
microorganisms

Article

Loss and Gain of Gut Bacterial Phylotype Symbionts in
Afrotropical Stingless Bee Species (Apidae: Meliponinae)

Yosef Hamba Tola 1,2 , Jacqueline Wahura Waweru 1, Nelly N. Ndungu 1, Kiatoko Nkoba 1, Bernard Slippers 2

and Juan C. Paredes 1,*

����������
�������

Citation: Tola, Y.H.; Waweru, J.W.;

Ndungu, N.N.; Nkoba, K.;

Slippers, B.; Paredes, J.C. Loss and

Gain of Gut Bacterial Phylotype

Symbionts in Afrotropical Stingless

Bee Species (Apidae: Meliponinae).

Microorganisms 2021, 9, 2420.

https://doi.org/10.3390/

microorganisms9122420

Academic Editors: Flavia Indrio and

Michael H. Kogut

Received: 8 October 2021

Accepted: 15 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 International Centre of Insect Physiology and Ecology, Nairobi 30772-00100, Kenya; yosef@icipe.org (Y.H.T.);
jackiemaingih@gmail.com (J.W.W.); nndungu@icipe.org (N.N.N.); nkiatoko@icipe.org (K.N.)

2 Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology
Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; bernard.slippers@up.ac.za

* Correspondence: jparedes@icipe.org; Tel.: +254-20-8632000

Abstract: Stingless bees (Apidae: Meliponini) are the most diverse group of corbiculate bees and are
important managed and wild pollinators distributed in the tropical and subtropical regions of the
globe. However, little is known about their associated beneficial microbes that play major roles in host
nutrition, detoxification, growth, activation of immune responses, and protection against pathogens
in their sister groups, honeybees and bumble bees. Here, we provide an initial characterization of
the gut bacterial microbiota of eight stingless bee species from sub-Saharan Africa using 16S rRNA
amplicon sequencing. Our findings revealed that Firmicutes, Actinobacteria, and Proteobacteria were
the dominant and conserved phyla across the eight stingless bee species. Additionally, we found
significant geographical and host intra-species-specific bacterial diversity. Notably, African strains
showed significant phylogenetic clustering when compared with strains from other continents, and
each stingless bee species has its own microbial composition with its own dominant bacterial genus.
Our results suggest host selective mechanisms maintain distinct gut communities among sympatric
species and thus constitute an important resource for future studies on bee health management and
host-microbe co-evolution and adaptation.

Keywords: Lactobacillaceae; Bifidobacteriaceae; Acetobacteraceae; Meliponula; Dactylurina; Hypotrigona;
Liotrigona

1. Introduction

More than 90% of tropical plant flowers are pollinated by animals; among them, bees
are the most important pollinators [1–3]. Stingless bees (Meliponinae) represent the most
diverse group among corbiculate bees and are commonly distributed in the tropical and
subtropical regions; 77% are found in the Neotropics (Central America, Caribbean, and
South America), followed by 16% in the Indo Malay/Australasian region and 7% in the
Afro tropics [4–9]. Worldwide, there are approximately 61 identified stingless bee genera
and over 550 species [4,8,10]. In Africa, there are 10 genera and 36 species of stingless
bees described, and they are commonly distributed in tropical forests, savannahs, and
deserts [4,10,11]. In Kenya, 6 genera (Cleptotrigona, Dactylurina, Hypotrigona, Liotrigona,
Meliponula, and Plebeina) have been reported and are composed of 12 species that inhabit
the Kakamega forest, Mwingi, the Arabuko-Sokoke Forest, and the Taita hills [10,12–14].
The Meliponula genus has been further divided into three sub-genera, namely Meliponula
(one species), Axestotrigona (two species), and Meliplebeia (five species) [6,10].

The current increasing demand for managed pollinators and the advantages that
stingless bees present have further encouraged their domestication [15–19]. In contrast to
honeybees, stingless bees do not sting, they can be used for crop pollination in greenhouses,
and they produce honey, propolis, and wax with important medicinal properties (e.g.,
antioxidant capacity, antimicrobial activity) of high economical value [17,20–23].
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Bacterial symbiosis is a profound mechanism that has shaped insect physiology and
ecology throughout their evolution [24,25]. With the increased number of insect models
used for beneficial gut bacterial studies, there is cumulative evidence that insect gut
microbiota play an important role in insect physiology, organ development, protection
against natural enemies and help in their nutrition and detoxification. Additionally, they
are involved in immune response activation and communication [26–31]. Bee gut bacterial
communities are not an exception [32–39].

