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Telomerase reverse transcriptase (TERT) is the protein component of telomerase 
and combined with an RNA molecule, telomerase RNA component, forms the 
telomerase enzyme responsible for telomere elongation. Telomerase is essential 
for maintaining telomere length from replicative attrition and thus contributes to 
the preservation of genome integrity. Although diverse mouse models have been 
developed and studied to prove the physiological roles of telomerase as a telo-
mere-elongating enzyme, recent studies have revealed non-canonical TERT activi-
ties beyond telomeres. To gain insights into the physiological impact of extra-telo-
meric roles, this review revisits the strategies and phenotypes of telomerase mouse 
models in terms of the extra-telomeric functions of telomerase.
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INTRODUCTION

During DNA replication, the linear ends of chromosomes are eroded at each cell 
division due to the end replication problem.1 Telomeres, the very ends of linear 
chromosomes, are predominantly composed of tandem repeats of short sequences; 
in vertebrates, the repeats consist of the TTAGGG hexanucleotide.2 Telomere 
lengths are also remarkably heterogeneous among individuals and vary according 
to the origin, age, and proliferative history of cells.3,4 Telomere length variations 
among individuals of the same age are, therefore, thought to be related to varia-
tions in ageing and longevity.5 As a ribonucleoprotein complex that is composed of 
telomerase reverse transcriptase (TERT) and telomerase RNA component 
(TERC),6 telomerase is responsible for elongation of the telomeres, and thus main-
tains genome stability.7,8 The enzymatic activity of telomerase is not detected in 
normal somatic cells, but is detected in embryonic and highly proliferative adult 
tissues.9 Furthermore, telomerase is re-activated in most cancers,10 thus suggesting 
the possibility that telomerase is a potential therapeutic target in cancers. 

Recently, a number of reports have shown extra-telomeric functions of TERT. 
The following observations pose questions regarding the rationality of telomere 
length-dependent singular role of telomerase:
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SURVIVAL-PROMOTING FUNCTIONS  
OF TELOMERASE

Apoptosis induced by critically short telomeres has been 
extensively documented. Dysfunctional telomeres increase 
apoptosis in highly proliferative tissues including intes-
tine,26,27 male germ cells,26,28 and splenocytes (B cells) from 
immunized fifth and sixth generation mice after mitogen 
treatment.29 These dysfunctional telomeres can be generat-
ed in early generations, and can increase apoptosis in these 
tissues as well. Protection of Telomeres 1 (POT1) is a sin-
gle-stranded telomere binding protein that is essential for 
proper maintenance of telomere length. When Pot1 is defi-
cient, abnormal apoptosis is induced in proliferative tissues 
as well as cells derived from Terc+/- mice, including male 
germ cells, hematopoietic cells, and intestinal cells.30 Criti-
cally short telomeres also affect highly proliferative devel-
opmental processes. Terc-/- embryos at embryonic day 10.5 
(E10.5) with dysfunctional telomeres frequently exhibit neu-
ral tube closure defects, suggesting that this is one of the 
most sensitive developmental processes to telomere loss 
and chromosomal instability.31 Although cardiac tissues are 
not highly proliferative, the balance between cell growth 
and cell death is critical for maintaining normal heart func-
tion. Consistently, dysfunctional telomeres lead to abnor-
mal apoptosis in cardiomyocytes, resulting in cardiac dilata-
tion and heart failure in the late generation of Terc-/- mice.32 
Additionally, cardiomyocyte survival is promoted in trans-
genic mice overexpressing wild-type TERT, but not ex-
pressing mutant TERT.33 Tert deficiency also induces apop-
totic phenotypes; Tert-/- and Terc-/- mice show frequent 
apoptosis in intestinal crypt cells34-36 and male germ cells37 
respectively in their late generations. Furthermore, the dele-
terious effects can be rescued by turning on telomerase ac-
tivity in the late generation of homozygous ER-Tert knock-
in mice by treating with tamoxifen.37 These results clearly 
demonstrate that telomerase deficiency elicits telomere ero-
sion, resulting in abnormal apoptotic phenotypes in vivo. 

Telomerase-deficient mouse models have provided op-
portunities for unraveling the mechanisms which induce 
these apoptotic phenotypes in late generations. Rajaraman, 
et al.36 showed using Tert-/- mice that apoptosis is dependent 
on S phase, and thus is primarily triggered by newly un-
capped (or critically short) telomeres. It is not triggered by 
chromosome fusion-bridge breakage because mitotic 
blockade did not alter the apoptotic pattern.36 It is also de-

1) Although tissue stem and progenitor cells have suffi-
cient telomere reserves, they highly express TERT. Notably, 
laboratory mice have significantly longer telomeres than hu-
mans (40-60 kb vs. 5-15 kb);11-14 however, no apparent role 
for long telomeres has been found in the survival of mice.

