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Shared bicycles are currently widely welcomed by the public due to their flexibility and

convenience; they also help reduce chemical emissions and improve public health by

encouraging people to engage in physical activities. However, during their development

process, the imbalance between the supply and demand of shared bicycles has

restricted the public’s willingness to use them. Thus, it is necessary to forecast the

demand for shared bicycles in different urban regions. This article presents a prediction

model called QPSO-LSTM for the origin and destination (OD) distribution of shared

bicycles by combining long short-term memory (LSTM) and quantum particle swarm

optimization (QPSO). LSTM is a special type of recurrent neural network (RNN) that

solves the long-term dependence problem existing in the general RNN, and is suitable

for processing and predicting important events with very long intervals and delays in time

series. QPSO is an important swarm intelligence algorithm that solves the optimization

problem by simulating the process of birds searching for food. In the QPSO-LSTMmodel,

LSTM is applied to predict the OD numbers. QPSO is used to optimize the LSTM for a

problem involving a large number of hyperparameters, and the optimal combination of

hyperparameters is quickly determined. Taking Nanjing as an example, the prediction

model is applied to two typical areas, and the number of bicycles needed per hour in

a future day is predicted. QPSO-LSTM can effectively learn the cycle regularity of the

change in bicycle OD quantity. Finally, the QPSO-LSTM model is compared with the

autoregressive integrated moving average model (ARIMA), back propagation (BP), and

recurrent neural networks (RNNs). This shows that the QPSO-LSTM prediction result is

more accurate.
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INTRODUCTION

Shared bicycle systems have been widely adopted in cities as a
promising solution to the last mile issues in public transportation
(1–3). Apart from the immediate advantage for city commuters,
it can also provide benefits to the environment and public health
(4–8). In particular, due to its advantages of reducing resource
consumption and chemical emissions, the use of shared bicycles
is more environmentally friendly than motorized transportation
(9). There is little doubt that using shared bicycles rather
than automobiles benefits the environment. Meanwhile, the
application of shared bicycles has the potential to promote public
health. Physical inactivity has been linked to increased morbidity
and mortality in numerous studies (10). Shared bicycles can
provide means for people to exercise and improve their overall
health (5, 11, 12).

At present, there are two types of shared bicycles in Nanjing
city, docked shared bicycles and dockless shared bicycles.
The docked shared bicycles require unified management with
hardware devices, such as parking piles and paying devices.
However, the docked shared bicycle user experience is not good
due to the cumbersome certification and registration process
(13). Moreover, the high capital and space costs of its supporting
equipment also limit its development to a certain extent. Based
on the mobile internet technology, dockless shared bicycles have
rapidly developed in China and have become the main means of
shared bicycles in the market due to their better user experience,
simple registration and certification process, and convenience
afforded when borrowing and returning bikes (14, 15). Dockless
shared bicycles provide residents with more convenient services
due to their stop-on-ride, flexibility, ease of use and low price.
However, there are also many factors that are not conducive
to the development of urban transportation, such as disorderly
parking and the imbalance between supply and demand (16–18).
These problems might decrease the opportunity and willingness
of the public to use shared bicycles, but they have occurred
in almost every city where shared bicycles are deployed in
Asia, Europe and the Americas, including Beijing, Shanghai and
Nanjing in China (17, 19, 20).

Short-term forecasts for the origin and destination (OD)
number of shared bicycles in different areas can help in the
discovery of behavioral patterns and help to solve the above
possible future problems in advance (21). With better prediction
results, users can be informed of the distribution of bikes in
an area sometime in the future to better plan their itinerary.
Operators can plan to place and reallocate bikes to improve the
customer experience according to short-term demand forecasts.
This will further promote the travel efficiency of urban residents
and accelerate the improvement of the city’s green travel layout.
Therefore, it is beneficial not only for users and operators
but also for the environment and public health. Geographic
modeling is a useful way to discover geographic patterns and
predict geographic processes (22, 23).Many scholars have utilized
different models for shared bicycle prediction, including linear
models based on mathematical statistics, intelligent theoretical
models represented by neural networks, and combined models,
which combine more than two types of models. The more

