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1  | INTRODUC TION

Uveal melanoma is a rare (estimated incidence of 6 cases per 
million) and unique subtype of melanoma that arises in the 
uveal tract of the eye, most commonly in the choroid (Damato 
& Damato, 2012; McLaughlin et al., 2005). Local interventions, 
such as radiation therapy and enucleation, are effective at treat-
ing the primary tumor (Krantz, Dave, Komatsubara, Marr, & 
Carvajal, 2017). However, up to half of the patients will develop 
metastatic disease, predominantly to the liver (Rietschel et al., 
2005). For these patients, liver-directed therapy and participa-
tion in clinical trials are recommended, but most die from their 

disease, and median survival is only 10.2 months (Khoja et al., 
2019; Kujala, Makitie, & Kivela, 2003; National Comprehensive 
Cancer Network).

Despite this, great strides have been made in understanding 
the molecular features of uveal melanoma. In the past decade, the 
collective work from several groups has led to the identification of 
important recurrent mutations and overactive signaling pathways in 
this cancer. Early oncogenic driver mutations occur in a nearly mu-
tually exclusive pattern in the guanine nucleotide-binding protein 
subunit alpha-q/11 signaling pathway (Field et al., 2018; Moore et 
al., 2016; Robertson et al., 2017). This includes constitutively ac-
tive variants of GNAQ and GNA11, which are found in over 90% of 
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Abstract
Uveal melanoma is the most common primary malignancy of the eye, and a number of 
discoveries in the last decade have led to a more thorough molecular characterization 
of this cancer. However, the prognosis remains dismal for patients with metastases, 
and there is an urgent need to identify treatments that are effective for this stage of 
disease. Animal models are important tools for preclinical studies of uveal melanoma. 
A variety of models exist, and they have specific advantages, disadvantages, and ap-
plications. In this review article, these differences are explored in detail, and ideas for 
new models that might overcome current challenges are proposed.
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cases (Van Raamsdonk et al., 2009, 2010). A smaller subset of tu-
mors harbor activating mutations in the G protein-coupled recep-
tor cysteinyl leukotriene receptor 2 (CYSLTR2) or phospholipase C 
beta 4 (PLCB4) (Johansson et al., 2016; Moore et al., 2016). There is 
a second node of nearly mutually exclusive mutations that classifies 
uveal melanomas and affects prognosis. Inactivating mutations are 
found in BRCA1-associated protein 1 (BAP1), while recurrent point 
mutations are observed in the eukaryotic translation initiation factor 
1A X-linked (EIF1AX) or a splicing factor such as SF3B1 (Field et al., 
2018; Harbour et al., 2010, 2013; Martin et al., 2013).

The molecular makeup of a particular uveal melanoma has signifi-
cant implications for predicting metastasis. Most importantly, tumors 
with loss-of-function BAP1 mutations carry the worst prognosis, as 
approximately 84% of metastatic uveal melanomas are of this subtype 
(Harbour et al., 2010; Shain et al., 2019). Specific cytogenetic alter-
ations have also been well described in this cancer (Aalto, Eriksson, 
Seregard, Larsson, & Knuutila, 2001; Anbunathan, Verstraten, Singh, 
Harbour, & Bowcock, 2019). Monosomy 3 co-occurs with BAP1 mu-
tation, thereby eliminating both functional alleles (Field et al., 2018; 
Robertson et al., 2017). 6q loss, 1q gain, and 8q gain are also signifi-
cantly enriched in uveal melanoma metastases (Ehlers, Worley, Onken, 
& Harbour, 2005; Hammond et al., 2015; Shain et al., 2019).

