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Abstract

The mammalian intestine has long been used as a model to study organ-specific adult stem cells, which are
essential for organ repair and tissue regeneration throughout adult life. The establishment of the intestinal epithelial
cell self-renewing system takes place during perinatal development when the villus-crypt axis is established with
the adult stem cells localized in the crypt. This developmental period is characterized by high levels of plasma
thyroid hormone (T3) and T3 deficiency is known to impair intestinal development. Determining how T3 regulates
adult stem cell development in the mammalian intestine can be difficult due to maternal influences. Intestinal
remodeling during amphibian metamorphosis resembles perinatal intestinal maturation in mammals and its
dependence on T3 is well established. A major advantage of the amphibian model is that it can easily be
controlled by altering the availability of T3. The ability to manipulate and examine this relatively rapid and localized
formation of adult stem cells has greatly assisted in the elucidation of molecular mechanisms regulating their
formation and further revealed evidence that supports conservation in the underlying mechanisms of adult stem
cell development in vertebrates. Furthermore, genetic studies in Xenopus laevis indicate that T3 actions in both the
epithelium and the rest of the intestine, most likely the underlying connective tissue, are required for the formation
of adult stem cells. Molecular analyses suggest that cell-cell interactions involving hedgehog and BMP pathways are
critical for the establishment of the stem cell niche that is essential for the formation of the adult intestinal stem cells.
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Introduction

The intestinal epithelium is responsible for the principle
physiological function of this organ: digestion and absorp-
tion of nutrients. Throughout adult life, the vertebrate
intestinal epithelium undergoes self-renewal through the
proliferation of the adult stem cells. In mammals, the stem
cells are localized in the crypt of intestine while the
absorptive epithelial cells, the most abundant epithelial
cell type, and secretory cells are present along the villus
of the crypt-villus axis [1-4]. As the stem cells proliferate
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in the crypt, their daughter cells migrate up along the
crypt-villus axis and gradually differentiate into different
types of epithelial cells, leading to the replacement of the
entire epithelium once every 1-6 days in mammals [1,2,4].

While intestinal development occurs quite early during
mammalian embryogenesis, the maturation of this adult
epithelial self-renewing system takes place during the
so-called postembryonic development [5-9], the perinatal
period when plasma thyroid hormone (T3) level peaks
[10,11]. While the underlying mechanism remains unclear,
recent studies suggest that in mouse, the maturation
involves the formation of adult stem cells that are dis-
tinct from the embryonic/neonatal intestinal stem cells
[5,6,9,12]. In addition, T3 is important for the develop-
ment and/or function of the adult stem cells. T3 defi-
ciency or knockout of T3 receptors (TRs), which mediate
the transcriptional effects of T3 on target genes, decreases
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the number of epithelial cells along the crypt-villus axis
and proliferating crypt cells, leading to abnormal intestinal
morphology [13-16]. Genetic studies in mouse suggest
that TRal, one of the two nuclear receptors for T3, con-
trols intestinal development during maturation and also
intestinal homeostasis in the adult by regulating the
proliferation of intestinal stem cells [17-19].

Amphibian metamorphosis resembles postembryonic
development in mammals [11,20]. This process is totally
dependent on the presence of T3 [21-24]. Importantly,
it can be easily manipulated by controlling the avail-
ability of T3 to the tadpoles via either inhibiting endogen-
ous T3 synthesis or adding exogenous, physiological levels
of T3 to the tadpole rearing water. This makes amphib-
ian metamorphosis a superior model to study the develop-
mental mechanisms iz vivo when compared to mammalian
postembryonic development, where maternal influences
complicate the studies on the embryos/neonates.