2) TERT overexpression promotes tumor development 
without further telomere elongation.15

3) The reconstitution ability of hematopoietic stem cells 
(HSCs) is essentially linked with TERT, although there is 
no evidence that HSC activities are fully dependent on the 
telomere-elongation function of TERT.16,17 

4) Transgenic mice overexpressing murine TERT show 
significant resistance to ischemic brain injury and N-meth-
yl-D-aspartic acid (NMDA) receptor-mediated excitotoxic-
ity without any detectable change in telomere length.18 In-
terestingly, ischemic injury induces TERT expression in the 
wild-type brain.18

5) Suppression of TERT expression decreases cell growth 
rate and induces apoptosis prior to measurable telomere 
shortening,19 and the expression of specific TERT mutants 
lacking telomerase activity prevents apoptotic cell death.20

6) Ectopic expression of TERT in the hair follicle stem 
cells of mouse epidermis activates stem cell capacities.21 The 
phenotype appears to be independent of telomerase activity.

7) Cancers without functional telomerase (10-15% of all 
cases) maintain their telomere lengths by adopting an alter-
native lengthening of telomeres (ALT) pathway.22

Furthermore, indirect evidence also indicates extra-telo-
meric functions of telomerase: TERT may have additional 
functions because the reverse transcriptase (RT) domain of 
TERT is only 15 kDa, which is less than 10% of the total 
molecular weight. Thus, it is quite possible that other re-
gions may mediate distinct activities other than telomerase 
activity.23 In support of this hypothesis, alternatively spliced 
forms of TERT devoid of the RT domain have been identi-
fied in humans.24 Although TERT is known as a nuclear 
protein, it is exported from the nucleus and delays replica-
tive senescence in endothelial cells dependent on reactive 
oxygen species (ROS).25 

Several lines of evidence obtained using mouse models 
have strengthened the idea that TERT contributes to pre-
venting ageing and cell death, as well as promoting carci-
nogenesis, cell signaling, and transcriptional regulation, 
which are unrelated to its role in telomere lengthening. Here, 
we review the studies encompassing the extra-telomeric 
functions of telomerase conducted using transgenic or 
knockout mouse models.
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vitro and in vivo.44 Furthermore, although telomerase activi-
ty is evidently suppressed in transgenic mice overexpress-
ing hTERT, hTERT transgenic MEFs still show resistance 
to STS-induced apoptosis.44 Based on these lines of evi-
dence, telomerase activity must not be essential for the pro-
tective function of TERT. Therefore, independent of its 
roles in telomere maintenance, diverse telomerase mouse 
models have demonstrated that TERT-mediated antiapop-
totic functions may contribute to tumorigenesis. 

ONCOGENIC ROLES OF  
TELOMERASE IN TUMORIGENESIS

Telomerase knockout or transgenic mouse models have 
been extensively employed to elucidate the in vivo roles of 
telomerase and dysfunctional telomeres in tumorigenesis. 

Telomeres are dedicated to the maintenance of linear 
chromosomes and thus prevent chromosomal abnormalities. 
In cultivated cells from late generations of Terc-/- mice, criti-
cally short or dysfunctional telomeres induce aneuploidy 
and chromosomal abnormalities, including end-to-end fu-
sions.45 These phenomena are prevalent in cancer, and spon-
taneous tumors are more frequently induced in late genera-
tion Terc-/- mice,46 indicating that dysfunctional telomeres 
are genotoxic and possess mutagenic effects in mice. Addi-
tionally, it is plausible that p53 deficiency significantly at-
tenuates genotoxic stresses triggered by telomere dysfunc-
tion. In fact, p53 deficiency contributes to the neoplastic 
transformation of cells with critically short telomeres from 
late generation Terc-/- mice40 and promotes non-reciprocal 
translocations and epithelial cancers.47 In contrast, these criti-
cally short telomeres also suppress tumor formation in can-
cer-prone Ink4a/Arf-deficient mice that still possess intact 
DNA damage responses.48 The phenotypes obtained from 
studies using Terc-/- mice support the tumor suppressive role 
of intact telomeres in maintaining genomic integrity, and 
prove the intimate genetic interaction between telomere regu-
lation and p53-governed genomic surveillance.