These discoveries were largely enabled by the analysis of patient 
tumor specimens and have greatly advanced our understanding of 
the molecular underpinnings of uveal melanoma tumorigenesis and 
their prognostic significance. Various animal models have likewise 
been indispensable in elucidating the biology and potential thera-
peutic vulnerabilities of this cancer (Cao & Jager, 2015; Stei, Loeffler, 
Holz, & Herwig, 2016; Yang, Cao, & Grossniklaus, 2015). In the past 
several years, there have been many promising preclinical studies 
that have used these models to identify novel treatment strategies, 
several of which are now in the early stages of clinical trials (Vivet-
Noguer, Tarin, Roman-Roman, & Alsafadi, 2019; Yang, Manson, Marr, 
& Carvajal, 2018).

In this review article, we discuss the strengths and weaknesses 
of existing animal models of uveal melanoma, with an emphasis on 
mouse models. We also identify unmet needs that will require future 
model development and refinement. The goal of any animal model 
of uveal melanoma should be to faithfully recapitulate the processes 
of tumor initiation, growth, metastasis, and response to therapy as 
observed in patients with this disease.

2  | ANIMAL MODEL S OF UVE AL 
MEL ANOMA

Though the focus of this review is mouse models of uveal melanoma, 
other species certainly have their advantages. Rabbits (Oryctolagus 
cuniculus), for example, have large eyes that facilitate the implanta-
tion of tumor cells and subsequent monitoring using techniques such 
as fundoscopy, ultrasound, and magnetic resonance imaging (Bontzos 
& Detorakis, 2017; Gao, Tang, Liu, Yang, & Liu, 2018). The zebrafish 
(Danio rerio) is a model organism that has been used more widely in 

many scientific fields in recent years (Meyers, 2018). Both xenograft 
(Fornabaio et al., 2018; van der Ent et al., 2014) and transgenic (Mouti, 
Dee, Coupland, & Hurlstone, 2016; Perez, Henle, Amsterdam, Hagen, 
& Lees, 2018) zebrafish models of uveal melanoma have been devel-
oped. These models are excellent for high-throughput pharmacologic 
screening and in vivo microscopy. The genetic models have yielded 
valuable insights into uveal melanoma signaling, such as the estab-
lishment of the importance of YAP activation in the initiation of this 
cancer. However, tumorigenesis in these models required mutation of 
p53, and metastasis was difficult to assess because of the induction of 
multiple primary tumors (Mouti et al., 2016; Perez et al., 2018).

Mice (Mus musculus) are the most widely used laboratory animal 
in the study of uveal melanoma (Cao & Jager, 2015). Their fecundity, 
gestation time, and size make them the most cost-effective mamma-
lian model (Zuberi & Lutz, 2016). Furthermore, genetic manipulation 
of mice has produced various strains that are used in many uveal 
melanoma models. The primary goals of this review are to compare 
the different types of mouse models of uveal melanoma and propose 
directions for further development.

3  | INOCUL ATION SITES

The majority of murine models of uveal melanoma require the 
inoculation of cells or tumors into mice. Some uveal melanoma 
cell lines can be grown subcutaneously, which is convenient 
for measuring growth and response to therapy. However, oth-
ers grow poorly subcutaneously but flourish in the tissue from 
which they were derived (Ozaki et al., 2016). In these cases, or-
thotopic models are preferable and may better model the human 
disease. Models of primary uveal melanoma in which the route of 
inoculation results in growth in the iris, ciliary body, or choroid 

F I G U R E  1   Routes of injection for orthotopic models of primary 
uveal melanoma. The needle trajectories for the three most 
commonly used types of injections are depicted (anterior chamber 
in orange, suprachoroidal in green, and intravitreal in blue). All three 
result in growth of cells in the uveal tract and therefore produce 
orthotopic models of uveal melanoma
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are considered orthotopic (Figure 1). Inoculation of cells into the 
anterior chamber of the eye was one of the first techniques de-
veloped and reliably produces tumors in the iris that are capable 
of metastasis (Niederkorn, 1984). In 2000, a suprachoroidal in-
jection technique was described in which cells are deposited into 
the posterior compartment (not to be confused with posterior 
chamber) of the eye (Dithmar, Rusciano, & Grossniklaus, 2000). 
In this approach, the needle is inserted through the limbus and 
into the choroid. Injected cells occupy the suprachoroidal space 
and likely spill into the subretinal space and vitreous. This tech-
nique is advantageous because it rapidly produces tumors in the 
choroid and ciliary body, the sites at which uveal melanoma most 
commonly occurs in patients. Furthermore, it reduces extraocular 

