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Objective: To reveal the potential mechanisms of curcumin for the treatment of

skin cutaneous melanoma (SKCM) and its identify novel prognostic biomarkers.

Methods: We searched the Cancer Genome Atlas and Traditional Chinese

Medicine Systems Pharmacology database for the data on SKCM and

curcumin. We conducted data analysis using R and online tools. The

propagation and migration of SKCM cells were assessed with CCK-8 and

scratch wound assays, respectively. We assessed apoptosis by TUNEL assay

and western blot.

Results: The survival analysis revealed that the mRNA expressions of DPYD,

DPYS, LYN, PRKCQ, and TLR1 were significantly related to a favorable overall

survival in SKCM patients. Additionally, the mRNA expression level of DPYD was

associated with GPI, LYN, PCSK9, PRKCQ, and TLR1 mRNAs. GSEA results

showed that the prognostic hub genes were augmented with ultraviolet,

apoptosis, and metastasis. Curcumin expressed proliferation and migration

of SK-MEL-1 cells (p < 0.05), and induced apoptosis (p < 0.05) significantly.

Conclusion: Curcumin may have potential therapeutic effects in SKCM by

inhibiting cell proliferation and migration and inducing apoptosis by

regulating oxygen-related signaling pathways. The hub genes might be

identified as novel biomarkers for SKCM.

KEYWORDS

curcumin, skin cutaneous melanoma, biomarker, proliferation, apoptosis, migration

OPEN ACCESS

EDITED BY

Fu Wang,
Xi’an Jiaotong University, China

REVIEWED BY

Chengyong Xie,
Guizhou University, China
Eswar Shankar,
The Ohio State University, United States

*CORRESPONDENCE

Chao Ma,
gmchao219@163.com

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 01 July 2022
ACCEPTED 23 August 2022
PUBLISHED 12 September 2022

CITATION

Li L, Lu S and Ma C (2022), Anti-
proliferative and pro-apoptotic effects
of curcumin on skin cutaneous
melanoma: Bioinformatics analysis and
in vitro experimental studies.
Front. Genet. 13:983943.
doi: 10.3389/fgene.2022.983943

COPYRIGHT

© 2022 Li, Lu and Ma. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 12 September 2022
DOI 10.3389/fgene.2022.983943

https://www.frontiersin.org/articles/10.3389/fgene.2022.983943/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.983943/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.983943/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.983943/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.983943/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.983943/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.983943&domain=pdf&date_stamp=2022-09-12
mailto:gmchao219@163.com
https://doi.org/10.3389/fgene.2022.983943
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.983943


1 Introduction

Skin cutaneous melanoma (SKCM) is one of the most

vigorous and fatal skin cancer types. The worldwide incidence

of SKCM increases faster annually than any other cancer (Ali

et al., 2013). The latest research shows that about 95,830 new

cases of SKCM in situ have been reported in the United States in

2019 (Siegel et al., 2019). Ultraviolet (UV) radiation may be the

main environmental risk factor (Gilchrest et al., 1999). Although

the pathogenesis and diagnostic methods of diseases have shown

great progress, the morbidity and mortality of SKCM have

increased over the past 50 years in developed countries (Lu

et al., 2018). Moreover, the treatment strategies that are

currently available for metastatic melanoma have shown a

relatively poor rate of success, and most newly developed

anti-melanoma treatments are associated with severe adverse

reactions (Kalal et al., 2017; Kozar et al., 2019; Luther et al., 2019).

For these reasons, people have started to gain interest in natural

compounds. It has been found that phytochemicals have

demonstrated anti-proliferation, apoptosis promoting, anti-

invasion, and anti-angiogenesis properties in mouse models

and melanoma cell lines, without obvious toxicity (Fontana

et al., 2019).