Tert deficiency also results in overtly similar phenotypes 
to Terc deficiency in tumorigenesis, but the phenotypic 
manifestations are not completely identical, thus revealing 
the extra-telomeric role of TERT in tumorigenesis. The sem-
inal observation was obtained from in vitro experiments em-
ploying human cell lines. Immortalized human cells are fre-
quently transformed by introducing an oncogene such as 
ras; however, oncogenic ras cannot fully transform immor-

pendent on p53 that is activated by genotoxic stresses, in-
cluding critically short telomeres.36,38,39 In fact, growth ar-
rest and/or apoptosis in late generations of Terc-/- mice are 
dependent on proper p53 activation.32,40 However, p53-me-
diated regulation of the phenotypic manifestations in telom-
erase knockout mice is complicated by its negative effect 
on TERT gene expression.41 Rahman, et al.20 evaluated the 
effect of human TERT (hTERT) overexpression on p53-de-
pendent apoptosis. In HCT116 colon carcinoma cells carry-
ing endogenous p53, genotoxic stress-induced apoptosis 
that is p53-dependent is suppressed by constitutive hTERT 
expression. Indeed, a telomerase-inactive hTERT mutant 
equally antagonizes p53-induced apoptosis.20 Similarly, ec-
topic mouse TERT expression in mouse embryonic stem 
cells that exhibit high levels of telomerase activity and main-
tain sufficiently long telomeres confers resistance to p53-
dependent apoptosis.42 In addition to telomere-associated 
functions, these results indicate that TERT exerts antiapop-
totic activity beyond telomeres. 

In addition to the phenotypes induced by critically short 
telomeres, emerging evidence has indicated the existence of 
extra-telomeric functions of telomerase. The first clue for 
an extra-telomeric role of TERT was obtained by revealing 
the neuroprotective effect of TERT on neuronal cell death 
induced by the neurotoxic protein amyloid β-peptide, a pro-
tein believed to promote neuronal degeneration in Alzheim-
er’s disease.43 Using transgenic mice ubiquitously overex-
pressing TERT, we also have provided evidence that TERT 
prevents NMDA neurotoxicity through the transfer of cyto-
solic free Ca2+ into the mitochondria, thereby playing a pro-
tective role in ameliorating ischemic neuronal cell death.18 
Because TERT is induced in postmitotic neurons by isch-
emic brain injury and its overexpression confers resistance 
against NMDA neurotoxicity, these protective phenotypes 
are considered to be independent of telomerase activity. 
Similarly, first generation (G1) Tert-deficient mouse embry-
onic fibroblasts (MEFs) displayed increased sensitivity to 
staurosporine (STS), whereas Tert transgenic MEFs were 
more resistant to STS-induced apoptosis than wild-type.44 
Consistent phenotypes were also observed upon NMDA 
treatment of Tert-deficient and Tert transgenic mice, respec-
tively.44 Although extensive studies were conducted, it re-
mains unclear whether the protective function is dependent 
on telomerase activity.44 In fact, Terc deficiency does not al-
ter the sensitivity of Tert transgenic MEFs to STS treatment, 
and NMDA-induced excitotoxic cell death of primary neu-
rons was suppressed by TERT, but not by Terc deficiency, in 
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meres resulted in bone metastases of prostate tumors. Al-
though the authors did not discuss the extra-telomeric roles 
of TERT in their study, this report is reminiscent of ALT 
cell transformation by hTERT overexpression.49 From this 
standpoint, anti-telomeric drugs are considered as an effec-
tive strategy for curing cancers. However, anti-telomerase 
therapy certainly provokes ALT and mitochondrial adaptive 
mechanisms in cancer,54 and with respect to the extra-telo-
meric functions of telomerase, anti-telomeric drugs may 
not be the best drug candidates.55 

Taken together, telomerase exerts pleiotropic effects in 
cancer both dependent on and independent from its roles in 
telomeres. As described in Table 1, there are complex ge-
netic interactions of telomerase with diverse genes. In con-
junction with the currently emerging mechanisms of extra-
telomeric roles, telomerase mouse models will expedite the 
invention of anti-telomerase strategies for cancer treatment.