growth as compared to transconjunctival inoculations and con-
sistently produces distant metastases (Tables 1 and 2a,b). A third 
type of orthotopic model is intravitreal injection. Although uveal 
melanoma does not arise in the vitreous humor, this environment 
is supportive of tumor growth and injected cells mimic human 
disease by invading and involving the uveal tract (Kilian et al., 
2016; Yoo et al., 2016). All three of the above inoculation meth-
ods are amenable to combination with enucleation, which allows 
for longer follow-up and the study of metastatic outgrowth.

The eye is bypassed in some models in order to more quickly and 
reliably produce large tumors in visceral organs, especially the liver. 
Intravenous injection into either the retro-orbital sinus or tail vein 
mimics the latter part of the metastatic cascade—hematogenous 

TA B L E  1   Syngeneic mouse cutaneous melanoma models for simulating uveal melanoma

Cell line Source
Original publication 
(Laboratory of origin)

Inoculation 
method Metastasis References

B16LS9 Mouse 
cutaneous 
melanoma

Rusciano et al. (1994) 
(Max Burger)

Suprachoroidal Liver, lungs, and 
lymph nodes

Jones et al. (2019); Dong et al. (2019); Xue 
et al. (2015); Yang et al. (2016), Yang and 
Grossniklaus (2010), Yang, Jager, and 
Grossniklaus (2010), Yang, Xu, Iuvone, 
and Grossniklaus (2006); Lattier et al. 
(2013); Zhang et al. (2011); Alizadeh 
et al. (2003); Dithmar, Rusciano, and 
Grossniklaus (2000), Dithmar, Rusciano, 
Lynn, et al. (2000); Diaz, Rusciano, 
Dithmar, and Grossniklaus (1999)

Ant. chamber Not reported Han, Brown, and Niederkorn (2016)

Intravitreal Liver Han et al. (2016); Yang et al. (2011)

Intrasplenic

Intrahepatic Not reported Xue et al. (2015)

B16F10 Mouse 
cutaneous 
melanoma

Fidler, Gersten, and 
Budmen (1976) (Marilyn 
Budmen)

Suprachoroidal None Grossniklaus, Barron, and Wilson (1995)

Ant. chamber Not reported el Filali et al. (2012); de Lange et al. (2012); 
Ly et al. (2010); Grossniklaus et al. (1995); 
Knisely and Niederkorn (1990);

Lungs Harning and Szalay (1987); Niederkorn, 
Sanborn, and Gamel (1987), Niederkorn 
(1984)

Tail vein Lungs Sanborn, Niederkorn, and Gamel (1992); 
Niederkorn et al. (1987)

Queens Mouse 
cutaneous 
melanoma

Harning et al. (1987) 
(Jeanne Szalay)

Suprachoroidal Lungs Rajaii et al. (2014); Grossniklaus et al. 
(1995)

Ant. chamber None Grossniklaus et al. (1995)

Lungs Sanborn, Niederkorn, Kan-Mitchell, and 
Albert (1992), Sanborn, Niederkorn, and 
Gamel (1992); Harning and Szalay (1987)

Tail vein Lungs Sanborn, Niederkorn, and Gamel (1992)

HCmel12 Mouse 
cutaneous 
melanoma

Kilian et al. (2016) 
(Thomas Tüting)

Intravitreal Lungs and 
lymph nodes

Stei, Loeffler, Kurts, et al. (2016); Kilian et 
al. (2016)

Oncogene-
transduced 
melan-A 
cells

Immortalized 
mouse 
melanocyte

Bennett, Cooper, and 
Hart (1987) (Ian Hart)

Subcutaneous Not reported Moore et al. (2016)

Lungs and liver Van Raamsdonk et al. (2010)