Curcumin is a polyphenolic compound, and curcumin is

derived from turmeric (Curcuma longa), as its primary bioactive

component (Pisano et al., 2010). It is a dietary spice made from

the rhizome of Curcuma longa and is commonly used in curry

powder as well as for centuries in traditional Chinese medicine

(Maheshwari et al., 2006; Yu et al., 2010). Research has identified

that curcumin has various therapeutic properties via different

biological functions and pharmacological effects. These

therapeutic properties include anti-inflammatory, antioxidant,

immunomodulatory, antimicrobial, anti-ischemic, anti-cancer,

and antirheumatic activities (Sahebkar, 2010, 2013; Mirzaei et al.,

2016; Momtazi et al., 2016; Pulido-Moran et al., 2016;

Kunnumakkara et al., 2017). Curcumin can induce

endoplasmic reticulum stress in SKCM by inhibiting classic

signaling pathways, which included nuclear factor kappa B

(NF-κB), signal transducer and activator of transcription 3

(STAT3), Akt/Mtor, and Wnt/β-catenin, the expression of

reactive oxygen species (ROS)thus the enhancement of

oxidative stress injury has been increased (Bakhshi et al.,

2008; Liao et al., 2017; Siwak et al., 2005; Zhang et al., 2015;

Zheng et al., 2004). However, no systematic study on the

mechanism, target, and effect of curcumin in the course of

SKCM has been published thus far.

Therefore, we used the resources in traditional Chinese

medicine and tumor databases to analyze what role curcumin

plays in the treatment of SKCM. Specifically, we aimed to identify

the target genes of curcumin acting on SKCM and analyze

whether these genes are related to pathogenesis, staging, and

prognosis. Furthermore, the effects of varying concentrations of

curcumin on proliferation, migration, and apoptosis of SKCM

cells were assessed in vitro. The results of this study were the basis

for future studies on the effects of curcumin on SKCM.

2 Materials and methods

2.1 Detection of potential target genes

We obtained the molecular formula of curcumin from the

Traditional Chinese Medicine Systems Pharmacology

Database and Analysis Platform (TCMSP, https://old.

tcmsp-e.com/tcmsp.php, accessed on 25 June 2021) (Ru

et al., 2014). The effectiveness of target genes was

identified from the PharmMapper Server (http://www.lilab-

ecust.cn/pharmmapper/, accessed on 25 June 2021) (Liu et al.

, 2010; Wang et al., 2016; Wang et al., 2017) through

Druggable Pharmacophore Models. Besides, we obtained

the SKCM-related target genes and all of the protein-

coding genes from the GeneCards Human gene database

(https://www.genecards.org/, accessed on 25 June 2021)

(Harel et al., 2009; Stelzer et al., 2016). Thus, the common

target genes of curcumin and SKCM were identified.

2.2 Gene ontology and kyoto
encyclopedia of genes and genomes
analyses

We conducted the GO and KEGG analyses based on these

common target genes. Providing data about the gene expression

of common target genes. The GO and KEGG analyses were

conducted to elucidate which mechanisms were applied by

curcumin in the treatment of SKCM using the KOBAS

3.0 web server (http://kobas.cbi.pku.edu.cn/index.php, accessed

on 30 June 2021) (Wu et al., 2006; Xie et al., 2011) and STRING

v11.0 (https://string-db.org/, accessed on 30 June 2021)

(Szklarczyk et al., 2019). Additionally, the Biological Networks

Gene Ontology (BiNGO) (Maere et al., 2005), a GO function

analysis tool, was applied to predict the functionality of common

target genes.

2.3 Establishing the Protein-Protein
Interaction network

A PPI network provides systematic visual data on the

relationships between drugs, target genes, and proteins. We

obtained the data from the STRING protein query and

utilized data to construct the PPI network. Medium

confidence of 0.400 was selected as the threshold in the

analysis. Some nodes that were disconnected from each other

were not displayed. Cytoscape software 3.6.1 was used to

visualize the PPI network.
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2.4 The construction of Genetic
Interaction network

A GI network shows the complex interaction between genes

of interest, and it was generated in GeneMANIA (https://

genemania.org/, accessed on 30 June 2021) (Warde-Farley

et al., 2010). The common target genes were used as query

terms and then the predicted ones were shown simultaneously.

2.5 Survival data preparation

We obtained the Cancer Genome Atlas (TCGA) data and

survival rate/time data, including clinical information (ID, age at

index, gender, race, vital status, tumor stage, treatment, and the

mRNA expression of common target genes of SKCM patients)

from OncoLnc (http://www.oncolnc.org/, accessed on 25 June

2021) (Anaya, 2016) and TCGA (https://cancergenome.nih.gov/,

accessed on 1 July 2021). Briefly, all common target genes were

registered in the database, then the patients with SKCM were

categorized half based on the expression of every gene, and as a

result, the survival data of these SKCM patients was obtained.