The remodeling of the intestine during amphibian meta-
morphosis resembles mammalian intestinal maturation.
Like in mammals, the adult intestinal epithelium is con-
stantly self-renewed, once every 2 weeks in Xenopus laevis
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[25]. The adult stem cells are localized at the bottom
(trough) of the multiple folds (Figure 1), equivalent to
the crypt in mammals, while the fully differentiated epi-
thelial cells undergo apoptosis at the tip (crest) of the
epithelial fold [25,26], again like the cell death at the tip
of the villus in mammals. The formation of the adult in-
testine takes place during amphibian metamorphosis
when circulating T3 level peaks, just like the maturation
of the mammalian intestine during the perinatal period.
In amphibians such as Xenopus laevis and tropicalis, the
premetamorphic tadpole intestine is a simple tubular
structure made of mostly a single layer of larval epithe-
lial cells with little connective tissue or muscles except
in the single fold, the typhlosole, where the connective
tissue is abundant (Figure 1) [25,27,28]. During metamor-
phosis, the larval epithelial cells undergo T3-induced apop-
tosis. Concurrently, some larval epithelial cells escape cell
death and instead undergo dedifferentiation to become
the adult progenitor/stem cells (Figure 1), which even-
tually form an adult epithelium comprised of multiple
folds surrounded by much thicker layers of connective
tissue and muscles, resembling the adult mammalian
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Figure 1 Intestinal remodeling during Xenopus metamorphosis as a model to study the formation of adult stem cells during
vertebrate development. The illustration (top) depicts the straightening and shortening of the larval intestine during frog metamorphosis. The
connective tissue (CT) and muscle (MU) layers increase in size during remodeling while the larval epithelial cells (LE) undergo apoptosis (red cells)
or dedifferentiate into adult progenitor/stem cells (dark blue) which rapidly proliferate to form a more folded, mammalian-like epithelial surface
with stem cells located at the troughs between epithelial folds. Cross-sections (below) of the intestine at different stages of Xenopus laevis
development were stained with pyronin-Y (red staining) and methyl green (blue staining). During the early stage of metamorphosis
(prometamorphosis), e.g., stage 57, the intestine is made of mostly a monolayer of larval epithelial cells with little connective tissue (CT) or
muscles (MU) except within the single fold, the typhlosole, where CT is abundant. The epithelial cells are moderately stained red. At the climax of
metamorphosis (stage 60), most of the larval epithelial cells undergo apoptosis and become stained much weaker. At this stage, strong pyronin-Y
signals are strictly localized in the proliferating adult epithelial progenitor/stem cells within the islets (I, arrows). The CT and MU develop
extensively during metamorphic climax. By the end of metamorphosis (stage 66), the adult epithelium with multiple folds is formed, with the
adult stem cells localized to the trough of the epithelial fold, equivalent to the crypt in the adult mammalian intestine. LE: larval/tadpole
epithelium, AE: adult epithelium, CT: connective tissue, MU: muscles, I: islets (clusters of proliferating adult epithelial progenitor/stem cells).
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intestine. Thus, intestinal metamorphosis offers a
unique opportunity to investigate the mechanisms
governing the formation of the adult intestinal stem
cells during vertebrate development.

A requirement for tissue-tissue interactions during
intestinal metamorphosis

During metamorphosis the intestinal epithelium under-
goes a dramatic change involving essentially the complete
degeneration of the larval epithelium through apoptosis
followed by de novo development of the adult epithelium
(Figure 1) [27]. The other major tissues, the connective
tissue and muscles, also change extensively, most notice-
ably the increase in the thickness of the tissue layers
(Figure 1) [25,27,28]. Interestingly, a number of studies
indicate that the changes in different tissues depend on
tissue-tissue interactions, especially at the epithelium-
connective tissue interface. First, the extracellular matrix
(ECM) is known to influence cell fate and behavior
through direct interactions with cells through cell sur-
face receptors such as integrins and also by regulating
the availability of extracellular signaling molecules such
as growth factors [29-33]. The intestinal epithelium is
separated from the underlying connective tissue by a
special ECM, the basement membrane or basal lamina.
In premetamorphic tadpoles or frogs, the basal lamina
is thin but continuous. During metamorphosis, it be-
comes much thicker and amorphous [27,34,35]. This
ECM appears to be more permeable as reflected by 1)
the migration of macrophages from the connective tis-
sue across the basal lamina to the epithelium, where
they participate in the removal of the apoptotic cells
[36], and 2) frequently observed contacts between pro-
liferating adult epithelial progenitor/stem cells and fibro-
blasts in the connective tissue [35]. Thus, ECM remodeling
likely plays an important role in intestinal remodeling by
regulating cell-cell and cell-ECM interactions.

Second, studies using primary cultures of tadpole in-
testinal cells have provided direct support for a role of
ECM in adult epithelial development. When isolated
premetamorphic tadpole intestinal epithelial and fibro-
blastic cells were cultured in vitro on plastic dishes, T3
treatment led to proliferation of both cell types and at
the same time caused the epithelial cells, but not the
fibroblasts, to undergo apoptosis [37,38], resembling
what occurs during metamorphosis. When the plastic
dishes were coated with ECM proteins such as laminin
and fibronectin, the T3-induced epithelial cell death
was reduced [37]. These results suggest that ECM affects
cell fate during metamorphosis. Since the basal lamina,
the ECM that separates the epithelium and the connective
tissue, is made of proteins secreted by both the epithelium
and connective tissue, these findings suggest that ECM
remodeling and changes in the connective tissue during
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intestinal metamorphosis can influence epithelial cell
response to T3.