The vast majority of bee gut bacterial microbiota research has been conducted on
honeybees (Apini tribe), and to a lesser extent, in bumble bees (Bombini tribe), but very
little is known regarding stingless bees [40–45]. The handful of studies investigating
stingless bee gut bacterial microbiota have reported substantial community diversity that
varies across bee species [40,42–46]. Lactobacillus and Bifidobacterium have been reported
as the most abundant genera, and in contrast to Apini and Bombini tribes, in Meliponini,
Gilliamella and Snodgrassella are not always present or abundant. Additionally, stingless
bees harbor numerous and specific Acetobacter species [41–47].

Despite being the most diverse group of corbiculate bees, only a few stingless bee
species have been studied for their gut bacterial microbiota. Thus, much greater diversity is
expected since they occupy a variety of tropical and subtropical habitats, and they present
a large range of behaviors, such as, specific plant foraging and the construction of peren-
nial nests that have different locations and structures [4,10,11,18,48]. Therefore, a better
characterization of stingless bee gut bacterial microbiota will contribute to understanding
host–symbiont interactions which likely impact stingless bee physiology. This will lay
the foundation for different strategies to ensure beneficial microbe persistence in bees for
agricultural sustainability and biodiversity conservation.

Here, we characterized the gut bacterial microbiota of eight different Afrotropical stin-
gless bee species belonging to Meliponula, Dactylurina, Hypotrigona, and Liotrigona genera
and evaluated their phylogenetic diversity and their relationship with other corbiculate
bees from other continents.

2. Materials and Methods
2.1. Sample Collection and Preparation

Foragers from eight African stingless bee species belonging to four genera (Meliponula,
Dactylurina, Hypotrigona, Liotrigona) were collected from colonies located at the International
Centre of Insect Physiology and Ecology (icipe) meliponary, Duduville campus, Nairobi,
Kenya, from October 2019 to February 2020. The following bees were originally collected
from the Kakamega forest (Western Kenya): Meliponula bocandei (collected in February 2019),
Meliponula togoensis and Meliponula ferruginea (collected in September 2018), and Meliponula
lendliana and Liotrigona spp. (collected in September 2019). From the Mwingi (Eastern
Kenya), the following bees were collected: Hypotrigona spp. 1 (collected in February
2017) and Hypotrigona spp. 2 (collected in August 2015). From the Taita Hills and Kilifi
(Coastal Kenya), Dactylurina schmidti were collected (collected in September 2018). At
the icipe meliponary, all colonies had access to the same floral resources and faced the
same ecological conditions (e.g., temperature, humidity). Gardens in their foraging range
included Acacia, Eucalyptus, Psidium, Cordia Africana, croton megalocarpus, Leucaena glauca,
and mixed crops.

Fifty forager worker bees per hive from two hives per species were collected at the hive
entrance and washed in 4% sodium hypochlorite, followed by a wash in 70% ethanol and
finally 1× PBS for 2 min to eliminate any external microorganisms or contaminant DNA
attached to the cuticle [49,50]. The entire gut, with its contents, was dissected aseptically
from each bee using forceps, and the guts were placed in a 2 mL microcentrifuge-tube
containing 500 µL PBS. Samples were stored at −80 ◦C before DNA extraction.
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2.2. DNA Extraction

DNA extraction from the entire gut was done using the CTAB-Phenol–Chloroform
extraction method described in [50]. DNA was resuspended in 200 µL sterile water,
and DNA concentration and quality per sample was confirmed using NanoDrop 2000
Spectrophotometer (Thermo Scientific, Wilmington, NC, USA).

2.3. 16S rRNA Gene Amplification, Sequencing, and Gut Community Analysis

All 16S rRNA gene amplification and sequencing was done at Macrogen Europe BV
(Meibergdreef 31, 1105 AZ Amsterdam, The Netherlands, https://dna.macrogen-europe.
com/eng/, accessed on 17 April 2020). We analyzed 8,563,992 paired-end sequences
spanning the V3-V4 region of the 16S rRNA with an average of 155,709 reads per sample
(10 pooled guts per sample, and the number of reads ranged from 106,894 to 198,324). We
used the DADA2 pipeline embedded in R (version 4.0.2) to analyze our sequence reads [51].
Reads were checked for quality and primer sequences trimmed using Cutadapt (version
2.10). Taxonomic classification was performed against the SILVA138 database using a
pre-trained Naive Bayes classifier [52]. Taxa and ASVs with cumulative abundance below
five were discarded from analysis and from our negative control (a “blank” sample was
included in the run, and we recovered only 2 reads), as well as those classified as unwanted
sequences of animal and fungal origin (Chloroplast, Chloroflexi, Mitochondria, Archaea,
and Eukaryota). Data were rarefied for the downstream alpha and beta diversity analysis
(Figure S1). Alpha diversity was determined using Evenness, Faith’s phylogenetic diversity,
and the Shannon index, and the statistical differences of gut bacterial microbiota diversity
across the species were tested using Kruskal–Wallis H test. Average diversity values were
plotted for each sample at each even sampling depth and samples were grouped based
on sample metadata. To visualize the clustering of the microbial communities per species,
principle coordinate analysis (PCoA) was done using Bray–Curtis distances and UniFrac
distances (Weighted and Unweighted UniFrac). A Pearson correlation test was additionally
performed to identify the impact of bee size on the bacterial richness and evenness.