Ultimately, the common target genes related to overall survival

(OS) were identified as hub genes.

2.6 Survival analysis

We used the 50% limitation as standard for each hub gene’s

mRNA to divide the patients into groups with high- or low

expression. Based on OS, the log-rank test and Kaplan-Meier

estimator were applied in the survival analysis to calculate the

log-rank p-value and identify the OS of hub genes. Subsequently,

a Cox regression analysis was conducted to identify any

associations between clinical information and the risk score,

for which a nomogram was produced. R v3.6 was used to

create the survival curves and nomogram.

2.7 mRNA expression levels and
correlation analyses

The Gene Expression Profiling Interactive Analysis (GEPIA:

http://gepia.cancer-pku.cn/, accessed on 1 July 2021) dataset

(Tang et al., 2017) was applied to create a boxplot in which

the hub gene mRNA’s expression levels were demonstrated. We

calculated the mRNA expression levels through the retrieved

TCGA data. Furthermore, we defined the expression of hub

genes as high and low based on the median value. The high

expression group referred to patients with expression values that

were higher than the median values of the specific hub genes.

Besides, the low expression group referred to patients with

expression values that were lower than the median values of

the specific hub genes. R v3.6 was used to perform Pearson

correlation coefficient analysis by which the co-expression

relationship among hub genes was assessed.

2.8 Gene Set Enrichment Analysis

GSEA (http://software.broadinstitute.org/gsea/index.jsp;

accessed on 1 July 2021) (Subramanian et al., 2005) was

conducted to identify which potential mechanisms were

responsible for the effect that the risk score has on SKCM

prognosis. The Molecular Signatures Databases (MSigDB) c2

(c2. cp.kegg.v6.1. symbols.GMT) and c5 (c5. all.v6.1. symbols.

GMT) were used to investigate the crucial functions and

pathways that could affect SKCM on the basis of prognosis-

related hub gene mRNAs. We defined the significance as a

nominal p-value < 0.01 and false discovery rate (FDR) < 0.

25 for the sets of enrichment genes in the GSEA. The nine most

significant gene sets were selected for this study and six of the

eight prognosis-related genes (DPYD, GPI, LYN, MMP2,

PRKCQ, and TLR1) were included in the GSEA due to the

limitation of the dataset.

2.9 Cell line and drugs

The human SKCM cell line (SK-MEL-1) was retrieved from

Procell Life Science & Technology (Wuhan, China). The

curcumin was obtained from Solarbio Life Sciences (Beijing,

China). The cells were cultured in Dulbecco’s Modified Eagle

Medium (DMEM) added with 20% FBS and then incubated

at 37°C.

2.10 Cell proliferation assay

We used a Cell Counting Kit-8 (CCK-8) assay (Beyotime

Biotechnology, Shanghai, China) to measure the

spectrophotometric absorbance, with which the proliferation

of cells at 24 h was estimated. The SK-MEL-1 cells were

cultured on plastic 96-well culture plates at a concentration of

5 × 103 cells/well. All experiments were performed as instructed

by the manufacturer.

2.11 Cell migration assay

Cell migration was detected through a scratch wound assay.

The SK-MEL-1 cells confluence in culture plates was scratched

with a sterile pipette tip to produce a space free of cells. Serum-

free DMEMwas used to first rinse all the cells and then they were

photographed to document the width of the wound at 0 h. Then,

we used the serum-free medium to culture the negative control

Frontiers in Genetics frontiersin.org03

Li et al. 10.3389/fgene.2022.983943

https://genemania.org/
https://genemania.org/
http://www.oncolnc.org/
https://cancergenome.nih.gov/
http://gepia.cancer-pku.cn/
http://software.broadinstitute.org/gsea/index.jsp
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.983943


group of cells for up to 24 h, and the other two groups were

treated with 20 and 30 μM curcumin, respectively. Photographs

of the marked wound location were taken again at 6, 16, and 24 h

to measure the migration of cells.

