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Abstract 

Background:  MYCN amplification is the most important genomic feature in neuroblastoma (NB). However, limited 
studies have been conducted on the MYCN non-amplified NB including low- and intermediate-risk NB. Here, the 
genomic characteristics of MYCN non-amplified NB were studied to allow for the identification of biomarkers for 
molecular stratification.

Methods:  Fifty-eight whole exome sequencing (WES) and forty-eight whole transcriptome sequencing (WTS) sam‑
ples of MYCN non-amplified NB were analysed. Forty-one patients harboured WES and WTS pairs.

Results:  In the MYCN non-amplified NB WES data, maximum recurrent mutations were found in MUC4 (26%), fol‑
lowed by RBMXL3 (19%), ALB (17%), and MUC16 and SEPD8 (14% each). Two gene fusions, CCDC32-CBX3 (10%) and 
SAMD5-SASH1 (6%), were recurrent in WTS analysis, and these fusions were detected mostly in non-high-risk patients 
with ganglioneuroblastoma histology. Analysis of risk-group-specific biomarkers showed that several genes and 
gene sets were differentially expressed between the risk groups, and some immune-related pathways tended to be 
activated in the high-risk group. Mutational signatures 6 and 18, which represent DNA mismatch repair associated 
mutations, were commonly detected in 60% of the patients. In the tumour mutation burden (TMB) analysis, four 
patients showed high TMB (> 3 mutations/Mb), and had mutations in genes related to either MMR or homologous 
recombination. Excluding four outlier samples with TMB > 3 Mb, high-risk patients had significantly higher levels of 
TMB compared with the non-high-risk patients.

Conclusions:  This study provides novel insights into the genomic background of MYCN non-amplified NB. Activation 
of immune-related pathways in the high-risk group and the results of TMB and mutational signature analyses collec‑
tively suggest the need for further investigation to discover potential immunotherapeutic strategies for NB.
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Background
Neuroblastoma (NB), the most common extracranial 
solid tumour in children, accounts for 6 to 10% of all 
childhood cancers. NB arises from precursor cells of 
the sympathetic nervous system and adrenal medulla 
[1]. The clinical course is highly heterogeneous, ranging 
from spontaneous regression without therapeutic inter-
vention to rapid progression to death, despite modern 
intensive multimodal treatment regimens. Thus, clinical 
and biological factor-based risk stratification and tai-
lored treatment approaches have been the mainstay of 
NB treatment. International Neuroblastoma Risk Group 
(INRG) defines the high-risk group to include patients 
with MYCN amplified tumours and patients > 18 months 
old with metastatic tumours [2].

Amplification of the MYCN oncogene is the first 
genetic marker reported to indicate highly aggressive 
and advanced-stage NB. It is observed in approximately 
20% of cases and remains a powerful prognostic factor, 
indicating adverse clinical outcomes [3]. The clinical fea-
tures of MYCN-amplified NB have been attributed to the 
biological consequence of MYCN amplification. MYCN-
amplified tumours make up about 40% of high-risk NBs 
[4], indicating that 60% of high-risk NBs are MYCN 
non-amplified tumours. Despite the extensive study of 
the genomic characteristics of high-risk NB including 
MYCN-amplified tumours [4–6], genomic profiling of 
MYCN non-amplified NB, including low- and intermedi-
ate-risk NB, has been limited.

Immunotherapy, which includes the use of immune 
checkpoint inhibitors, has become a potential thera-
peutic option, especially in adult oncology, and tumour 
mutational burden (TMB) is known to be a predictive 
marker for immunotherapy in many studies [7, 8]. How-
ever, except for a monoclonal antibody that acts against 
the tumour-associated disialoganglioside, GD2 [9], lit-
tle is known about immunotherapy in NB. Here, we 
examined the genomic profiles of MYCN non-amplified 
NB and studied risk-group-specific biomarkers, TMB, 
and mutational signature to identify biomarkers for the 
molecular stratification of NB.