2.4. Phylogenetic Tree Analysis

Phylogenetic trees were constructed for Lactobacillaceae, Bifidobacteriaceae, and Ace-
tobacteraceae members using MEGA X [53]. Sequences were aligned using Unweighted
Pair Group Method with Arithmetic Mean (UPGMA). Phylogenetic trees were computed
with the Kimura 2-parameter model using the Maximum Likelihood method [54]. The
model was selected based on the Bayesian Information Criterion (BIC) values. The boot-
strap consensus tree was inferred from 1000 replicates, and less than 50% bootstrap
replicates collapsed.

3. Results
3.1. Bacterial Communities Associated with Stingless Bee Guts

We sampled eight different stingless bee species in Kenya: Meliponula bocandei, M. togoen-
sis, M. ferruginea, M. lendliana, Dactylurina schmidti, Liotrigona spp., and Hypotrigona sp. 1 and
sp. 2. We obtained 2038 amplicon sequence variants (ASVs). We found 409 genera of which
13 genera represented more than 99% of total reads (Figures 1A and S2 and Table S1).

We found that Firmicutes, Proteobacteria, and Actinobacteria were the dominant
phyla across the eight stingless bee species (Table S1). The most abundant was Firmicutes
with about 60% of total reads encompassing Lactobacillus, Bombilactobacillus, Acetilactobacil-
lus, and Apilactobacillus, among others. Lactobacillus accounted for approximately 25% of
total reads (Figures 1 and S2, Table S1). The second highest phylum was Proteobacteria
with approximately 18% of total reads including Saccharibacter, Neokomagataea, Wolbachia,
Bombella, Gluconacetobacter, Nguyenibacter, Acinetobacter, Zymobacter, Klebsiella, and Acetobac-
ter. Saccharibacter accounted for about 8% of total sample reads (Figures 1 and S2, Table S1).
The actinobacteria phylum including Bifidobacterium accounted for approximately 10%
of total reads (Figures1 and S2, Table S1). Interestingly, whereas almost all stingless bee
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species were dominated by a member of the Lactobacillaceae family, the dominant genera
varied across species. Acetilactobacillus and Apilactobacillus related genera dominated in
Hypotrigona sp. 2, M. lendliana, and M. ferruginea, Lactobacillus dominated in Hypotrigona sp.
1 and M. togoensis, and Bombilactobacillus in D. schmidti. Bifidobacterium was present in all
species except Hypotrigona sp. 2 and was the most abundant in Hypotrigona sp. 1. Among
the Acetobacteraceae family, Bombella was the most abundant in M. bocandei, and Saccharibac-
ter was the most abundant in D. schmidti (Figures 1 and S2, Table S1). Interestingly, we also
uncovered the endosymbiont, Wolbachia, which was highly abundant in all Liotrigona sp.
(59% of Liotrigona sp. total reads) and in one sample of M. lendliana (0.5% of M. lendliana
total reads) (Table S1).
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Figure 1. Gut bacterial genera associated with eight stingless bee species in Kenya. (A) A bar plot representation of all the
stingless bee gut bacterial genera with an overall abundance higher than 1%. All genera with abundances below 1% were
categorized as “Others”. The phylogeny of Afrotropical stingless bees was based on [8]. (B,C) heatmap comprising of the
ASVs from the five most abundant genera across the eight stingless bee species. ASV ID numbers (Table S1) are indicated at
the top. Darker squares correspond to higher mean relative abundances for a given ASV in each bee species.

3.2. Bacterial Communities Varied across Stingless Bee Species

To measure the bacterial community variation across species, we analyzed the overall
diversity of the gut bacteria in the eight stingless bee species (Figure 2). As seen in Figure 1,
alpha diversity varied significantly when richness (Shannon: p = 0.000038, H = 29.672,
(Figure 2A)), evenness (Evenness: p = 0.00005, H = 29.12, (Figure 2B)), and phylogenetic
distances (Faith’s phylogenetic diversity, p = 0.00018, H = 24.888, (Figure 2C)) were tested.
These results are consistent with the PCoA using Bray–Curtis and from the weighted and
unweighted UniFrac distances (Figure 3).