2.12 TUNEL assay

The rate of apoptosis in cultured SK-MEL-1 cells was

measured with the One Step TUNEL Apoptosis Assay Kit

(Dalian Meilun Biotechnology, Dalian, China) as described by

the manufacturer’s instructions. SK-MEL-1 cells cultured in

plastic 6-well culture plates were treated with proteinase K

(20 μg/ml) and stained as recommended. The apoptotic index

of cells was calculated by observing the TUNEL-positive cells in

six fields that did not overlap under ×200 magnification.

2.13 Western blot

Cell apoptosis was also evaluated on protein level by western

blot. The primary antibodies (GAPDH, Bcl-2, Cleaved Caspase 3,

and Bax) were obtained from Cell Signaling Technology Inc.

(MA, United States). The extracts of protein were stored at −80°C

until use. Identical quantities of denatured protein were exposed

to 10% SDS-PAGE and the separated proteins were placed on

polyvinylidene difluoride (PVDF) membranes (Solarbio Life

Sciences, Beijing, China). An LI-COR automatic

chemiluminescence image analysis system was used to

visualize the protein bands. The Odyssey Fc Imaging System

was used to quantify the Western blot signals.

2.14 Statistical analyses

We used R v3.6 to obtain the correlation plot, survival curves,

nomogram, and visualization of data. A p-value < 0.05 was

deemed statistically significant. A workflow diagram is shown

in Figure 1. GraphPad Prism (GraphPad Software, San Diego,

United States) was used to perform one-way and two-way

ANOVA.

3 Results

3.1 The identification and functional
analyses of target genes

The molecular formula of curcumin was obtained from

TCMSP and 158 human target genes were collected

(Figure 2A), of which 36 were identified as common targets

(Figure 2B). The significant (the cut-off criterion for statistic

difference was corrected to p < 0.0001) GO categories are shown

in Supplementary Table S1. The common target genes were

FIGURE 1
Aworkflow diagram. TCMSP, Traditional ChineseMedicine Systems Pharmacology Database, and Analysis Platform; KEGG, Kyoto encyclopedia
of genes and genomes; PPI, Protein-Protein Interaction; GI, Genetic Interaction; TCGA, The Cancer Genome Atlas; GSEA, Gene Set Enrichment
Analysis.
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mainly enriched in the cytoplasm (GO:0005737), catabolic

process (GO:0009056), response to endogenous stimulus (GO:

0009719), and other terms. The KEGG analysis showed that the

hub genes were mainly enriched in carbon metabolism

(hsa01200), metabolic pathways (hsa01100), and NF-κB
signaling pathway (hsa04064), and other associated pathways

(Supplementary Figure S1). These results were consistent with

the BiNGO outcomes (Supplementary Figure S2).

3.2 The construction of PPI and GI
network

The PPI network was constructed using the STRING online

tool, and the Cytoscape 3.6.1 software was used for visualization.

Identification of the most significant genes using a network

constructed from common target genes (Supplementary Figure

S3A). As shown in Supplementary Figure S3A, the tumor protein

53 (TP53), catalase (CAT), and enolase 1 (ENO1) were evidently

at the PPI network’s center. The GeneMANIA online tool was

used to construct the GI network, which shows the interaction

among the 36 common target genes and predicted genes

(Supplementary Figure S3B).

3.3 Survival analysis

The results of the log-rank test and Kaplan-Meier

estimator indicated that the following eight out of

36 common target genes were significantly associated to the

OS of SKCM patients: matrix metallopeptidase 2 (MMP2, p =

0.001), toll like receptor 1 (TLR1, p = 0.00052),

dihydropyrimidine dehydrogenase (DPYD, p < 0.0001),

proprotein convertase subtilisin/kexin type 9 (PCSK9, p =

0.011), protein kinase C theta (PRKCQ, p = 0.0013), glucose-6-

phosphate isomerase (GPI, p = 0.0032), dihydropyrimidinase

(DPYS, p = 0.00047), and the LYN proto-oncogene, Src family

tyrosine kinase (LYN, p = 0.0061) (Figure 3). Based on the

clinical information of SKCM patients, race (p = 0.0072), age

at index (p < 0.0001), and tumor stage (p < 0.0001) were all

correlated to OS. Figure 4 shows the generated nomogram and

the c-index of this model was 0.669.

