Phagocytes play a key role in initiating and directing adaptive
immune responses through antigen presentation and expression
of co-stimulatory signals and cytokines. However, other leukocyte
subsets are also important in the host defense against M. tubercu-
losis (9, 143). These other components of innate immunity include
neutrophils as well as NK cells. Neutrophils are not only abundant
but also the first cells to arrive at the replicating mycobacteria loci
and play an important role in controlling the bacterial load, yet at
the same time may be involved in the induction of tissue damage
(144–146). NK cells are known to directly lyse the mycobacteria
or mycobacteria-harboring macrophages (147). At initial stages
of infection NK cells can induce macrophage activation resulting
in mycobacterial killing as well as induce macrophage apopto-
sis also resulting in the destruction of the intracellularly residing
bacteria (148, 149).

Since mycobacteria reside in vacuoles within macrophages,
major histocompatibility complex (MHC) class II presentation of
mycobacterial antigens to CD4+ T-cells is an obvious outcome (1,
150–152); indeed, depletion of CD4+ T-cells from the periphery
results in acute mycobacterial pathogenesis (153–155). However,
the presence of a pool of M. tuberculosis in the cytosol of infected
macrophages as well as MHC class I-mediated antigen presenta-
tion from phagosomes may also result in the activation of CD8+

T-cells via MHC class I-mediated presentation (91, 156–159). Fur-
thermore, CD1- and MHC class I-restricted CD8+ T-cells can
induce perforin/granulysin-mediated lysis of mycobacteria within
infected macrophages and dendritic cells (160). Finally, the so-
called γ/δ T-cells that represent a small subset of T-cells expressing
a γ- and δ-chain instead of the conventional α- and β-chain of the
T-cell receptor (161–163) are also important for the control of M.
tuberculosis within an infected host (164). These γ/δ T-cells appear

to recognize specific mycobacterial protein and peptide antigens
in an MHC-unrestricted manner (164–168). The precise contri-
bution of γδ T-cells to mycobacterial immunity is still unclear, but
given the importance of mycobacterial lipids in the virulence of
infection these cells might in fact constitute an important arm of
the immune response.

An important function of CD4+ T-cells is the production of
cytokines in order to activate macrophages, that in turn upreg-
ulate both the capacity to internalize and destroy mycobacteria
(107, 153, 169). The predominant pro-inflammatory cytokines
that are crucial to counteract mycobacterial infection include
interferon-γ, TNFα, interleukin-2, and interleukin-12. Mainly,
CD4+ T-cells, and also CD8+ T-cells, NK cells, and infected
macrophages all produce interferon-γ, which results in the aug-
mentation of antigen processing and presentation (111, 170, 171).
Additionally, cytokine activation increases mycobacterial uptake
and elimination through upregulation of macropinocytosis and
autophagosome formation (107, 133, 134, 172). The central role
for interferon-γ in the control of mycobacterial infections is also
illustrated by the high susceptibility of both mice and human
beings bearing mutations in genes coding for the interferon-γ
receptor (173–175).

Another important cytokine involved in mycobacterial control
is TNFα, which is secreted mainly by macrophages and dendritic
cells. Similar to interferon-γ, mice lacking TNFα or its recep-
tor are susceptible to mycobacterial infection (176, 177). TNFα

plays an important role in granuloma formation and parasite
dissemination from the granuloma (178).

The cytokine interleukin-2 that is essential for peripheral T-cell
survival, alone or in synergy with other cytokines, is also important
to control mycobacterial infection (179, 180). Also, phagocyto-
sis of mycobacteria triggers the production of interleukin-12,
which results in the induction of interferon-γ in an autocrine
and paracrine fashion (181–185). Furthermore, in macrophages,
the cytokine interleukin-4 induces a so-called alternative activa-
tion of macrophages, resulting in the upregulation of arginase 1
and suppressor of cytokine signaling (SOCS) 3 like proteins (186).
Increased expression of interleukin-4 can result in reactivation
of latent tuberculosis (187, 188) illustrating the complex role of
interleukin-4 during mycobacterial infections.

Recognition of the mycobacterial cell wall component lipoara-
binomannan by macrophages as well as its phagocytosis results
in the secretion of the anti-inflammatory cytokine, interleukin-10
(189) which, in turn, dampens the expression of pro-inflammatory
cytokines interferon-γ, TNFα, and interleukin-12 (190–194).
Hence, interleukin-10 interferes with the host defense against
tuberculosis, which is in line with the observed lower bacterial
burden in mice lacking interleukin-10 (195). Lipoarabinomannan
is also known to induce transforming growth factor (TGF)-β pro-
duction by macrophage and dendritic cells, thereby counteracting
macrophage activation as well as protective immunity against
tuberculosis (189, 196–198). These various anti-inflammatory
cytokines are expressed to counterbalance the activity of pro-
inflammatory cytokines during mycobacterial infection; however,
the relative role of pro- and anti-inflammatory cytokines in the dis-
ease process remains unclear, and may change depending on either
the time course or the precise location of the infection (199, 200).
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CONCLUDING REMARKS
The response of the host to mycobacterial infection is complex
and multifactorial involving many different immune components.
Mycobacteria excel at subverting immune responses through a
variety of mechanisms both by involving mycobacterial viru-
lence factors and by hijacking host defense mechanisms. The
immune response of the host, resulting in macrophage activation,
alters the functionality of these host factors in order to enable
pathogen elimination. The continuous tug of war between invad-
ing mycobacteria and host immunity finally determines the disease
outcome. Future studies combining present day technical advances
with the study of suitable host models may help to further unravel
the intricate virulence mechanisms of this immensely successful
pathogen.
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