Even though M. lendliana, Hypotrigona sp. 2, and Liotrigona sp. clustered together in
Bray–Curtis, they did not cluster in Unifrac distances. It is also noteworthy that these are
the species where we obtained a lower number of samples (2 to 4 compared to 8 to 10 for
others (Figure 3)).
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Figure 2. Alpha diversity estimates from the different stingless bee species. (A) Shannon diversity
(p = 0.000038, H = 29.672), (B) Evenness diversity (p = 0.00005, H = 29.12), (C) Faith’s phylogenetic
diversity (Faith’s PD) (p =0.00018, H = 24.888).
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3.3. Phylogenetic Diversity of Stingless Bee Gut Bacterial Microbiota

To evaluate the relationship between the bacteria generated in this study to other bacterial
sequences isolated in other corbiculate bees, we constructed phylogenetic trees with the three
most abundant families, Lactobacillaceae, Bifidobacteriaceae, and Acetobacteraceae (Figure 4).

ASVs related to Lactobacillaceae were found overall distributed with other reported
sequences from corbiculate bees. The most abundant ASVs were closely related to strains
from Lactobacillus (Firmicutes 5 group) and Bombilactobacillus (Firmicutes 4 group), known
members of honeybee and bumble bee core gut bacterial microbiota. Interestingly, we
also uncovered multiple ASVs related to environmental or hive-associated Lactobacillaceae
such as Acetilactobacillus and Apilactobacillus with an important abundance and prevalence
across samples. One ASVs was related to Ligilactobacillus but at a very low abundance
(Figures 1 and 4).

Bifidobacteriaceae associated ASVs were found to cluster in two subgroups (Figure 5).
The most numerous and abundant were highly related to Bifidobacterium commune, Bifi-
dobacterium bohemicum, and Bifidobacterium bombi, all of which are found in bumble bee guts.
Two other ASV clustered with Bifidobacterium coryneforme strains found in Apis mellifera and
M. bocandei, from previous studies. Interestingly, none of the represented ASVs in Figure
4 were related to Bifidobacterium asteroids found in honeybees or bumble bees, but were
found in the stingless bee M. bocandei from Kenya [44].

The Acetobacteraceae-associated ASVs clustered with other reported strains and in
specific groups (Figure 6). The most abundant cluster was found to be highly related
to other Acetobacter species isolated in other stingless bees, Melipona sp. and Meliponula
sp., from Panama and Gabon [41,63,64]. We found one group also related to Bombella
apis and Bombella intestini reported in honey bees and bumble bees, and another group
with very long branches related to Neokomagataea thailandica isolated from flowers [41,65].
Interestingly, we found that some ASVs form a group on their own, with no closest known
related strain (ASV 34, 35, 39, 52, and 75, Figure 6). In contrast to Apis mellifera bacterial
microbiota, we did not uncover any Commensalibacter related strains in our study [66,67].
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Figure 4. Phylogenetic tree showing the relationships between Lactobacillaceae ASVs from this study
and reference Lactobacillaceae sequences. Accession Number are indicated at the beginning of each
name reported from [41,44,55–58], and bacterial strains are indicated in brackets. Only ASVs that
represent more than 1% among Lactobacillaceae family per species were represented. Percentage
greater than 1% of the relative abundance from total reads of each ASV are represented by color bars.
Each color represents each stingless bee species using the same color code as in Figures 2 and 3.
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Figure 5. Phylogenetic tree showing the relationships between Bifidobacterium from stingless bees
from Africa compared to other continents. Accession Number is indicated at the beginning of each
name reported in [42,44,57–62]. Species from which the bacterial strain was reported and the country
of origin (two letter code) are indicated in grey. Only ASVs that represent more than 1% among
Bifidobacteriaceae family per species were represented. Percentage greater than 1% of the relative
abundance from total reads of each ASV are represented by color bars. Each color represents each
stingless bee species using the same color code as in Figures 2 and 3.
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Figure 6. Phylogenetic tree showing the relationships between Acetobacteraceae family from African stingless bees compared
to other continents. Accession Number is indicated at the beginning of each name reported in [41,42,61,63,64,66–68]. Species
from which the bacterial strain was reported and the country of origin (two letter code) are indicated in grey. Only ASVs
that represent more than 1% among Acetobacteraceae family per species are represented. Percentage greater than 1% of the
relative abundance from total reads of each ASV are represented by color bars. Each color represents each stingless bee
species using the same color code as in Figures 2 and 3.