REGULATION OF STEM CELLS BY 
TELOMERASE

Stem cells support tissue homeostasis and regeneration af-
ter certain types of damage. Because stem cells possess 
self-renewal potential and indefinitely propagate, high lev-
els of telomerase activity should be essential for telomere 
maintenance. Therefore, extensive studies have been con-
ducted to identify the patho-physiological consequences of 
telomerase deficiency or overexpression in stem cell func-
tion using diverse telomerase mouse models. However, 
telomere dysfunction is likely to affect stem cell functions 
in a context-dependent manner. Indeed, late-generation 
Terc-/- HSCs with short telomeres exhibit reduced prolifera-
tion capacity, but still possess long-term repopulating abili-
ty.56 Interestingly, when serially transplanted into recipient 
mice, the telomeres are considerably shortened even in wild-
type HSCs, which is accelerated by approximately 2-fold in 
both Terc-/- and Tert-/- mice.16 Consistently, these telomerase-
deficient HSCs exhibit considerably reduced replicative ca-
pacity compared to wild-type HSCs.16 However, although 
the telomere length of HSCs is constantly maintained by 
TERT overexpression in the transgenic mice, the long-term 
transplantation capacity of HSCs is not enhanced.57 Fur-
thermore, Tert deficiency exacerbates senescence and the 
sensitivity of ataxia-telangiectasia mutated deficient murine 
HSCs against ROS-induced apoptosis, which does not ac-
company telomere shortening or dysfunction.17 These results 

talized human cells that are TERT-deficient ALT cells.49 In-
terestingly, hTERT overexpression confers fully malignant 
traits to cells expressing oncogenic ras.49 A hemagglutinin 
(HA) epitope-tagged hTERT (hTERT-HA) that is defective 
in maintaining telomeres in vivo also exhibits comparable 
effects on cellular transformation.49 Similarly, hTERT over-
expression in human mammary epithelial cells with epige-
netically silenced p16INK4a resulted in increased resistance to 
growth arrest mediated by transforming growth factor β 
(TGF-β).50 Because resistance to TGF-β-induced growth in-
hibition is independent of telomere length,50 TERT possess-
es telomere-independent roles that cooperate with p16INK4a 
inactivation to promote tumor development. These results 
clearly demonstrate an oncogenic role of TERT beyond 
telomeres. 

Extensive studies adopting diverse models have recently 
revealed the extra-telomeric roles of oncogenic TERT at an 
organismal level (Table 1). For example, telomere dysfunc-
tion in late generation Terc-/- mice enhances the initiation of 
hepatocellular carcinogenesis, but suppresses progression 
into fully malignant carcinomas.51 In contrast, enhanced tu-
mor initiation does not occur in late generations of Tert-/- 

mice,35 indicating a possible oncogenic effect of TERT, oth-
er than telomeres, in tumorigenesis. Strong induction of 
TERT expression in hepatic neoplasms may also support its 
procarcinogenic effect on hepatic tumorigenesis.35 Consis-
tently, transgenic overexpression of Tert promotes the de-
velopment of spontaneous cancers in ageing mice.52 When 
TERT overexpression is targeted to basal keratinocytes us-
ing the bovine keratin 5 promoter, these transgenic mice 
show normal telomere length in their stratified epithelia even 
with high levels of telomerase activity.15 Interestingly, these 
mice are more susceptible to experimental skin carcinogen-
esis employing 7,12-dimethylbenz[a]anthracene and 12-o-
tetradecanoylphorbol 13-acetate than wild-type mice.15 In 
addition, TERT overexpression actively promotes prolifera-
tion in epidermal tissues without telomere elongation.15 These 
results from mouse models suggest extra-telomeric roles of 
TERT, particularly in promoting tumor progression.

Telomerase mouse models have been also extensively 
used to validate telomerase as an important target for anti-
cancer therapies. Since telomere dysfunction increases the 
chemo-sensitivity of Terc-deficient transformed MEFs, the 
combination of chemotherapy and telomerase inhibition 
may be an effective anticancer approach.53 Recently, Ding, 
et al.34 showed that telomerase reactivation by conditional 
rescue of Tert expression in mice with dysfunctional telo-
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of the K5 promoter does not alter telomere length, but pro-
motes stem cell mobilization, hair growth, and stem cell 
proliferation in vitro.18 Similarly, transgenic mice condition-
ally overexpressing TERT show robust hair growth via pro-
liferation of quiescent, multipotent stem cells in the hair fol-
licles.13 These phenotypes are also reproduced in a Terc-
deficient genetic background without telomere dysfunction,13 

suggest that telomerase may regulate the long-term replica-
tive capacity of HSCs independently of telomere length. 