representative linear model is the autoregressive integrated
moving average (ARIMA) model. The ARIMA model was
applied to predict the flow number and trip duration of bicycles
(24). Although ARIMA is the most common statistical model for
time series prediction, it has extremely high data requirements
and requires time series data to be stable. It only captures
the linear relationship of the data. The intelligent theoretical
models used for bike-sharing prediction mainly include back
propagation (BP), recurrent neural networks (RNNs), and long
short-term memory (LSTM). BP has been used to predict shared
bicycle demand and the number of public bicycle rented (25, 26).
However, its learning speed is very slow, and network training is
more likely to fail. RNNs are particularly good at capturing the
temporal and spatial evolution of traffic flow, quantity and speed,
so they are often used to predict short-term traffic volumes (27,
28). Although traditional RNNs perform well in non-linear time
series data modeling, there are still several issues to be addressed,
such as the inability to train time series with long time lags and
the difficulty of automatically finding the optimal time window
size (29, 30). LSTM makes up for the gradient disappearance
and gradient explosion of RNNs and the lack of long-term
memory ability so that the recurrent neural network can make
full use of the long-term sequence information (31). Thus,
LSTM can be applied to predict traffic flow and the demand of
dockless shared bicycles (32). Due to the complexity of the traffic
system and the shortcomings of various models, scholars have
combined multiple models in recent studies to make full use of
the advantages of different models for shared bicycle prediction.
Combined models usually combine several different intelligent
theoretical models and are based on mathematical statistics and
intelligent theoretical models. For example, convolutional neural
networks (CNNs) and LSTMwere combined to predict the short-
term distribution of dockless shared bicycles (33); a combination
of CNNs and LSTM in a deep learning model was applied
to predict the travel distance and OD distribution of shared
bicycles (34).

The smart prediction of shared bicycles in this article is
based on a deep learning algorithm. The first condition for
accurate analysis using machine learning is to determine the
appropriate model structure, including the number of stacked
layers, the number of layer nodes, the activation function,
the batch size and other hyperparameters. Determining the
optimal hyperparameter combination in a high-dimensional
space is a complicated problem. The traditional method
for determining hyperparameters is the manual parameter
adjustment method, which mainly relies on the experience of
researchers, has strong subjectivity, and requires a long time
for conducting experiments. In addition, other hyperparameter
optimization methods, such as grid search, random search
and Bayesian optimization, have high time complexity. There
have been many studies on optimizing hyperparameters by
using swarm intelligence algorithms due to their excellent
parameter optimization performance. Commonly used swarm
intelligence algorithms include ant colony optimization (ACO),
particle swarm optimization (PSO), and quantum particle swarm
optimization (QPSO) (35, 36). They can be applied to various
types of deep learning hyperparameter optimization, but they

Frontiers in Public Health | www.frontiersin.org 2 April 2022 | Volume 10 | Article 849766

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Cao et al. OD Distribution of Shared Bicycles

weremainly applied to optimize commonmodels such as support
vector machines (SVMs) and BP (37–42).

Most short-term demand predictions were based on regular
grids. Few studies use swarm intelligence algorithms to optimize
models with more parameters, such as LSTM, and even fewer
use them for shared bicycle prediction. This article aims to build
a comprehensive model, called QPSO-LSTM, for predicting the
OD quantity of dockless shared bicycles by combining QPSO
and LSTM models. By taking AOI (area of interest) as the
basic analysis unit, the model attempts to consider the influence
of different urban function types on bicycle distribution. In
addition, QPSO is applied to optimize LSTM to obtain better
predictions. By taking the main urban areas of Nanjing city as
an example, the QPSO-LSTM model is applied to predict the
OD number of dockless shared bicycles in different types of
AOIs. It can help determine possible problems in advance, such
as bike aggregation or an insufficient number of bikes in the
future period, to help with the bike scheduling and promote bike
distribution rebalancing. Finally, the model is compared with
other commonly used models, including BP, ARIMA and RNN,
to verify its accuracy.