The extensive contacts between developing adult epi-
thelial progenitor/stem cells and the fibroblasts in the
underlying connective tissue at the climax of intestinal
metamorphosis support the importance of cell-cell
interactions for this process. In vitro organ culture
studies have provided direct evidence to support an
interdependence of epithelium and connective tissue
for their respective changes during metamorphosis [39,40].
Of particular relevance to adult stem cell development
is the observation that when anterior intestinal frag-
ments of premetamorphic Xenopus laevis tadpoles were
cultured in vitro in the presence of T3, the intestine
underwent normal metamorphic changes, including lar-
val epithelial apoptosis and the development of the adult
progenitor/stem cells [39]. In contrast, when posterior
intestinal fragments were cultured similarly in vitro,
only larval cell death but no adult epithelial progenitor/
stem cell formation was observed. The major difference
between the anterior and posterior small intestine in
Xenopus laevis tadpoles is the presence of the typhlosole,
where the connective tissue is abundant, in the anterior
but not posterior intestine. The formation and maturation
of adult epithelial tissue occurs initially at the anterior end
of the intestine during metamorphosis [41]. These suggest
that the connective tissue is important for the develop-
ment of the adult epithelium. Consistently, when posterior
intestinal epithelium was recombined with the rest of the
intestine (the non-epithelium) of the anterior intestine to
generate a recombinant organ culture, T3 treatment now
could produce adult progenitor/stem cells. Conversely,
when anterior epithelium was recombined with posterior
non-epithelium, only epithelial cell death was induced by
T3 [39]. Thus, the non-epithelial cell layers in the intestine
play an essential role, likely by contributing to the forma-
tion of a niche with appropriate signals for the induction
of epithelial stem cells during metamorphosis.

Gene regulation by T3 during intestinal metamorphosis

T3 functions by regulating gene transcription through
TRs, which are DNA binding transcription factors be-
longing to the nuclear receptor superfamily [42-45].
Notably, studies on Xenopus laevis metamorphosis have
shown that TR mediates target gene regulation by T3
during development and is both necessary and sufficient
for amphibian metamorphosis [23,24,46-55]. Mechanis-
tically, TR functions by recruiting cofactor complexes to
T3 target genes to regulate transcription and many TR-
interacting proteins have been characterized biochem-
ically and in cell cultures [43,56-76]. These cofactor
complexes function in part through histone modification
and chromatin remodeling [73-77]. Molecular and gen-
etic studies on Xenopus development have shown that in
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premetamorphic tadpoles, unliganded TR recruits core-
pressor complexes to endogenous T3-inducible genes to
repress their expression and prevent premature meta-
morphosis [48,78-80]. When T3 is available, the binding
of T3 to TR leads to the release of the corepressor com-
plexes and the recruitment of the coactivator complexes.
This results in gene activation and metamorphic trans-
formation of different organs/tissues [81-86].

Many of the genes regulated by T3 during Xenopus
laevis intestinal metamorphosis have been identified by
various methods over the years [87-91]. Some are dir-
ectly regulated at the transcription level by TR while
others are indirectly regulated, downstream T3-response
genes involved in intestinal transformation. Importantly,
gene ontology analysis of genome-wide microarray data
revealed that T3 response genes are highly enriched
within functional categories that correlate well with both
larval cell death and adult stem cell development in the
intestine [88,90], supporting the involvement of these
genes during intestinal metamorphosis. Interestingly,
when expression of some of these genes were analyzed
during intestinal development in Xenopus tropicalis, a
species highly related to Xenopus laevis, the regulation
patterns were found to be conserved [92-97], consistent
with the similar changes in the intestine during Xenopus
tropicalis metamorphosis [98]. Furthermore, for most of
the genes that are highly upregulated in the Xemopus
laevis intestine only at the climax of metamorphosis
(stage 61), their mouse homologs also have their peak
levels of expression in the intestine within the first 2 weeks
after birth [90,99], when the mouse intestine matures
into the adult form and plasma T3 levels are high. Thus,
there is likely a conservation of T3-dependent gene regu-
lation programs in the formation of the adult intestine
in vertebrates.