Abbreviation: Ant. chamber, anterior chamber.
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dissemination, arrest and extravasation in distant sites, and met-
astatic colony formation and growth. The liver and lungs are the 
most frequently reported sites of experimental metastasis with 
these routes of injection (Tables 1 and 2a,b). Others have devel-
oped the intrasplenic inoculation, which consistently produces tu-
mors in the liver (Barisione et al., 2015; Gangemi et al., 2014, 2012; 
Jin et al., 2018). Finally, direct implantation of cells or tumors into 
the liver also results in florid growth in an orthotopic model of met-
astatic uveal melanoma (Kageyama et al., 2017; Ozaki et al., 2016).

Irrespective of the location of injection, disease progression (e.g., 
tumor growth and/or metastatic dissemination) can be studied in 
real time using non-invasive imaging methods such as biolumines-
cence imaging (Barisione et al., 2015; Surriga et al., 2013). For this 
technique, the injected cells have been transduced to stably express 
a luciferase reporter. When the graft-bearing mice are injected with 
luciferin, the tumor cells emit light that can be detected by an optical 
imaging instrument such as Perkin Elmer's In Vivo Imaging System 
(IVIS). The intensity of the signal has been demonstrated to be a 

TA B L E  2   Human uveal melanoma cell lines derived from (a) primary tumors used in mouse xenograft experiments (b) metastases used in 
mouse xenograft experiments

(a) Cell line (mutations) Source
Original publication 
(Laboratory of origin)

Inoculation 
method Metastasis References

Mel92.1 (GNAQQ209L; 
EIF1AXG6D)

Primary tumor De Waard-Siebinga et 
al. (1995) (Martine 
Jager)

Subcutaneous Not reported Faiao-Flores et al. (2019); Forsberg 
et al. (2019); Kines et al. (2018); 
Chen et al. (2017, 2014); 
Ambrosini, Sawle, Musi, and 
Schwartz (2015); Ambrosini, Musi, 
Ho, Stanchina, and Schwartz, 
(2013); Musi, Ambrosini, 
Stanchina, and Schwartz, (2014); 
Surriga et al. (2013); Ho et al. 
(2012); Samadi et al. (2012); 
Landreville et al. (2012)

Suprachoroidal Liver Dong et al. (2019)

Not reported Yu et al. (2014)

Ant. chamber Liver Ma and Niederkorn (1998), 
Ma, Luyten, Luider, Jager, and 
Niederkorn (1996)

Tail vein Liver and lungs Matatall et al. (2013)

Intrasplenic Liver Barisione et al. (2015);
Gangemi et al. (2014, 2012)

Mel202 (GNAQQ209L; 
SF3B1R625G)

Primary tumor Ksander, Rubsamen, 
Olsen, Cousins, and 
Streilein (1991) (J. 
Wayne Streilein)

Subcutaneous Not reported Forsberg et al. (2019)

Ant. chamber Liver Ma and Niederkorn (1998), 
Ma, Luyten, Luider, Jager, and 
Niederkorn (1996)

Intravitreal Not reported Yoo et al. (2016)

Tail vein Liver Niederkorn, Mellon, Pidherney, 
Mayhew, and Anand (1993)

Mel270 (GNAQQ209P) Primary tumor Verbik, Murray, Tran, 
and Ksander (1997) 
(Bruce Ksander)

Suprachoroidal Not reported Yu et al. (2014)

Subcutaneous Liver and lungs Tafreshi et al. (2019)

Lot reported Voropaev et al. (2019); Annala et al. 
(2019); Kaochar et al. (2018)

Intrasplenic Liver Barisione et al. (2015); Gangemi et 
al. (2014, 2012)

MP41 (GNA11Q209L) PDX from a 
primary tumor

Amirouchene-
Angelozzi et al. 
(2014) (Sergio 
Roman-Roman)

Tail vein Liver Faiao-Flores et al. (2019)

T105 and T142 
(GNA11Q209L)