4. Discussion

We reported the first characterization of the gut bacterial microbiota of eight endemic
African stingless bee species (Apidae: Meliponini). We found that Firmicutes, Actinobacte-
ria, and Proteobacteria were the dominant and conserved phyla across the stingless bee
species. Interestingly, there were significant variations amongst the genera that domi-
nated the gut of each stingless bee species. Furthermore, phylogenetic analysis showed
substantial bacterial strain diversity, which is shared with other corbiculate bees, but also
with several African specific bacterial clusters. As has been reported for South American
stingless bee species, the East African stingless bee species we examined lost the honeybee
and bumble bee specific symbionts Snodgrassella, Gilliamella, and Frischella [42,46,69,70].
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Together, these results are an important contribution towards the study of the common
origin of corbiculate bee gut bacterial microbiota and their co-evolution with their host.

Among the African stingless bee populations that were sampled, we identified Lacto-
bacillaceae (including Lactobacillus, Paucilactobacillus, Bombilactobacillus, and Lentilactobacil-
lus), Bifidobacterium, and Acetobacteraceae (including Saccharibacter and Neokomagataea) as
the most abundant families, which account for more than 73% of the total gut bacterial
microbiota. Interestingly, phylogenetic analyses revealed novel diversity of strains from
these groups that has not been reported in other studies on stingless bees [41,42]. Addition-
ally, despite sharing the same habitat for at least six months, each stingless bee species was
dominated by a certain number of specific bacterial strains. Evaluating bacterial gut com-
position across longer time scales—months or years—from feral colonies or after a change
of location would be important to understand the causes of this diversity [40]. These results
demonstrate that there is a vast diversity of stingless bee gut bacterial microbiota members
that are yet to be characterized and that conducting research on multiple strains, as done in
this study, is needed to have a comprehensive and comparative picture of stingless and
corbiculate bee gut bacterial microbiota and their co-evolutionary patterns.

We found that gut bacterial microbiota richness and evenness varied across the stin-
gless bee species. To get a better understanding of the drivers of bacterial diversity, we
investigated potential correlations between bacterial diversity and bee size; however, we
did not find any correlation (Figure S3). A recent study reported that larger bees have
higher bacterial diversity, and that this correlation is higher when colony size was consid-
ered [42]. Since African stingless bee research is in its early stages, little is known about bee
colony and hive size. This enables us to better calculate a potential correlation between bee
habitat size and the gut bacterial microbiota diversity in their guts.

Whereas library sequencing of the 16S rRNA V3-V4 region has proved to be infor-
mative and very useful for bee bacterial gut microbiota characterization, it has important
limitations in resolution and absolute bacterial quantification. Complementary studies
evaluating whole bacterial genome sequences (DNA metagenomics) and bacteria metaboli-
cally active pathways (RNA metagenomics) will provide better information about bacterial
classification and metabolic capabilities [36]. Additionally, such approaches will help to
discriminate between metabolically active resident bacteria and transient inactive food-
associated microbes.

Interestingly, we found the endosymbiotic bacteria Wolbachia in Liotrigona sp. with
100% prevalence that accounted for 59% of total reads, and in M. lendliana with 33%
prevalence. The two Wolbachia ASVs found in this study were closely related to the
Wolbachia strain WCAAL1 (MT590312, 97% similarity) which is found in the Aedes albopictus
mosquito. Studies have shown that Wolbachia protects its host against viruses [71,72].
Since bees harbor a substantial diversity of viruses, it might be relevant to investigate the
potential Wolbachia antiviral protection phenotype in these two stingless bee species [73].
Additionally, Wolbachia has also been shown to manipulate host reproduction by inducing
parthenogenesis [74]. Most of stingless bee workers contribute to the production of haploid
eggs, which generate male offspring or trophic eggs that can be eaten by the queen as a
food source [75,76]. It would be interesting to investigate if there is any involvement of
Wolbachia in these processes in Liotrigona spp. or M. lendliana.

Tropical regions are profitable environments to conduct gut bacterial microbiota stud-
ies due to their number of sympatric honeybee and stingless bee species and their diversity,
which enables research on the evolutionary history of their bacterial microbiota [4,10,11].
This study contributes to the understanding of general concepts in microbial ecology and
evolution in these bee species that could only be found in tropical latitudes and microbe
rich environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9122420/s1, Figure S1: Alpha rarefaction curve. Figure S2: Gut bacterial
genera associated with each of the eight stingless bee species in Kenya. Figure S3: Bacterial alpha
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diversity did not correlate with the stingless bee size. Table S1: 16S rRNA sequencing data analysis
(Excel file).
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