Methods
Study population and data collection
From November 2015, tissue and blood samples were 
collected prospectively from NB patients undergo-
ing biopsy. Samples from patients who were diagnosed 
before November 2015 that had been deposited at the 

Samsung Medical Center Bio Bank were also included. 
Medical records regarding age, sex, stage, risk group, 
pathology, and outcome were collected. Tumour stag-
ing was determined by following the International 
Neuroblastoma Staging System standards [2]. MYCN 
amplification was determined by performing interphase 
fluorescence in  situ hybridization on tumour tissues. 
Patients older than 18  months and in stage four malig-
nancy and patients with MYCN-amplified tumours were 
stratified as high-risk patients.

DNA and RNA extraction
All tumour specimens were reviewed by a pathologist 
to determine the percentage of viable tumours and their 
adequacy for sequencing. Genomic DNA from the tissue 
and blood was extracted using a QIAamp DNA Mini Kit 
(Qiagen, Valencia, CA, USA). The total RNA from the 
same fresh frozen tumour tissues was extracted with an 
RNeasy Mini Kit (Qiagen, Valencia, CA, USA), accord-
ing to the manufacturer’s instructions. The quality and 
quantity of extracted nucleic acids were evaluated using 
Nanodrop 8000 UV–Vis spectrometer (NanoDrop Tech-
nologies Inc., Wilmington, DE, USA), Qubit ® 3.0 Fluo-
rometer (Life technologies Inc., Carlsbad, CA, USA) 
and 4200 TapeStation (Agilent Technologies Inc., Santa 
Clara, CA, USA). Specimens with a yield over 100  ng 
were selected for whole exome sequencing (WES) and 
whole transcriptome sequencing (WTS). Those with a 
median DNA fragment size of 350 bp and an RNA integ-
rity number (RIN) of 5 were selected.

WES and variant calling
Tumour and matched normal DNA were enriched for 
exon regions, using the SureSelect XT regent kit (Agilent 
Technologies Inc., Santa Clara, CA, USA) and SureSelect 
XT Human All Exon V5 kit (Agilent Technologies Inc., 
Santa Clara, CA, USA). The libraries were pooled, dena-
tured, and sequenced in 100-bp paired-end mode using 
the HiSeq Rapid SBS Kit v2 (200 Cycles) and HiSeq® 
Rapid PE Cluster Kit v2 in Illumina HiSeq 2500 plat-
forms (Illumina Technologies Inc., San Diego, CA, USA). 
The mean target coverages were 166 × in tumours and 
104 × in normal blood. Reads were aligned to the human 
reference genome (hg19) using the Burrows-Wheeler 
Alignment tool (BWA) version 0.7.5a [10]. Sequence 
Alignment and Mapping (SAM) files were converted to 
Binary Alignment and Mapping (BAM) files using SAM-
tools (v0.1.19) [11]. Duplicate reads were removed using 
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Picard (version 1.128), base quality was recalibrated, 
and local realignment was optimized using The Genome 
Analysis Toolkit (GATK) version 3.5 [12]. Single nucleo-
tide variants (SNVs) and indels were identified using 
MuTect2 version 3.8.0 [13], Strelka2 version 2.8.2 [14], 
and Pindel version 0.2.5b9 [15]. Germline variants were 
identified using HaplotypeCaller version 3.8.0 [16]. Vari-
ants were annotated using Ensembl Variant Effect Predic-
tor (VEP) version 87 [17]. Variants located in exons with 
sufficient coverage (minimum depth of coverage ≥ 8) 
and a significant variant allele frequency (VAF ≥ 1%) 
were chosen for further statistical analyses. Synonymous 
variants were filtered out. Read alignments were manu-
ally examined using Integrative Genomic Viewer (IGV) 
(https​://www.broad​insti​tute.org/igv/).