Primary tumors Mouriaux et al. (2016) 
(Sylvain Guérin)

Subcutaneous Not reported Mouriaux et al. (2016)

UMT2 (GNA11Q209L) Primary tumors Suesskind et al. (2013) 
(Sigrid Henke-Fahle)

Suprachoroidal None Süsskind, Hurst, Rohrbach, and 
Schnichels (2017)

(Continues)
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suitable surrogate for tumor size and thus enables dynamic evalu-
ation of the effects of different experimental conditions on tumor 
progression (Cosette et al., 2016; Poeschinger, Renner, Weber, & 
Scheuer, 2013).

4  | SYNGENEIC CUTANEOUS MEL ANOMA 
MOUSE MODEL S FOR SIMUL ATING UVE AL 
MEL ANOMA

The syngeneic cutaneous melanoma mouse model has been used for 
decades in uveal melanoma research. In this system, cutaneous mel-
anoma cells are implanted in mice of the same genetic background 
as the mice from which the line was derived. Although the cell lines 
used are not uveal in origin, this system allows for the investigation 
of intraocular growth and metastasis of melanoma cells, as many of 
these lines metastasize to the liver (Table 1). This mimics the behav-
ior of uveal melanoma in humans and allows for the study of the full 
metastatic process, including local invasion, intravasation, survival in 
the blood, extravasation, and growth in distant organs. The ability to 
examine the interaction between tumor and host cells as the cancer 
progresses in an immunocompetent animal is arguably the greatest 
strength of this model. Additionally, recipient mice may be geneti-
cally altered in order to study specific contributions of the host in 
melanoma progression (Lattier, Yang, Crawford, & Grossniklaus, 
2013; Stei, Loeffler, Kurts, et al., 2016).

The most widely used syngeneic model is the inoculation of 
C57BL/6 mice with the B16LS9 cell line, a derivative of the B16 cutane-
ous melanoma line that was enriched for hepatic metastatic propensity 

through serial in vivo passaging (Rusciano, Lorenzoni, & Burger, 1994). 
This cell line metastasizes to the liver from the eye, and its use has 
led to valuable insights into the behavior of metastatic melanoma. 
For instance, this model was used to show that natural killer cells and 
pigment-derived epithelial factor play distinct roles in counteracting 
intrahepatic growth of melanoma cells (Jones, Yang, Zhang, Morales-
Tirado, & Grossniklaus, 2019). Although B16LS9 cutaneous melanoma 
cells were used, the histological growth patterns of the hepatic metas-
tases in the mouse model were similar to those observed in the livers 
of patients with metastatic uveal melanoma (Grossniklaus et al., 2016).

The primary disadvantage of the syngeneic model is that avail-
able mouse melanoma cell lines are of cutaneous origin, so the mu-
tations and other molecular drivers of these cells differ from those 
found in human uveal melanoma. Therefore, their behavior, espe-
cially their response to therapy, may differ from what is observed 
in patients. Interestingly, there are a few syngeneic models that do 
carry canonical uveal melanoma mutations. Immortalized mouse 
melanocytes transduced with driver mutations found in patients 
undergo oncogenic transformation and are capable of producing tu-
mors and even metastases (Moore et al., 2016; Van Raamsdonk et 
al., 2010). Additionally, the HCmel12 mouse cutaneous melanoma 
cell line has been reported to carry a GNA11Q209L variant (Schrage et 
al., 2015). Further details on other mutations in this cell line would 
allow for a more complete assessment of its suitability as a model for 
uveal melanoma. In the future, if mouse uveal melanoma cell lines 
could be derived from the genetically engineered mouse models dis-
cussed below, they would be powerful tools for syngeneic models. 
This strategy would allow for the controlled manipulation and study 
of bona fide uveal melanoma in an immunocompetent host.