T3 regulation of cell-cell and cell-ECM interactions during

intestinal metamorphosis

Tissue-specific requirements for T3 action in adult stem cell

development

Organ culture studies as reviewed above have suggested
that the non-epithelium, most likely the connective tissue,
is required for T3-induced formation of adult progenitor/
stem cells during intestinal metamorphosis. Gene expres-
sion analyses have shown that many genes are regulated
by T3 in the epithelium or connective tissue or both. To
investigate whether T3 actions in the epithelium and non-
epithelium have specific roles in adult intestinal stem cell
development, we made use of a transgenic Xenopus laevis
line that expresses a dominant positive TR under the
control of a heat shock-inducible promoter for organ
culture studies. The dominant positive TR could not
bind to T3 but functioned as a constitutively liganded
TR to induce metamorphosis when expressed after heat
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shock treatment of premetamorphic tadpoles [49]. Thus,
to selectively activate T3 signaling in the epithelium or
the non-epithelium (the rest of the intestine), we could
recombine the epithelium or the non-epithelium of the
intestine of premetamorphic transgenic tadpole with
non-epithelium or the epithelium of wild type siblings,
respectively, and subject the recombinants to heat shock
treatment. This led to the expression of the dominant
positive TR in the transgenic tissues while the endogen-
ous wild type TR remained unliganded in both the wild
type and transgenic tissues. Using such an approach, we
recently showed that expression of the dominant posi-
tive TR in the epithelium alone led to the formation of
epithelial cells expressing Sonic hedgehog (Shh), which
is highly expressed in the developing adult progenitor/
stem cells during intestinal metamorphosis, as well as
larval epithelial apoptosis, mimicking natural develop-
ment [100]. Expression of the dominant positive TR in
the non-epithelium, however, did not lead to the forma-
tion of epithelial cells expressing Shh, although larval
epithelial apoptosis was induced. Interestingly, expres-
sion analyses of markers for adult mammalian intestinal
stem cells showed that the Shh positive cells formed
upon dominant positive TR expression in the epithelium
alone were not true stem cells, and expectedly, such re-
combinant cultures failed to form differentiated adult
epithelium after extended culturing. On the other hand,
when dominant positive TR was expressed in both the
epithelium and non-epithelium, the Shh positive cells
also expressed the stem cell markers of adult intestine
and the corresponding recombinant organ cultures de-
veloped differentiated adult epithelium after extended
culturing [100].

The above findings as well as other studies suggest that
during metamorphosis, T3 signals in the larval epithelium
and the rest of the intestine (the non-epithelium), mostly
the connective tissue, have distinct effect on epithelial
transformations (Figure 2). T3 action in either the epithe-
lium or non-epithelium can cause larval epithelial apop-
tosis, the fate for most of the larval epithelial cells. Some
of the larval epithelial cells, instead of undergoing apop-
tosis, begin to dedifferentiate and express Shh upon T3
induction. However, in the absence of T3 signaling in the
non-epithelium, such cells cannot become stem cells or
develop into the adult epithelium. T3 action in non-
epithelium, most likely the connective tissue, is thus
required for adult stem cell development, presumably
through interactions with the epithelium and the estab-
lishment of the stem cell niche [100] (Figure 2).

A role of T3-induced MMPs in the connective tissue for
epithelial transformation

As discussed above, the ECM remodeling is likely im-
portant for intestinal metamorphosis. EMC remodeling
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Figure 2 A model for T3 actions for the metamorphic transformation of Xenopus laevis intestine. During metamorphosis, T3 acts directly
(1) on the larval epithelium as well as (2) on the rest of the intestine (the non-epithelium), mostly the connective tissue. Most of the larval
epithelial cells are induced to undergo programmed cell death by either one of the two T3 actions: T3-induced cell autonomous apoptosis vs.
apoptosis induced by ECM remodeling and cell-cell interaction due to T3 action in the non-epithelium. On the other hand, a small number of
cells within the larval epithelium undergo dedifferentiation upon receiving the T3 signal. However, T3 action in these cells alone cannot induce
the formation of adult stem cells, unless T3 action in the non-epithelium is also present. This suggests that T3-induced tissue interactions are
required for the establishment of the stem cell niche, via ECM remodeling and cell-cell interaction, to enable the dedifferentiated epithelial cells
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is largely mediated by matrix metalloproteinases (MMPs),
a superfamily of Zn-dependent membrane-bound or
secreted endopeptidases [101-108]. MMPs can affect cell
fate and behavior through multiple mechanisms by cleav-
ing protein components of the ECM as well as many
non-ECM extracellular or membrane-bound proteins
[101,104,109-111].