WTS and data processing
Sequencing libraries were prepared using TruSeq RNA 
Sample Preparation kit v2 (Illumina Technologies Inc., 
San Diego, CA, USA). RNA libraries were sequenced in 
100-bp paired-end mode using TruSeq Rapid PE Clus-
ter kit and TruSeq Rapid SBS kit v2 in Illumina HiSeq 
2500 (Illumina Technologies Inc., San Diego, CA, USA). 
Unresolved bases in FASTQ files were trimmed, reads 
were aligned to the human reference genome, hg19, using 
TopHat version 2.0.6 [18], and reference-guided assem-
bly of transcripts was performed using Cufflinks version 
2.1.1 [19]. Alignment quality was verified with SAMtools 
version 0.1.19 [11]. Gene expression was estimated from 
the RNASeq data of 56 patients using a count-based 
method with RSEM [20]. In total, 20,345 protein-coding 
genes were selected. Further, genes that were expressed 
in at least three samples were retained. A total of 16,120 
genes were analysed. Gene counts were used as the input 
for Trimmed Mean of M value (TMM) normalization in 
the R package, edgeR [21], and normalized counts were 
transformed to log2-counts per million (logCPM) using 
the voom application in the R package, limma [22].

Gene fusions were predicted by several algorithms, 
such as ChimeraScan [23], deFuse [24], FusionMap [25], 
MapSplice [26], and TopHat [18]. Fusions predicted by 
more than three algorithms were considered further. The 
putative fusions were manually investigated using IGV.

Validation of fusions by RT‑PCR and Sanger sequencing
The putative gene fusions, detected by RNA-Seq, were 
verified by reverse transcription PCR (RT-PCR), followed 
by Sanger sequencing. cDNA was synthesized from 2 µg 
total RNA using a QuantiTect Reverse Transcription 
kit (Qiagen Inc., Hilden, Germany) with primers that 
flank the breakpoint of the fusion, in DNA Engine Tet-
rad 2 Peltier Thermal Cycler (BIO-RAD, Hercules, CA, 
USA) with the following cycling conditions: one cycle of 

5  min at 95  °C, followed by three-step cycles of 30  s at 
95  °C, 30 s at 62  °C, 10 min at 72  °C, and a final exten-
sion for 20  min at 72  °C. PCR products were purified 
using a Multiscreen filter plate (Millipore Corp., Bed-
ford, MA, USA) and sequenced in an ABI prism 3730XL 
Analyzer (Thermo Fisher Scientific, Waltham, MA, USA) 
using a BigDye (R) Terminator v3.1 Cycle Sequencing 
Kit (Applied Biosystems Inc., Foster City, CA, USA). The 
results were accessed by Variant Reporter Software v 1.1 
(Applied Biosystems Inc., Foster City, CA, USA).

Mutational signatures and tumour mutation burden (TMB)
A set of 30 mutational signatures, which represent dis-
tinct characteristics of human cancer types based on base 
substitutions at the site of mutation, was obtained [27]. 
To calculate mutational signatures from each sample, 
deconstructSigs (R package) was used, and the weighted 
combination of predefined signatures was identified to 
comprehend the mutational profiles [28].

TMB, defined as the number of somatic variants per 
megabase (Mb), was calculated by dividing the total 
number of mutations from WES by the size of the target 
coding region.

Gene‑set enrichment analyses (GSEA)
Gene-set enrichment analyses (GSEA), based on gene 
expression data for each sample, were performed using R 
package, GSVA [29] on 17,810 annotated gene sets from 
the Molecular Signatures Database (MSigDB v6.2, https​
://softw​are.broad​insti​tute.org/gsea/msigd​b/index​.jsp).

Statistical analyses
All statistical tests were performed using R software 
v.3.4.2 (https​://www.r-proje​ct.org/). The associations 
between risk-group and genomic information, including 
the frequency of mutation, TMB, mutational signature, 
gene expression, and gene-set expression, were examined 
using the T-test or Fisher’s exact test. Multiple test cor-
rection with false discovery rate (FDR) was applied to the 
expression data analyses. P value < 0.05 was considered as 
significant.