(b) Cell line Source
Original publication 
(Laboratory of origin) Inoculation site Metastasis References

OMM1 (GNA11Q209L) Subcutis 
metastasis

Luyten et al. (1996) 
(Theo Luider)

Subcutaneous Not reported Zhou, Jin, Jin, Liu, and Pan (2017); 
Wang, Liu, Jin, Jiang, and Pan 
(2017); Sutmuller et al. (2000)

Ant. chamber Liver Repp, Mayhew, Howard, Alizadeh, 
and Niederkorn (2001)

Tail vein Liver Ma and Niederkorn (1995)

OMM1.3a = OMM2.3 
(GNAQQ209P)

Liver metastasis Verbik et al. (1997) 
(Bruce Ksander)

Subcutaneous Not reported Ambrosini et al. (2019); Jin et al. 
(2018); Vaqué et al. (2013)

Suprachoroidal Liver Liang et al. (2012); Zhu et al. (2010)

Retro-orbital Liver and lungs Surriga et al. (2013)

Intrasplenic Liver Jin et al. (2018)

TJU-UM001 
(GNAQQ209P)

Liver metastasis Yoshida et al. (2014) 
(Takami Sato)

Intrahepatic Peritoneum, 
lymph nodes

Kageyama et al. (2017); Ozaki et al. 
(2016); Cheng et al. (2015)

Intrasplenic Liver Piquet et al. (2019); Ozaki et al. 
(2016)

TJU-UM004 
(GNAQQ209P)

Orbital 
metastasis

Cheng et al. (2015) 
(Takami Sato)

Intrahepatic None Kageyama et al. (2017)

Abbreviation: Ant. chamber: anterior chamber.
aThe Mel270 cell line was derived from this patient's primary tumor. The OMM2.5 cell line (also called OMM1.5) is derived from another liver 
metastasis in the same patient. 

TA B L E  2   (Continued)
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TA B L E  2   (Continued) 5  | XENOGR AF T MOUSE MODEL S OF 
UVE AL MEL ANOMA

Xenograft models are another widely used approach. As the name 
implies, cells or tumors from a foreign source are grafted into mice. 
Most commonly, human uveal melanoma cell lines are used. The pri-
mary advantage of these models is that the cells are derived from pa-
tients. As such, they largely retain molecular features of the original 
tumor (Amirouchene-Angelozzi et al., 2014; Griewank et al., 2012; 
Jager, Magner, Ksander, & Dubovy, 2016). This technique is there-
fore well-suited for studying tumor signaling and response to treat-
ment. Many recent publications detailing new potential treatments 
for uveal melanoma utilize xenograft models (Table 2a,b). Another 
advantage of xenografts is reproducibility from mouse to mouse 
(Gould, Junttila, & de Sauvage, 2015). Many human uveal melanoma 
cell lines have been described, although some are not commercially 
available. Frequently used cell lines with validated uveal melanoma 
mutations are included in Table 2a,b. Many of these xenograft mod-
els are useful for studying metastasis, as they produce tumors in or-
gans such as the liver and lungs. It is also worth noting that some cell 
lines were derived from human uveal melanoma metastases. These 
are especially applicable for studying tumor growth in visceral or-
gans such as the liver.

Authentication of uveal melanoma cell lines for use in xenograft 
models is critical. Some lines historically thought to be uveal mela-
noma have been found to harbor BRAFV600E mutations and are now 
recognized as being of cutaneous origin (Griewank et al., 2012; Yu et 
al., 2015). Furthermore, several of these were found by short tandem 
repeat (STR) analysis to be the same cell line (Folberg et al., 2008; Yu 
et al., 2015). Validation of uveal melanoma cell lines (including spe-
cies confirmation, STR analysis, and pathogen detection) by individ-
ual laboratories is strongly encouraged. However, even after careful 
molecular characterization of any cancer cell line, the ability of the 
cells to faithfully recapitulate the behavior of their parental tumors 
has been questioned due to changes in molecular features that can 
result from culturing them in vitro (Ben-David et al., 2018; Gillet, 
Varma, & Gottesman, 2013; Goodspeed, Heiser, Gray, & Costello, 
2016). An example of this is that the karyotypes, including the status 
of chromosome 3, of several of the older cell lines differ from those 
of the patients’ original tumors (Jager et al., 2016). Additionally, it 
has been demonstrated that the gene expression profiles of uveal 
melanoma cell lines in culture diverge from their source tumors even 
after short-term passaging (Mouriaux et al., 2016). One way to avoid 
these problems is to implant human tumor specimens directly into 
mice; this is the basis of patient-derived xenografts.