STUDY AREA AND DATA PROCESSING

Study Area and Data Acquisition
Nanjing is an important gateway city for the development of
the Yangtze River Delta. According to the 7th census, it has a
permanent population of ∼9 million (2021). Since 2015, shared
bicycles have experienced rapid development in Nanjing and
have become a new travel choice for residents. Dockless shared
bicycles were born as a new form of the sharing economy at
the end of 2016, including bike share systems such as Ofo,
Mobike and Hello Bike. Dockless shared bicycles quickly swept
across the country due to their higher flexibility. As reported
by Jiangsu Sina (2019), in 2018 the number of shared bicycles
in Nanjing reached a record high of ∼600,000–700,000. Then
the total number of shared bicycles was limited to ∼317,000
to regulate the bike-sharing market under the control of the
government. According to the Hello Bike use report, in Nanjing
(2017), 40,000 shared bicycles have been used 31 million
times in 3 months, covering a distance of 54.81 million km,
equivalent to cycling 1,367 laps around the equator. In this
article, the study area is the downtown area of Nanjing, including

FIGURE 1 | Study area.
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Xuanwu, Gulou, Jianye and Qinhuai Districts, as shown in
Figure 1.

Bicycle share ridership is affected by different weather
variables, socio-demographic attributes, land use and built
environment, among which the impact of several weather
variables on bicycle trips has been investigated in many studies
(43–49). This article obtains the datasets of dockless shared
bicycles, road networks, traffic facility points, AOI data and
administrative zoning data for Nanjing, as shown in Table 1. The
dockless shared bicycle dataset includes the bike location data,
including the date, bike ID, longitude and latitude of each bike
from March 9 to April 8, 2018. The location data of 105,901
shared bicycles in the study area over 32 days include ∼100
million records. The meteorological data, including temperature,
wind speed, and precipitation fromMarch 8 to April 2, 2018, with

TABLE 1 | Data acquisition in the study area.

Types of data Data description

Dockless shared bicycle

dataset

Bike location data obtained from the mobile

clients of Ofo and Mobike every 15 min

AOI data Gaode map AOI data (data source: https://

lbs.amap.com/)

Urban administrative zoning

data

Shapefile of urban administrative zoning (data

source: http://www.tianditu.gov.cn/)

Meteorological data NCDC (National Climatic Data Center, China)

an interval of 1 h, were added as factors affecting bicycle trips.
AOI is the area data used to represent each geographical entity,
such as separate residential areas, independent commercial areas,
and scenic zones. It is a carrier of all the social and economic
activities of residents and reflects different types of urban
functions. The attributes of each AOI include the name, address,
category and latitude and longitude. The AOI is taken as the basic
analysis unit in the study.

Periodicity of Shared Bicycle Trips
Time Interval of Periodic Series
The time interval for shared bicycle location data is 15min. The
number of bicycles in different time intervals was analyzed to
determine the appropriate time interval for our study. Figure 2
shows the curves of bicycle numbers at 15, 30, 60, and 120min
intervals at the original points of residential areas of the study
area on March 14. Figure 2 shows that the curve of the 1-h time
interval can express the regularity of bicycle changes, and the

TABLE 2 | Trend similarity in different types of AOIs.

Cosine similarity Residential

area

Commercial

building

Scenic area

Residential area 0.762 0.529 0.584

Commercial buildings 0.737 0.517

Scenic area 0.687

FIGURE 2 | The curves of bicycle numbers at different intervals. (A) 15min. (B) 30min. (C) 60 min. (D) 120min.
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curve is smoother than the time interval of 15 and 30min. When
the interval is >60min, there are some difficulties in discovering
the number changes of bicycle trips in 1 day. Therefore, this
article takes 1 h as the time interval during the experiment to
alleviate the impact of possible data loss on the overall law and
effectively reduce the calculation rate.

Similarities in Different Types of AOIs
The possible trend similarity is explored to reflect the similar
trends of cycling in different types of AOIs in the same time
period. The cosine similarity can measure the trend similarity
by comparing two vectors in a vector space. It evaluates the
similarity between two vectors by calculating the cosine of the
angle between them; thus it is not related to the specific value and
is only affected by the angle of the two vectors. Formula (1) is
used to calculate the cosine similarity cos θ (50).

cos θ=
∑n

i=1 AiBi
√

∑n
i=1 (Ai)

2
√

∑n
i=1 (Bi)

2
(1)

where cos θ is the cosine similarity; Ai and Bi represent the
components of vectors A and B, respectively; and n is the number
of samples.