Results
Characteristics of patients
WES and WTS were conducted for 70 and 63 NB sam-
ples, respectively. QC filtering and removal of MYCN-
amplified NB patient data yielded 58 WES and 48 WTS 
samples (Fig.  1a). All patients in this study were East 
Asian. Thirty-five patients (53.8%) were diagnosed as 
metastatic, and 26 patients (40%) were classified into 
the high-risk group. The median age was 3.1 years, with 
a range of 0–14.9  years. Seven patients (10.8%) experi-
enced recurrence at median 1.7 (0.2–3.8) years (Table 1).

https://www.broadinstitute.org/igv/
https://software.broadinstitute.org/gsea/msigdb/index.jsp
https://software.broadinstitute.org/gsea/msigdb/index.jsp
https://www.r-project.org/
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Fig. 1  a Consort flow of study population. b Somatic mutation profiles of WES data. MYCN-amplified patients (n = 9), presented on the right side of 
the heatmap (purple), were compared with the non-amplified population. The top 20 frequently mutated genes (green bar) and 5 functional genes 
(orange bar) related to DNA mismatch repair or homologous recombination repair are listed. *TMB: Tumour Mutational Burden. c Comparison of 
incidence of mutation between MYCN-amplified and non-amplified groups
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Mutation profiles of MYCN non‑amplified NB
WES data of 58 patients were analysed. The median 
number of variants per sample was 34.5, with a range 
of 11–537 (Additional file  1: Figure S1A). Frequently 
mutated genes were summarized in Additional file  1: 
Figure S1B. The most frequently mutated gene, MUC4, 
was found to be mutated in 26% of samples, followed by 
RBMXL3 (19%), ALB (17%), MUC16 (14%), and SEPD8 
(14%) (Fig.  1b). In comparison with 9 MYCN-amplified 
tumours, there was no statistically significant differ-
ence between the mutation frequencies of single genes 
(Fig. 1c). However, mutations in mucin family genes such 
as MUC4, MUC16, and MUC17 were more frequent in 
MYCN non-amplified subjects.

An association between risk groups and genomic vari-
ants was not observed (Additional file 2: Figure S2A). To 
identify the associations between altered pathways and 
risk groups, 17,810 annotated gene sets were analysed, 
and mutation status was determined in each pathway 
using MSigDB v6.2. Among 7044 pathways acquired from 
the BIOCARTA, KEGG, REACTOME, and Gene Ontol-
ogy (GO) databases, 48 pathways had a P value < 0.05 in 
Fisher’s exact test that became insignificant after multiple 
FDR corrections (Additional file  2: Figure S2B). Altera-
tions in metabolic pathways were enriched in the high-
risk group.

Gene fusions
Gene fusions predicted by three or more algorithms 
were considered to be true positives. Among 48 WTS 
samples, 21 gene fusions were detected in 15 samples 
(Table  2). CCDC32-CBX3 fusion recurred in five sam-
ples, while SAMD5-SASH1 fusion recurred in three 
samples (Additional file  3: Figure S3A). The existence 
of recurrent fusions was verified by Sanger sequencing. 
These two recurrent fusions were detected only in gangli-
oneuroblastoma (GNB) histology. Most of the recurrent 
fusions were detected in non-high-risk patients, aside 
from one patient who had four other fusions, including 
CCDC32-CBX3 and SAMD5-SASH1 fusions. In patients 
with SAMD5-SASH1 fusion, SAMD5 and SASH1 were 
upregulated; however, this correlation was not observed 
in CCDC32-CBX3 fusion (Additional file 3: Figure S3B).

Transcriptome analysis to identify risk‑group specific 
biomarkers
WTS data of 48 patients showed a correlation between 
gene expression patterns and the risk-group identity 
(Additional file 4: Figure S4A). Forty-six genes were sig-
nificantly over-expressed in the high-risk group and 40 
genes were over-expressed in non-high-risk group (P 
value < 0.05 and absolute fold change > 2) (Fig.  2a and 
Additional file 4: Figure S4B). FAM153A (SAMD15) and 
FAM15B (TMED8) were the most significantly over-
expressed genes in the high-risk group. Figure 2 also sug-
gested that there were subgroups in the non-high-risk 
group, so unsupervised clustering of non-high-risk group 
was performed. It revealed two distinct subgroups show-
ing clear differences in age, pathologic differentiation and 
stage (Additional file 4: Figure S4C).