MMPs have long been implicated in amphibian meta-
morphosis. In fact, the first MMP, collagenase, was iso-
lated as a collagen-degradation enzyme from the resorbing
tadpole tail [112]. Gene expression studies have shown
that essentially all MMPs analyzed so far are upregulated
at least in some organs during amphibian metamorphosis
[87,108,113-117]. Most of them are highly expressed in
the intestine at the climax of metamorphosis [87,113-115],
when ECM remodeling takes place [27]. The most studied
among them is the MMP stromelysin-3 (ST3). ST3 is dir-
ectly upregulated by T3 at the transcription level and is
one of the first MMPs to be upregulated during natural in-
testinal remodeling, before the onset of epithelial cell
death (by stage 58) [87,114-116,118]. Spatially, ST3 mRNA
and protein are expressed in the fibroblasts within the
connective tissue [114,119], suggesting that ST3 is one of
the connective tissue genes that affect epithelial trans-
formation by altering cell-cell and cell. ECM interactions.
In support of this, when a functional blocking polyclonal
antibody against Xenopus laevis ST3 was added to the T3-

treated organ cultures of premetamorphic intestine, it
inhibited T3-induced ECM remodeling and larval epithe-
lial cell death [120]. In addition, after extended T3 treat-
ment of the organ cultures, adult epithelial progenitor/
stem cells were formed as clusters of cells or islets that
expanded three dimensionally in T3-treated organ cul-
tures. In the presence of the antibody, the T3-induced
formation and proliferation of progenitor/stem cells still
occurred. However, the adult epithelial islets expanded
only laterally along the epithelium-connective tissue
interface but failed to invade into the connective tissue
[120], a process probably essential for adult epithelial
fold formation during intestinal metamorphosis. Thus,
ST3 is likely important, not only for ECM remodeling
and larval cell death, but also for cell migration during
the development of the adult intestine [120].
Complementary to the organ culture studies, trans-
genic overexpression of ST3 under the control of a heat
shock-inducible promoter [121] in premetamorphic tad-
poles resulted in larval epithelial cell apoptosis, activa-
tion of fibroblasts, and contacts between epithelial cells
and fibroblasts in the intestine [122], mimicking changes
during natural metamorphosis. In addition, the basal
lamina separating the epithelium and connective tissue
was also altered by transgenic expression of ST3 in
premetamorphic tadpoles [122]. These and other find-
ings indicate that ST3 expression alone is sufficient to



Hasebe et al. Cell & Bioscience 2013, 3:18
http://www.cellandbioscience.com/content/3/1/18

induce some although not all T3-induced metamorphic
program in the intestine [122], supporting an important
role of T3 action in the connective tissue for epithelial
transformations.

The exact mechanism by which ST3 functions remains
to be investigated. Compared to other MMPs, ST3 has
much weaker activities toward known ECM proteins but
much higher activities toward a few non-ECM proteins
such as al-protease inhibitor, at least in vitro [123-125].
Interestingly, we have discovered that ST3 cleaves the
67 kd laminin receptor both in vitro and during meta-
morphosis [126-128] and more importantly, this cleavage
correlates with T3-induced apoptosis in the intestinal epithe-
lium and tail epidermis [127,128]. Transgenic overexpression
of ST3 caused apoptosis in both tail epidermis and mus-
cles [128]. However, little 67 kd laminin receptor could be
detected in the tail muscles. Thus, ST3 may affect cell fate
during metamorphosis through multiple mechanisms.

T3-induced signaling pathways mediating cell-cell
interactions during adult epithelial development