3.4 mRNA expression levels and
correlation analyses

As shown in boxplots, significant differences were discovered

between the mRNA expression levels of hub genes found in

normal tissues and SKCM tissues. Furthermore, the mRNA

expression of DPYS, GPI, TLR1, PRKCQ, and LYN

(Supplementary Figures S4B–D,G,H) in SKCM tissues were

greater compared to those of normal tissues, of which the

difference was statistically significant in GPI, PRKCQ, and

LYN (all p-value < 0.01, Supplementary Figures S4C,G,H). In

contrast, the mRNA expression of DPYD,MMP2, and PCSK9 in

SKCM tissues was lower in comparison to that of normal tissues

(Supplementary Figures S4A,E,F), of which the difference was

only statistically significant in MMP2 (p-value < 0.01,

Supplementary Figure S4F).

The correlation between the mRNA expression levels of hub

genes was determined by Pearson correlation coefficient analysis.

FIGURE 2
(A) Targets for curcumin. (B) Venn diagram summarizing differentially expressed targets for SKCM and curcumin. SKCM, skin cutaneous
melanoma. The data are derived from PharmMapper.
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FIGURE 3
The prognostic significance of common targets for the OS of SKCM patients (A–H) Kaplan-Meier survival curves for all SKCM patients based on
DPYD (A), DPYS (B), GPI (C), LYN (D), MMP2 (E), PCSK9 (F) PRKCQ (G), and TLR1 (H) expression (n = 458). OS, overall survival; SKCM, skin cutaneous
melanoma.
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The results have shown that the mRNA expression level ofDPYD

was correlated with most of the hub gene mRNAs (GPI, LYN,

PCSK9, PRKCQ, and TLR1) (all p-value < 0.01, Supplementary

Figure S5 ; Supplementary Table S2).

3.5 GSEA analysis

GSEA was performed to calculate an enrichment score (ES)

by going through the list of genes. The green line, representing a

running-sum statistic, was enhanced when a gene was part of the

gene set and decreased when it was not. A positive ES indicated

enrichment of the gene set at the top of the ranking list and a

negative ES indicated enrichment at the bottom. The horizontal

bar’s red part and blue part represented positive and negative ES,

respectively.

The results of the GSEA indicated that DPYD was

primarily enriched in apoptosis, the JAK/STAT and MAPK

signaling pathways, and the response to UV and cell adhesion

functions (Supplementary Figure S6). For GPI, the

AKT1 signaling pathway and the response to ultraviolet,

glucose metabolism, oxidative phosphorylation, and

FIGURE 4
Nomogram for the relationship between clinical data and risk score. Stage 1 for I/II nos, 2 for 0, 3 for I, 4 for I a, 5 for I b, 6 for II, 7 for II a, 8 for II b,
9 for II c, 10 for III, 11 for III a, 12 for III b, 13 for III c, and 14 for IV.
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electron transport chain were mainly enriched

(Supplementary Figure S7). LYN was enriched in MAPK,

JAK/STAT, and apoptotic-related signaling pathways.

Additionally, LYN was also associated with DNA damage

by UV and cell adhesion (Supplementary Figure S8).

According to the results, MMP2 was highly related to cell

migration and adhesion, apoptosis, and skin cancer

progression (Supplementary Figure S9). As demonstrated,

PRKCQ was mainly enriched in the JAK/STAT and MAPK

signaling pathways, as well as apoptosis, DNA damage by UV,

and cell adhesion (Supplementary Figure S10). TLR1 was

mainly associated with the Toll-like receptor, JAK/STAT and

AKT1 signaling pathways, and UV-induced apoptosis and

DNA damage (Supplementary Figure S11).

Overall, the hub prognosis-related genes were mainly

associated with cell adhesion and UV-related functions

and participated in JAK/STAT and MAPK signaling

pathways. Notably, MMP2 was associated with skin cancer

progression.

3.6Curcumin inhibits SK-MEL-
1 proliferation

The anti-proliferative effect of curcumin on SK-MEL-1 cells

was evaluated in vitro by a CCK-8 assay. SK-MEL-1 cells were

treated with different concentrations of curcumin, and the results

showed that the inhibition of cell proliferation was more

pronounced at 30 than at 20 μM (p < 0.001, Figure 5).

Curcumin showed potential antiproliferative effects in SK-

MEL-1 cells.