The GSVA score was computed for 17,810 gene sets, 
and an association test was performed for differentially 
expressed gene sets between high- and non-high-risk 
groups (Additional file  5: Figure S5A). In total, 44 gene 
sets were significantly different between the risk groups 
(P value < 0.05 and absolute mean difference > 0.3) 
(Fig. 2b and Additional file 5: Figure S5B). The gene sets 
did not differ in most of the acquired canonical path-
ways; only 15 of these pathways showed statistically sig-
nificant differences (Additional file 5: Figure S5C). In the 
high-risk group, the pathways of ketone body metabo-
lism and mitochondrial fatty acid beta oxidation were 
inactivated, while the pathways of TALL-1, regulation of 
MHC class II biosynthesis, and regulation of interferon 
gamma secretion were activated (Additional file 5: Figure 
S5D). The ganglioside biosynthesis pathway showed cor-
relations with risk group identity and GNB histology (P 
value = 0.0002) (Additional file 5: Figure S5E).

Table 1  Demographics of  study populations for  WES 
and WTS analysis

All (n = 65) WES (n = 58) WTS (n = 48)

Sex, no. (%)

 Male 30 (46.2) 25 (43.1) 25 (52.1)

 Female 35 (53.8) 33 (56.9) 23 (47.9)

Age, median years (range) 3.1 (0–14.9) 3.35 (0–14.9) 2.7 (0–10)

Age, no. (%)

 < 18 months 18 (27.7) 11 (19.0) 16 (33.3)

 ≥ 18 months 47 (72.3) 47 (81.0) 32 (66.7)

Stage, no. (%)

 Localized 30 (46.2) 27 (46.6) 24 (50.0)

 Metastatic 35 (53.8) 31 (53.4) 24 (50.0)

Risk group, no. (%)

 High-risk 26 (40.0) 26 (44.8) 16 (33.3)

 Non-high risk 39 (60.0) 32 (55.2) 32 (66.7)

Pathology, no. (%)

 Undifferentiated 1 (1.5) 1 (1.7) 1 (2.1)

 Poorly differentiated 25 (38.5) 21 (36.2) 19 (39.6)

 Differentiating 13 (20.0) 11 (19.0) 9 (18.8)

 Ganglioneuroblastoma 
(GNB)

26 (40.0) 25 (43.1) 19 (39.6)
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Analyses of mutational signature and tumour mutation 
burden (TMB)
A mutational signature analysis was performed with 
WES data (Additional file  6: Figure S6A). Each sample 
was assigned to the most predominant signature among 
the 30 signatures (MS-1 to MS-30). Sixty percent of sam-
ples were assigned to either MS-15 or MS-6, which were 
denoted as MMR signatures (Fig.  3a). Association was 
not found between MMR signatures and mutation inci-
dence in MMR-related genes such as MLH1, MSH2/6, or 
PMS2. Only five samples (5.58%) were assigned to MS-18, 
a known NB signature. The association between MS-15 
and GNB histology was identified (P value = 0.0012) 
(Fig. 3b).

The median TMB was 0.66 Mb (Fig. 3c) in all patients; 
the specific median values were 1.04  Mb in the high-
risk group and 0.53  Mb in the non-high-risk group 
(P value = 0.195). Excluding four outlier samples 
with TMB > 3  Mb, high-risk patients had significantly 
higher TMB compared with the non-high-risk patients 
(0.95  Mb vs 0.60  Mb, P value = 0.001) (Fig.  3d). Among 
the four patients whose tumours had TMB > 3  Mb, two 
patients belonged to the high-risk group and the other 
two belonged to the non-high-risk group. One sample 
from the high-risk group, having two missense muta-
tions (Q1285K and T290K) in POLE and one missense 