Epidermal stem cells are also regulated by telomerase 
both dependent and independent of telomeres. In late gen-
eration Terc-/- mice, epidermal stem cell functions are sig-
nificantly suppressed by critically short telomeres.21,58 How-
ever, epidermal overexpression of TERT under the control 

Table 1. Phenotypes of Telomerase Mouse Models

Mouse models Affected  
tissue/organ

Dependence 
on telomere 

length?
Phenotypes Refs Functions

αMHC*-hTERT-Tg Heart  Yes Promotes cardiac myocyte survival Oh, et al.33

Survival

CAG†-Tert-Tg Whole body No Protects neuronal cells against 
  ischemic cell death Kang, et al.18

CAG-hTERT-Tg Whole body No Protects motor neurons from sciatic 
  nerve axotomy induced apoptosis Lee, et al.44

Tert-/- Whole body No Mitochondrial TERT may contribute 
  to the anti-ageing and anti-apoptosis Haendeler, et al.69

Terc-/- Whole body  Yes

Defect in the closing of neural tube; 
  decreased overall fitness and 
  well-being; progressive loss of 
  organismal viability

Herrera, et al.31

Rudolph, et al.46

Herrera, et al.70

Terc-/- Whole body  Yes Frequent chromosomal abnormalities 
  and tumor formation Blasco, et al.45

Tumorigenesis

Terc-/- Whole body  Yes
Decreases cell proliferation and  
  impaired function of reproductive 
  organs. 

Lee, et al.71

Terc -/- p53+/- or -/- Whole body  Yes Results in genetic catastrophe; prone 
  to development of epithelial cancers

Chin, et al.40

Artandi, et al.47

K5‡-Tert-Tg Skin No Increased cell proliferation and  
  wound-healing

González-Suárez, 
  et al.15

Lck§-Tert-Tg Thymocytes No High incidence of spontaneous 
  T-cell lymphoma Canela, et al.72

CAG-rtTA-i-Tert|| 
  Terc+/+ or +/- or -/- Whole body No Induced proliferation of resting 

  epithelial stem cells Sarin, et al.13

LSL Tert¶ p53L/L 
  PtenL/L PB-Cre

Prostate 
  tissues  Yes Telomerase reactivation confers 

  tumor cells to metastatic potential Ding, et al.34

K5-Tert-Tg Terc+/+ or -/- Skin No Increased stem cell mobility Flores, et al.21

Stem cell 
  behaviorTert-/-, Atm-/- Whole body No Decelerated ageing through 

  protection of HSCs Nitta, et al.17

iK5-Tertci-Tg**, 
  iK5-Tert-Tg Skin No Promotes epithelial proliferation by  

  controlling transcription of genes Choi, et al.60

Gene regulation/
  cell signalingTert-/- Whole body No Transcriptionally induce Wnt/

  β-catenin signaling pathway Park, et al.61

Tert-/-, Terc+/- or -/- Whole body No Induction of NF-κB-dependent genes Ghosh, et al.65

TERT, telomerase reverse transcriptase; HSC, hematopoietic stem cell.
*Mouse α-myosin heavy chain (MHC) promoter.
†Human cytomegalovirus immediate-early enhancer linked to the chicken β-actin promoter (CAG).
‡Bovine keratin 5 promoter (K5).
§Thymus-specific light-chain kinase (Lck) promoter.
||Actin-rtTA+;tetop-TERT+ (termed as doxycycline-inducible Tert or i-Tert).
¶Lox-Stop-Lox cassette.
**Doxycycline-inducible expression of mutant TERT without telomerase activity under the regulation of K5-rtTA promoter.
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verse observations supporting extra-telomeric roles of telom-
erase should be scrutinized and validated in vivo by generat-
ing novel mouse models. For example, in addition to the 
effect of short telomeres on mitochondria,39 mitochondrial 
targeting of telomerase upon certain stressful conditions66 
and the recently identified RNA-dependent RNA polymerase  
activity of TERT,67,68 indicates that telomerase has direct roles 
in mitochondria. Furthermore, considering the important 
roles of telomerase in cellular homeostasis, telomerase may 
be a critical factor for regulating the subcellular organelle ho-
meostasis. Undoubtedly, we believe that these extra-telomer-
ic functions of telomerase should be intimately associated 
with life span regulation, and that some regions of TERT, 
other than the RT domain, will be required for mediating pro-
tein-protein interactions with known functions in controlling 
the life span of an organism. In this context, we cannot rule 
out speculations for divergent mechanisms of telomerase 
function regulating survival, tumor progression, develop-
ment/differentiation, and stress responses. These extra-telo-
meric functions have inevitably complicated the phenotypic 
manifestations elicited by dysfunctional telomeres and vice 
versa; thus, to separate these distinct functions of telomerase, 
more sophisticated genetic strategies should be developed in 
mice. 
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