Patient-derived xenograft (PDX) models are relatively new in the 
uveal melanoma field but have demonstrated considerable trans-
lational potential. The research group led by Didier Decaudin has 
been the most successful and prolific in generating PDX models of 
uveal melanoma (Table 3). They implant fresh primary and meta-
static tumor specimens in the interscapular fat pad of severe com-
bined immunodeficient (SCID) mice and achieve an engraftment rate 
of 28% (Némati et al., 2010). Importantly, the tumors that grow in 

these mice maintain mutations, chromosomal imbalances, and his-
topathological features of the tumors from which they were derived 
(Carita, Nemati, & Decaudin, 2015). These PDX models have also 
been used for the derivation of new cell lines with clinically relevant 
features such as loss of BAP1 expression (Amirouchene-Angelozzi et 
al., 2014). They have also been effective for assessing the efficacy of 
novel combination therapies to treat uveal melanoma (Amirouchene-
Angelozzi et al., 2016; Carita et al., 2016).

Another exciting recent development has been the generation of 
PDX models from hepatic uveal melanoma metastases (Kageyama 
et al., 2017). In these models, tumor specimens obtained after sur-
gery or biopsy were surgically implanted into the livers of NOD SCID 
gamma mice. The authors achieved an 83% engraftment rate and 
found that the histology, genetics, and proteomics of the implanted 
tumors resembled corresponding features of patient metastases. 
Tumors could also be monitored by CT imaging. PDX models such as 
these hold promise for preclinical evaluation of experimental thera-
peutic compounds and the realization of personalized medicine.

Like all models, xenografts have disadvantages. The chief among 
these is the necessity of using immunocompromised mice. This 
can partially be avoided by taking advantage of the immune-privi-
leged nature of the anterior chamber of the eye (Niederkorn, 2012). 
However, this approach can only be used to study the primary tumor, 
and the majority of grafts spontaneously regress (Sutmuller et al., 
2000). In this new era of immunotherapy, the inability to study the 
interplay between the tumor and host immune system, especially in 
sites of metastasis, is a major limitation. In uveal melanoma, this is 
somewhat tempered by the low response rate of patients to PD-1 
and/or CTLA4 inhibition (Algazi et al., 2016; Carvajal et al., 2017). 
However, other immunomodulatory pathways and cell types have 
been implicated in this cancer and are being actively investigated 
(Dougall, Kurtulus, Smyth, & Anderson, 2017; Robertson et al., 2017; 
Yang et al., 2016). Mice with humanized immune systems would be 
ideal recipients for xenograft models of all tumor types. Efforts to 
create such mice are ongoing but are complicated by, among other 
issues, graft-versus-host disease and interspecies differences in cy-
tokine specificity (Allen et al., 2019; Wege, 2018). Other criticisms of 
xenografts, particularly PDX models, include their high cost, low en-
graftment rate, and low throughput (Siolas & Hannon, 2013). These 
are valid concerns, and the actual utility of these models in informing 
the treatment of patients with uveal melanoma will become more 
apparent in coming years.