mutation (G357W) in MLH1, showed a high TMB value 
of 10.66 Mb. Another high-risk patient with a high TMB 
value of 3.83  Mb had mutations in ATR​, ATRX, POLQ, 
RAD54L, and SPIDR, all of which play roles in DNA 
repair or homologous recombination. Further, two sam-
ples from the non-high-risk group showed relatively high 
TMB, at 5.1  Mb and 4.33  Mb. Both patients were diag-
nosed at a very young age (under 2  months). Although 
the tumours of both patients showed high microsatellite 
instability (MSI), their underlying mutation profiles were 
different—POLE splicing variant was detected in one 
patient, while the other patient had deleterious mutations 
in RAD51AP1, RAD51B, and RMI2, which are involved 
in homologous recombination deficiency.

In terms of the association between TMB and muta-
tional signatures, the sample with extremely high TMB 
(> 10  Mb) showed MS-18, while the three samples with 
relatively high TMB (> 3  Mb) showed MS-6, one of the 
four MMR signatures. (Fig. 3e and Additional file 6: Fig-
ure S6B).

Discussion
The genomic characteristics of MYCN non-amplified 
NB were identified in this study using WES and WTS. 
MYCN-amplified NB was excluded, because MYCN 
amplification is a well-known prognostic factor in NB, 

Table 2  List of patients with gene fusions

UD undifferentiated, PD poorly differentiated, D differentiating, GNB ganglioneuroblastoma

There are two recurrent fusions *CCDC32:CBX3 $SAMD5:SASH1

Risk group ID Sex Age Stage Pathology Chromosomal 
abnormality

Event Fusion

High risk N_SMC_001 M 3.8 Metastatic GNB 11q Recur/Dead LUC7L3:KLC2

N_SMC_006 M 3.1 Metastatic PD 11q Recur CNTNAP4:RAB11FIP4

N_SMC_011 M 3.3 Metastatic GNB CCDC32:CBX3*
SAMD5:SASH1$

HLA-C:HLA-A
L1RAPL1:REPS2

N_SMC_017 M 2.3 Metastatic D 11q 17q PPFIA1:GSDMA

N_SMC_046 M 5.3 Metastatic PD 1p RALGPS2:DNAJC8

N_SMC_049 M 6.1 Metastatic PD 11q RPN1:CCDC58

N_SMC_070 F 4.6 Metastatic UD 17q FBXL7:CDKN3

N_SMC_076 M 3.8 Metastatic PD 1p 11q 17q HP1BP3:NUP85

MED8:ELOVL1

Non-high risk N_SMC_003 M 10 Localized GNB 1p CCDC32:CBX3*

N_SMC_026 F 4.1 Localized GNB CCDC32:CBX3*

N_SMC_034 F 2.6 Localized D 17q CCDC32:CBX3*
KCNH7:MAP3K19
PPP6R2:ANKIB1

N_SMC_060 M 0.1 Localized D 11q MX1:FAM3B

N_SMC_085 F 2.1 Localized GNB 17q CCDC32:CBX3*

N_SMC_089 M 3.5 Localized GNB SAMD5:SASH1$

N_SMC_093 F 6.4 Localized GNB SAMD5:SASH1$
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associated with risk group (n = 44)
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and gene expression in MYCN-amplified NB is quite 
different from that in MYCN-non-amplified NB. A total 
of 26 high-risk patients were without MYCN ampli-
fication, and these patients accounted for 40% of all 
MYCN-non-amplified patients in our dataset.

Common variants of high-risk NB, such as ALK, 
ATRX, PTPN11, NRAS, and MYCN mutations [5], were 
not noticeable. Instead, after eliminating the effect of 
MYCN amplification and considering low-VAF muta-
tions, a number of novel recurrently mutated genes 
were found. Although the recurrent mutations did not 
show strong patterns of association with the differ-
ent risk groups, their roles in MYCN-non-amplified 
NB warrant further exploration. The mutation profiles 
of MYCN-amplified and non-amplified patients were 
compared, and mutations in mucin family genes were 
found to be more frequent in the MYCN-non-amplified 
subjects. Although mutations in the mucin gene fam-
ily have been reported in NB [30], their biological rel-
evance to NB remains unclear.