3.7 Curcumin inhibits SK-MEL-1 cell
migration

The anti-migration effect of curcumin on SK-MEL-1 cells

was measured in vitro by performing the scratch wound assay.

The results (Figure 6) showed that there was no significant

difference at 6 h (p > 0.05) in terms of migration distance

observed among the 3 groups. A concentration of 100 μM

curcumin significantly suppresses the migration of SK-MEL-

1 cells at 16 h (p < 0.01) and 24 h (p < 0.001) in comparison

to the control group. In addition, compared with the control

group, curcumin at a concentration of 50 μM significantly

inhibited the migration of SK-MEL-1 cells at 24 h (p < 0.01).

The results indicated that curcumin had a potential anti-

migratory effect in SK-MEL-1 cells.

3.8 Curcumin promotes apoptosis in SK-
MEL-1 cells

We conducted a TUNEL assay to evaluate the pro-apoptosis

effect of curcumin on SK-MEL-1 cells. The results of TUNEL

(Figure 7) showed that the apoptosis rate and the apoptosis rate

of SK-MEL-1 cells in the curcumin-treated group were

significantly higher than those in the control group (p <
0.0001). The results of the western blot were consistent with

that of the TUNEL assay (Figure 8).

4 Discussion

From the point of view of molecular biological networks,

traditional Chinese medicine network pharmacology provides a

systematic research method in which the application of available

traditional Chinese medicine compounds in various diseases can

be evaluated. Previous research has shown that curcumin has

great potential in preventing and treating various cancers

(Ghalaut et al., 2012; Golombick et al., 2012; Ryan et al.,

2013). In this study, we demonstrated that the molecular

targets of curcumin on SKCM cells can be used as biomarkers

of diagnosis and prognosis. In addition, the possible targets and

concentrations of curcumin on SKCM were also analyzed.

Analysis of clinical survival data has indicated that the

survival rate was higher in SKCM patients with a high

expression of DYPD, DYPS, LYN, PRKCQ, and TLR1, while

the survival rate was lower in patients with a high expression of

GPI, MMP2, and PCSK9. In the detection of tumor tissue and

normal tissue, it was shown that the expression of GPI, LYN, and

TLR1 was enhanced, whereas the expression of MMP2 was

reduced. The targets of curcumin in the treatment of SKCM

discovered in this study can be used as prognostic features and

provide a theoretical basis for curcumin in the treatment

of SKCM.

FIGURE 5
Study of cytotoxicity by using CCK-8 assay. The SK-MEL-
1 cells were treated with curcumin in different concentrations. The
cell proliferation was significantly decreased under the stimulation
of 20 and 30 μM curcumin compared to that of 10 μM ***p <
0.001 and ****p < 0.0001, one-way ANOVA.
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Co-expression analysis has indicated that these genes were

not highly co-expressed with one another at the gene as well as

protein levels. However, the regulation of these genes can

influence the expression of TP53 at both gene and protein

levels. TP53 has an important role as a tumor suppressor gene

in humans, associated with the induction or inhibition of the cell

cycle regulation, apoptosis regulation, DNA repair, and cell

senescence-related gene expression after activation (Giaccia

and Kastan, 1998). In subsequent in vitro experiments, we

found that curcumin could upregulate the expression of

Caspase3 and Bax in SK-MEL-1 cells and significantly reduce

Bcl-2’s expression. Thus, TP53 may serve as the therapeutic

target of curcumin in SKCM treatment. In addition, the GO

analysis showed that these target genes were significantly

enriched in the regulation of the apoptotic process, positive

regulation of cell death, and regulation of the macromolecule

metabolic process. The results of the KEGG analysis indicated

that curcumin may play a role in SKCM by regulating metabolic

pathways in tumor-related signaling pathways and the

biosynthesis of amino acids and proteoglycans.