Table 2 lists the calculated cosine similarities among the AOIs
of residential areas, commercial buildings and scenic areas. A
higher cosine similarity indicates that the variation trend in the
number of bicycle trips is similar within the same type of AOI.
In contrast, a lower cosine similarity indicates that the variation
trend in the number of bicycle trips is different in various types
of AOIs, which are located in different urban function regions.

Daily Correlation
The daily changes in the number of bicycle trips on weekdays and
weekends are considered to be different. The Pearson correlation
coefficient is applied to calculate the daily correlation of the
numbers of bicycle rides every 2 days in a week from March 12
to March 18. Formula (2) can calculate the Pearson correlation
coefficient ρX,Y (51).

ρX,Y=
∑n

i=1 (Xi − X)(Y i − Y)
√

∑n
i=1 (X − X)

2
√

∑n
i=1 (Y − Y)

2
(2)

where X,Y are 2 days; n is the number of hours in each day,
which is 24; Xi, Yi are the number of bicycles at the ith hour
corresponding to X,Y ; and X,Y are the average values of X,Y .
When ρX,Y is −1, it means that X,Y are completely negatively
correlated; when ρX,Y is 1, it means that X,Y are completely
positively correlated; when ρX,Y is 0, it means that X,Y have
no correlation.

As shown in Table 3, the correlation coefficients between
weekdays are higher than 0.9. However, the correlation
coefficients between weekdays and weekends are lower, ranging
from 0.8 to 0.9. The correlation coefficient between Saturday and
Sunday is 0.973, showing a high correlation. The results show
that the daily cycling regularity is similar among weekdays and

between weekends, but it is slightly different between weekends
and weekdays.

Above all, the time interval for shared bicycle location data is
determined to be 1 h in the constructed QPSO-LSTM model. In
addition, due to the different regularity of changes, the number
of bikes on weekdays and that on weekends need to be predicted
separately, as does that in different AOIs.

MODEL CONSTRUCTION

The QPSO-LSTM model for predicting the OD quantity of
shared bicycles is constructed as shown in Figure 3. The model
is trained by using a training set and then is used to predict
the number of shared bicycle trips in the future by using a
test set. The model implementation process consists of three
parts: data processing, the prediction model based on LSTM, and
QPSO optimization.

First, the acquired cycling data were classified according to
different AOI types to form cycling data with an interval of
1 h. Temperature, wind speed and precipitation were selected
as the influencing factors of cycling and incorporated into the
cycling data. The data underwent normalization, supervised
learning and dataset division processing before model training
and prediction. In particularly, 80% of the data were used
as the training set and 20% were used as the validation set
(52). Then, as a deep learning algorithm for sequential data
prediction, LSTM is the core algorithm of the prediction model
QPSO-LSTM. It was used to predict the OD quantity of
shared bicycles by building a multilayer LSTM network. Finally,
QPSO was applied to solve the optimization problem of the
hyperparameters of the prediction model. By using QPSO, the
hyperparameter combination suitable for the prediction model
can be determined quickly to effectively improve the accuracy of
the model.

Prediction Network Based on LSTM
The structure of the LSTM network of QPSO-LSTM is shown
in Figure 4 below. Its input data are bicycle and meteorological
data, and the output data are the number of bicycles needed in
the future. The horizontal line through the entire memory cell is
similar to a conveyor belt, indicating the state of the cell. There
are three types of gates in LSTM: the forget gate, input gate and
output gate. The forget gate determines how much information
should be removed from the cell state at the last moment, as
shown in the red box in Figure 4. The new input information
is determined by the input gate in the cell state, as shown in the
yellow box. The parts of the cell state that are utilized to generate
the final output of thememory cell are decided by the output gate,
as shown in the green box (54–56). In addition, the pink circle in
the memory cell represents the point operation, while the yellow
rectangle represents the activation function, and they are all used
to compute the gates and the memory cell output.

QPSO Optimization
QPSO hyperparameter optimization mainly includes
determining the parameters to be optimized, selecting the
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TABLE 3 | Daily correlation in 1 week.