Two recurrent fusions, CCDC32-CBX3 and SAMD5-
SASH1, were newly detected in this study. No recurrent 
fusion has been reported in NB, with the exception of 
fusions including the NBAS gene in MYCN-amplified 
tumours [5]. All but one of the patients in this study 
who presented recurrent fusions fell under the non-
high-risk category; thus, it is likely that these fusions 
have not been reported because most of the previous 
studies included only high-risk patients. These fusions 
have been detected in other cancers [31, 32] and fur-
ther research is needed to investigate the potential roles 
of these fusions in the tumorigenesis of NB.

In the analysis of risk-specific biomarkers, sev-
eral genes and gene sets were differentially expressed 
between the risk groups. Specifically, some immune-
related pathways, such as regulation of MHC class II 
biosynthesis and regulation of interferon gamma secre-
tion, tended to be activated in the high-risk group. In 
this study, high-risk patients had higher TMB values 
compared with the non-high-risk patients (when four 
outlier samples with TMB > 3  Mb were excluded), 
which could be a factor that causes the activation of 
immune-related pathways in the high-risk group. The 
underlying mechanism of this finding remains to be 
elucidated.

Notably, this study presents several findings in sup-
port of the possible application of immunotherapy 
in NB. In the TMB analysis, a subset of patients was 
found to have much higher TMB values than the other 
patients. One sample had TMB > 10  Mb, and three 
more had a moderate threshold of > 3  Mb. All four of 
these tumours had mutations in DNA mismatch repair 
deficiency-related genes or genes involved in homolo-
gous recombination deficiency. MSI was high in the two 
non-high-risk patients. Additionally, in the mutation 
signature analysis, 65% of tumours showed MMR sig-
natures when each sample was designated to the most 
predominant signature out of all 30 signatures. PD-1/
L1 expression, TMB, and MSI have been considered 
as predictive biomarkers for immunotherapy in many 
studies [7, 8, 33–35], and the findings of this study sug-
gest the possibility of immunotherapy introduction in a 
subset of patients with NB.

Despite comprehensive analysis, this study has several 
limitations. In mutational signature analysis, MS-18, a 
known NB signature, was present in only a few samples. 
Mutational signatures were calculated based on a pattern 
of 96 base substitution combinations, so an insufficient 
number of mutations may have affected the analysis. 
The median number of mutations, at 34.5, was relatively 
small. Therefore, the mutational signatures of patients 
with lower numbers of variants may fail to represent all 
of the characteristics. Since the number of variants and 
TMB in childhood cancers are smaller compared to 
those in adult cancers [27, 36–39], the results of muta-
tional signature analysis need to be interpreted with cau-
tion. Furthermore, MSigDB contains pathways with large 
numbers of genes, and the pathways investigated here 
had gene sets with up to hundreds of genes. Therefore, it 
is necessary to verify the effects of individual mutations.

Conclusions
In conclusion, this study provides novel insights into the 
genomic background of the MYCN-non-amplified NB 
population. Activation of immune-related pathways in 
the high-risk group and the results of TMB and muta-
tional signature analyses collectively suggested the need 
for further investigation to discover potential immuno-
therapeutic strategies for NB.

Fig. 3  a Distribution of predicted mutational signature (MS), which was predominantly presented in each sample. The proportion of samples 
showing MS-15 (46.6%), MS-6 (13.8%), and MS-18 (8.6%) is presented. b Association between signatures and clinical pathology. The size of each 
circle represents the number of samples. MS-15 and ganglioneuroblastoma (GNB) histology had a significant association (P value = 0.0012). c 
Distribution of Tumour Mutation Burden (TMB; n = 58). d Comparison of TMB between high-risk (n = 26) and non-high-risk (n = 32) groups with/
without high TMB patients (n = 4). e Correlation between mutational signature weights and TMB. One hyper-mutated sample (TMB > 10) showed 
MS-18, and three samples with moderate high TMB showed MS-6

(See figure on next page.)
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