Based on GSEA analysis and literature review, we believe that

these important genes/proteins are closely related to the

occurrence of SKCM. DYPD can affect SKCM by regulating

the cell response to UV, MAPK signaling pathway, JAK-STAT

FIGURE 6
Cell migration evaluation by scratch wound assay. The SK-MEL-1 cells were treated with curcumin in concentrations of 0, 20, and 30 μM. Cell
migration was significantly suppressed in curcumin-treated groups in comparison to that of the control group. **p < 0.01 and ***p < 0.001, two-way
ANOVA.
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signaling pathway, apoptosis signaling pathway, and affecting

cell-to-cell adhesion. DPYD is a vital enzyme in the metabolic

pathway and is related to the drug response to 5-fluorouracil

chemotherapy (Kristensen et al., 2010; Kimura et al., 2011). In

addition, GPI function by regulating UV, tumor metastasis, and

NF-κB signaling pathways.GPI is a glycolysis enzyme that plays a

biological role through cell secretion. Its overexpression has been

related to increased invasive phenotypes and mortality in many

FIGURE 7
Evaluation of cell apoptosis by TUNEL assay. The SK-MEL-1 cells were treated with curcumin in concentrations of 0, 20, and 30 μM. Cell
apoptosis was significantly promoted in curcumin-treated groups in comparison to that of the control group. TUNEL-positive cells were stained in
red color, and the nucleus stained by DAPI was in blue. *p < 0.05 and ****p < 0.0001, one-way ANOVA.

FIGURE 8
Evaluation of cell apoptosis by western blot. Blots showing proteins in the SK-MEL-1 cells treated with curcumin in different concentrations (A)
and quantification (B). **p < 0.01, ***p < 0.001 and ****p < 0.0001, one-way ANOVA.
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types of cancer (Lyu et al., 2016; Ma et al., 2018). Therefore, the

survival rate of patients with elevatedGPI is decreased, which was

also observed in our study. Moreover, LYN,MMP2, PRKCQ, and

TLR1 can affect SKCM by influencing tumor cell metastasis, UV-

induced cell injury, the NF-κB signaling pathway, and apoptosis.

LYN can regulate proliferation, differentiation, migration, and

apoptosis, and over-expression of LYN plays a vital role in solid

tumors (Tabariès et al., 2015; Q. Zhang et al., 2019). Previous

research has indicated that MMP2 can produce the key pre-

invasion factor induced by carcinogenic inflammation, and

promotes tumor growth and invasion (Winerdal et al., 2018;

W. Zhang et al., 2006). PRKCQ is widely expressed in the entire

hematopoietic system and can induce the production and

migration of breast tumors (Vyas et al., 2001; Byerly et al.,

2016). TLR1 mediates local inflammation by affecting NF-κB.
In pancreatic ductal carcinoma, the strong expression of TLR1

indicates a good prognosis, while the negative expression of TLR1

is a sign of poor prognosis (Lanki et al., 2019). We further

investigated the effects of curcumin on the proliferation and

apoptosis of human SKCM cells in vitro.

The cell wound assay demonstrated inhibited SK-MEL-1 cell

growth by curcumin in a dose-dependent manner, and TUNEL

staining showed that apoptosis increased significantly. In

addition, after treatment with curcumin, the western blot

demonstrated that curcumin could stimulate the activation of

Caspase3 and downregulate the ratio of BCL2 and Bax. These

findings are consistent with previously reported results of

curcumin-induced apoptosis in osteosarcoma cells (Khodaei

et al., 2022). Living cells possess higher levels of Bcl-2, which

leads to the inhibition of apoptosis. Bcl-2 regulates the cellular

activities of proteins related to cell proliferation or apoptosis,

such as Caspase3 and Bax36. The first stage of the intrinsic

apoptotic pathway relies on the activity of Bax, which modulates

cellular fidelity to the pathway by altering mitochondrial

physiology. Therefore, the effect of apoptosis induction by

curcumin in SK-MEL-1 cells can be elucidated by detecting

the expression of Caspase3 and the ratio of Bcl-2 to Bax.

Thus, these target genes may act together on SKCM and may

be potential therapeutic targets in SKCM.

5 Conclusion

We applied a network pharmacology method to identify

the potential mechanisms of curcumin for the SKCM

treatment methods. The common target genes might

participate in the regulation of the inflammatory

microenvironment of the tumor, thereby affecting the

occurrence and metastasis of the tumor and improving the

prognosis of SKCM patients. The in vitro experiments have

indicated that curcumin has anti-proliferative and pro-

apoptotic effects in SK-MEL-1 cells. Based on the

functions that these hub genes occupy in cell proliferation

and apoptosis; further in vitro research is necessary to clarify

the specific anti-SKCM effect of curcumin.
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