Similarity Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Monday 1 0.970 0.965 0.957 0.974 0.848 0.788

Tuesday 1 0.940 0.918 0.957 0.811 0.723

Wednesday 1 0.954 0.970 0.819 0.759

Thursday 1 0.971 0.878 0.849

Friday 1 0.879 0.824

Saturday 1 0.973

Sunday 1

FIGURE 3 | QPSO-LSTM flowchart.

fitness function, and determining and updating the optimal
positions of particles.

As shown in Figure 5, the time step, batch size and the
numbers of nodes in the network hidden layers are selected
as the parameters to be optimized in the prediction network,
and each has an arrow pointing to it. The time step parameter
determines the number of previous data moments in the model
input at a certain moment. The batch size can effectively improve
memory utilization and model training speed after optimization.
A reasonable number of hidden layer nodes can avoid as much of
the model over fitting phenomenon during training as possible.
The change in the number of shared bicycle trips has a daily
characteristic, so the value range of the time step is determined

to be [1, 24]. The number of hidden layer nodes is determined
according to the empirical rule (25), as shown in Formula (3).

u=
√
m+ n+ a (3)

where m, n are the number of input and output layers of the
network, respectively, and a is any integer between 3 and 10. The
number of hidden layers ranges from [5, 50], and the range of the
batch size is set to [1, 30].

QPSO needs to determine the objective function to determine
the pros and cons of the current particle. Commonly used
evaluation indicators for regression models include root mean
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FIGURE 4 | Prediction network of QPSO-LSTM: Redrawn and extended from Li et al. (53).

FIGURE 5 | Parameters to be optimized in the prediction network: 4 parameters are selected to be optimized.

square error (RMSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE) (57). Formulas (4–6) below
are used to calculate these evaluation indicators.

RMSE=
√

1

m

∑m

i=1
[h (xi) − yi]

2 (4)

MAE=
1

m

m
∑

i=1

∣

∣h (xi) − yi
∣

∣ (5)

where m, h (xi) , and yi are the length, predicted value and true
value of the verification set, respectively.

When using QPSO to optimize the hyperparameters of our
prediction network, MAPE is selected as the fitness function of
the particle, which is defined by Formula (6).

MAPE =
1

m

m
∑

i=1

∣

∣

∣

∣

h (xi) − yi

yi

∣

∣

∣

∣

(6)

According to the fitness function, the objective function value,
the MAPE between the predicted value and the true value of the
model, at each position is calculated. The smaller the objective
function value is, the better the position.
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In the whole learning process, the optimal position found
by individual particles is pbesti, and the mean value of the best
position of individual particles is mbest. The objective function
values of all particles in the population are calculated many
times during the learning process to determine the global optimal
position gbest of each particle in all the learning processes.
Formulas (7–9) can be used to calculate these values (35).

xi = Pi ± α
∣

∣mbest − xi
∣

∣ ln

(

1

u

)

(7)

Pi =∅pbesti + (1−∅) gbest (8)

mbest =
1

M

M
∑

i−1

pbesti (9)

where M is the size of the particle group; xi is the position of
the ith particle; α is the innovation parameter; and ∅ and u are
uniformly distributed values on (0, 1).

MODEL APPLICATION AND VERIFICATION

Model Results and Typical Case Analysis
The prediction models of different AOIs obtained after model
training can be applied to predict the OD quantity of bicycles for
all types of AOIs in the whole study area. According to the QPSO
optimization results, the time step is 4, which means that the
model uses the number of bicycles in the previous 4 moments to
predict the number of bicycles in the next moment. In addition,
the batch size and the node numbers of the first hidden layer and
the second hidden layer are set to 28, 10, and 16, respectively.

For each AOI, the model to which it belongs is applied to
predict the number of bicycles in each hour. For example, the
prediction results of the OD quantities of bicycle rides at 8 am
on March 14 are shown in Figure 6. At 8A.M. in the study area,
the bicycle OD quantities of the different regions are slightly
different, which fully reflects the characteristics of residents’ trips
and verifies the effectiveness of the predictionmodel. As shown in
the Figure 6, there are more origin points than destination points
in residential areas. The AOI area of scenic areas accounts for the
largest proportion of the total area of the study area,∼40.2%. Due
to their larger area, there are more bikes in scenic areas, such as
Purple Mountain and Xuanwu Lake, which are generally shown
in red in the Figure 6.