A number of signal transduction pathways have been
shown to be important for intestinal development in
mammals. Among them are the Shh, WNT, BMP, and
Notch pathways [3,4,129,130]. Some of them are involved
in the development of the adult stem cells during intes-
tinal metamorphosis. Shh is one of the first T3 response
genes identified in the metamorphosing Xenopus laevis
intestine [87,131]. It is directly induced by T3 at the
transcription level as one of the earliest events during
intestinal remodeling. Shh mRNA is highly upregulated
at the climax of intestinal metamorphosis and then
downregulated by the end of metamorphosis. It is spe-
cifically expressed in the intestinal epithelium and its
expression correlates with the formation of the adult
intestinal progenitor/stem cells [132]. We have recently
analyzed the regulation of other components of this
signaling pathway during natural and T3-induced intes-
tinal remodeling [133]. These included Shh receptor
proteins Patched (Ptc)-1 and Smoothened (Smo) and
the three related, downstream transcription factors
Glil, Gli2 and Gli3. We found that like Shh, all were
transiently up-regulated during intestinal metamor-
phosis. Interestingly, all were expressed in the connective
tissues but not the epithelium. Thus, the epithelium-
expressed Shh acts in a paracrine manner on the con-
nective tissues during metamorphosis. In fact, by using
intestinal organ cultures, we showed that overexpression
of Shh upregulated the expression of Ptc-1, Smo, and Glis,
even in the absence of T3, indicating that these compo-
nents themselves are among Shh targets during intestinal
remodeling [133]. More importantly, addition of recom-
binant Shh protein to the organ culture medium
resulted in the activation of cell proliferation in both the
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epithelium and connective tissue in the absence of T3.
In the presence of T3, developmental anomalies in the
adult epithelium were caused by the addition of Shh.
Thus, T3-upregulated expression of Shh regulates the
development of the adult intestine, with high levels
of Shh correlating with the formation and/or prolifer-
ation of the progenitor/stem cells and subsequent
downregulation being important for the differenti-
ation of the adult epithelial cells toward the end of
metamorphosis [132].

In addition to Shh, bone morphogenetic protein-4
(BMP-4), a member of the TGFP superfamily of signal-
ing molecules, is also a T3 response gene [134]. BMP-4
is specifically expressed in the connective tissue and its
expression temporally correlates with adult epithelial de-
velopment in the Xenopus laevis intestine. Furthermore,
BMPR-IA, a type I receptor of BMP-4, is expressed in
both the developing connective tissue and progenitor/
stem cells of the adult epithelium during metamorphosis,
suggesting that BMP-4 affects both the connective tissue
and adult epithelium during intestinal metamorphosis.
Consistently, in intestinal organ culture, the addition of
BMP-4 protein not only repressed cell proliferation in the
connective tissue but also promoted differentiation of the
adult epithelial cells [135]. Moreover, the addition of
excessive Chordin, an antagonist of BMP-4, resulted in
a decrease of adult epithelial cells in number and pro-
liferation. This suggests that a certain level of BMP-4
may be necessary for the maintenance of the adult
stem cells.

BMP-4 is a known target of Shh during mammalian
gut development [136-138]. Like in mammals, Shh also
induces the connective tissue-specific expression of BMP-
4 during Xenopus metamorphosis [135]. Thus, the Shh
and BMP-4 signaling pathways interact with each other to
mediate epithelial-connective tissue interactions to affect
intestinal metamorphosis. That is, Shh is directly induced
by T3 in the adult progenitor/stem cells. The secreted Shh
enhances the formation and/or proliferation of the pro-
genitor/stem cells through yet unknown mechanism. At
the same time it signals the connective tissue to increase
the expression of Shh signaling components, thus provid-
ing a positive feedback on its own signaling, and to induce
the expression of BMP-4. The connective tissue-derived
BMP-4, in turn, represses cell proliferation in the connect-
ive tissue and promotes adult epithelial cell differentiation,
both of which take place toward the end of intestinal
metamorphosis [135].

Conclusion

The mammalian adult intestinal stem cells have long
been used as a model to study tissue renewal and stem
cell maintenance. The establishment of the self-renewing
system of the intestinal epithelium is largely conserved
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in vertebrates. It takes place during the postembryonic
period when plasma T3 levels are high, and more import-
antly, depends on T3. In amphibians, this postembryonic
period is the T3-dependent metamorphosis. Increasing
evidence indicates that the formation of the self-renewing
epithelium of the adult intestine involves the formation of
the adult intestinal stem cells that are distinct from the
larval/neonatal intestinal epithelial stem cells across verte-
brate species. Analyses of Xenopus intestinal metamor-
phosis have led to the identification of many T3 response
genes that are likely involved in the development of the
adult stem cells and many such genes, such as those of the
Shh and BMP-4 signaling pathways, likely have similar
functions during the maturation of the adult intestine in
mammals. A major future challenge will be to investigate
the functions of such genes in vivo. The recent advance-
ments in gene knockout studies in Xenopus by using
gene-specific nucleases [139,140] undoubtedly enhance
the value of the amphibian model for studying the
molecular mechanisms of organ-specific adult stem
cell development.
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