Two typical areas, including residential areas and commercial
buildings, are selected to use the corresponding model to predict
the OD quantity of bicycles. The typical residential area selected
is Huaxincheng, which is located near Yuantong station of
subway Line 1 and Line 2, and leisure and entertainment facilities
such as Hexi Central Park and Nanjing Famous Taiwan Goods
City are around it. Taking it as an example, its bicycle OD
data on the weekday of March 14 are selected to predict the
supply and demand of bicycles by using the prediction model
of residential area AOIs. The prediction of bicycle OD numbers
in Huaxincheng is shown in Figure 7. The results show that
bicycle OD numbers are higher in the morning and evening peak
hours, but their changes are different. The peak value of the
number of origin points in the morning peak period is greater

than that in the evening peak period, while the peak value of the
destination points in the evening peak period is higher than that
in themorning peak period. This prediction conforms to the daily
regularity of cycling for residents commuting to work.

The typical commercial building selected is Fenghuang Square
located at No. 1, Hunan Road and is an innovative commercial
mall. The cycling OD data of this area on March 14 are selected
to predict the supply and demand of shared bicycles by using O
and D models of commercial building AOIs. The predicted bike
OD numbers of Fenghuang Square are shown in Figure 8. The
result also reflects the characteristics of the morning and evening
peaks. The number of bicycle destination points in the morning
peak hours was slightly higher than that of origin points, while
the number of origin points in the evening peak hours was much
higher. This prediction is in line with the regularity of the use of
bicycles near commercial buildings.

Model Evaluation
Bicycles have different cycling patterns in different types of AOIs.
Using the constructed prediction model, bicycle supply and
demand prediction models suitable for different types of AOIs,
including residential areas, commercial buildings, scenic spot
areas, science, education and cultural areas, and other service
areas, are obtained after model training. The data used in model
training are the series data of each type of AOI in the whole study
area, with a total of 32 days of data, 80% of which is 25 days in
total as the training set, and 20% of which is 7 days in total as the
test set.

Figure 9 verifies the prediction accuracy of the OD
distribution models of the residential areas. When verifying
the model, the data from the week from March 12th to March
18th are selected as input. Each day consists of 24 h of data,
with a total of 7∗24, 168 pieces of input data. Since the time
step set in the training model is 4, a total of 168∗4 inputs
are formed after conversion to supervised learning, and the
range of predicted results is from 3 o’clock on March 12 to 23
o’clock on March 18. The results show that the predicted value
and the true value of the QPSO-LSTM models are relatively
consistent, as well as the change trend in the values. The peak
times appearing each day are consistent, and the peak values
are similar. In addition, residents have strong cycling regularity
on weekdays but no obvious cycling regularity on weekends.
There are several obvious morning peaks and evening peaks
within a week, but the use of bicycles on weekends is greatly
reduced. Specifically, for the origin points of the residential areas,
as shown in Figure 9A, morning peaks are significantly higher
than evening peaks, while for the destination points, as shown
in Figure 9B, the comparison results are the opposite. The
above conclusions are in line with the cycling characteristics of
urban residents and verify the performance of the QPSO-LSTM
prediction model.

The BP network, RNN network and ARIMA model are
applied to predict the number of bicycle origin points of
residential areas from 4:00 on March 12 to 23:00 on March 18.
The comparison results between the true value and prediction
of these three models are shown in Figure 10. Comparing the
prediction results of the three models with the true value, the
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FIGURE 6 | Prediction results at 8 am of study area. (A) Origin points. (B) Destination points.
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FIGURE 7 | Prediction of bicycle OD quantity in Huaxincheng.

FIGURE 8 | Prediction of bicycle OD quantity in Fenghuang Square.

change trends are roughly the same, and they all perform well
at predicting the number of bicycles between peaks. However,
there are some differences in the predictions for the periods
around the peaks. The predicted values of ARIMA during these
periods are closer to the true values than the other two models,
especially in the periods near the low peaks. For example, from
0:00 to 6:00 every day, the ARIMA prediction is closer to the
true value, while the prediction values of RNN and BP are
significantly higher. In addition, compared with the predictions
of BP and RNN, BP performs slightly better than RNN. As a
result, ARIMA has the best prediction effect, followed by BP and
finally RNN.

To verify the accuracy of the QPSO-LSTM model, a
verification set is used to compare and verify the prediction

accuracy of the other models constructed, including the BP
network, RNN network, and ARIMAmodel, as shown inTable 4.
Whether RMSE, MAE, or MAPE is used as the evaluation
index, the error of the QPSO-LSTM model is smaller than that
of RMSE, MAE, or MAPE, which means that the prediction
accuracy of the QPSO-LSTM model is higher than that of
theirs. Taking MAPE as an example, the QPSO-LSTM model
has the lowest error value, which is 0.087. Conversely, it
has the highest accuracy, which is up to ∼91%. The error
values of the other three models are all >0.1, which means
that their accuracy is <90%. As a result, the QPSO-LSTM
model is confirmed to have better accuracy and to be able to
reasonably predict the supply and demand of shared bicycles of
different AOIs.
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FIGURE 9 | Accuracy evaluation: true value and prediction of QPSO-LSTM in residential areas. (A) Origin points number. (B) Destination points number.

CONCLUSIONS

The travel mode is a factor influencing environmental and public
health that cannot be ignored (58, 59). Shared bicycles, as a
healthy and environmentally sustainable travel mode, should be
conveniently accessed by the public. Thus, it is necessary to
predict the demand for shared bicycles and optimize the supply
of shared bicycles in different urban regions. In this article,
a bicycle prediction model called QPSO-LSTM is established,
which aims to predict the number of bicycles at OD points
in different regions. It is trained with the same dataset as BP,
RNN, and ARIMA, and the result shows that QPSO-LSTM
significantly outperforms the other models. Furthermore, the
model is also applied to predict the bicycle numbers in two
typical areas, and the prediction results validate the availability
of the model.

Since QPSO-LSTM can predict the future supply and demand
for shared bicycles of each analysis unit (AOI), the future
distribution of shared bicycles can be rebalanced based on
the prediction results. By designing scheduling schemes that
optimize resource allocation, idle bikes can be dispatched in a
timely manner to areas with large demand, so that the number
of shared bicycles tends to be reasonable. Reasonable scheduling
optimization can rebalance the distribution of shared bicycles,
meet the needs of users for using bikes, improve user satisfaction,
and ensure that the shared bicycle system is in a state of dynamic
balance. Optimization of bicycle layout according to the actual
demand and time series regularity can effectively guide the
planning of urban green travel.

Although the QPSO-LSTM has been verified to be a useful
method to predict the demand for shared bicycles, some
limitations remain.

Frontiers in Public Health | www.frontiersin.org 11 April 2022 | Volume 10 | Article 849766

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Cao et al. OD Distribution of Shared Bicycles

FIGURE 10 | Accuracy evaluation: True value and prediction results of 3 models for the residential area bicycle origin point number from 4:00 on March 12 to 23:00

on March 18.

TABLE 4 | Accuracy comparison of different models.

Type RMSE MAE MAPE

BP Network 354.58 247.99 0.131

RNN Network 346.47 266.01 0.145

ARIMA Model 314.13 193.12 0.104

QPSO-LSTM Model 224.63 160.40 0.087

(1) The current QPSO-LSTM mainly used cycling
data, and the weather data (e.g., temperature, wind speed
and precipitation) were incorporated into the cycling
data. However, other factors such as road networks,
visibility in foggy weather, and seasonal changes in the
weather might also affect the public’s willingness to use
bicycles and cause differences in OD distributions. Thus,
these factors should also be taken into account in the
prediction model.

(2) The performance of QPSO-LSTM was evaluated by
using data from Nanjing. However, whether the model is a
good choice for other similar cities still needs to be tested.
In addition, the characteristics of dockless shared bicycle OD
trips need to be analyzed to discover the driving mechanism of
these characteristics.

(3) The prediction of the OD distribution provides
opportunities for optimizing shared bicycle allocation. However,
there is still a long way to go to keep the demand and supply
of shared bicycles in a dynamic balance. The optimization of

the layout of shared bicycles based on the prediction results is
expected to be explored in further studies.
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