Another approach to avoiding artifacts induced by two-dimensional 
cell culturing is the use of three-dimensional (3D) culture systems. Such 
“tumor organoid” models now exist for several cancers, including those 
arising in the colon, breast, and pancreas (Drost & Clevers, 2018; Yang, 
Sun, Liu, & Mao, 2018). 3D cultures derived from patient tumor spec-
imens can be grafted into mice (patient-derived organoid xenografts) 
and faithfully match the molecular phenotypes and even treatment re-
sponses of the source tumors (Sachs et al., 2018; Vlachogiannis et al., 
2018). Some even allow for the study of the tumor microenvironment, 
as they incorporate stromal cells such as cancer-associated fibroblasts 
and lymphocytes (Neal et al., 2018). In the uveal melanoma literature, 



270  |     RICHARDS et Al.

there have been a few reports of 3D cultures in which cells form tu-
morspheres (Angi, Versluis, & Kalirai, 2015; Lapadula et al., 2019; Valyi-
Nagy et al., 2018). Further work is needed to determine the feasibility 
of generating such cultures from patient tumors and whether these 3D 
cell models better reflect the biology of their parental tumors. If so, 
they may serve as superior tools for both in vitro assays and xenograft 
models.

6  | GENETIC ALLY ENGINEERED MOUSE 
MODEL S (GEMMS) OF UVE AL MEL ANOMA

The third class of mouse models of uveal melanoma encompasses 
mice that have been genetically engineered to produce tumors. The 
primary advantage of these models is that they make it possible to 
study autochthonous tumorigenesis in an immunocompetent host. 
In particular, the contribution of specific genetic alterations to on-
cogenic signaling and disease progression can be assessed (Kersten, 
de Visser, van Miltenburg, & Jonkers, 2017; Zitvogel, Pitt, Daillere, 
Smyth, & Kroemer, 2016).

Older models include transgenic mice in which pigment cell-spe-
cific promoters of genes such as Tyrosinase drive expression of the 
SV40 large T antigen or HRAS, although some of these tumors 
originate from the retinal pigment epithelium rather than the uvea 
(Kramer, Powell, Wilson, Salvatore, & Grossniklaus, 1998; Syed et al., 
1998; Tolleson et al., 2005). In the Tg(Grm1) model, the Dopachrome 
tautomerase (Dct) promoter controls expression of the metabotropic 
glutamate receptor to produce both uveal melanoma and cutane-
ous melanoma (Schiffner et al., 2014). RET-driven GEMMs develop 
melanocytic neoplasms throughout the body, including in the uveal 
tract (Eyles et al., 2010; Kato et al., 1998). The major weakness of 
all of these models is that they are driven by molecular changes not 
observed in patients with uveal melanoma; this limits their clinical 
applicability.

In the years since the discovery of GNAQ and GNA11 as the main 
oncogenic drivers of uveal melanoma, three genetically engineered 
mouse models using these genes have been published (Table 4). In 
the first, a Tet-on system was used to induce GNAQQ209L expres-
sion in mice deficient for p16Ink4a and p19Ink4b (Feng et al., 2014). 
Although over half of the mice developed melanocytic cutaneous le-
sions by 9 months, there was no report of uveal melanoma. Despite 
this, cutaneous tumors in this model demonstrated YAP activation 
downstream of oncogenic GNAQ. Another seminal paper published 
simultaneously reached the same conclusion and demonstrated in 
vivo efficacy of a YAP inhibitor using a xenograft model of uveal mel-
anoma (Yu et al., 2014).

In a different model, the expression of GNAQQ209L in a lox–stop–
lox conditional knock-in allele inserted at the Rosa26 locus produced 
uveal melanoma in 3 months with 100% penetrance (Huang, Urtatiz, 
& Van Raamsdonk, 2015). Furthermore, it appears that cells from 
these tumors intravasate into blood vessels and metastasize to the 
lungs. Mice also developed dermal melanomas and melanocytic 
neoplasms at other sites, including the leptomeninges and inner ear. 

This model uses Mitf-cre to initiate oncogene expression. Lastly, an-
other model in which a similar conditional knock-in allele encoding 
GNA11Q209L is activated by the inducible Tyrosinase-creERT2 pro-
duced a comparable phenotype, albeit at a later timepoint (Moore 
et al., 2018). When Bap1 deletion was combined with GNA11Q209L 
expression, uveal melanomas were unexpectedly smaller. However, 
skin melanoma burden increased, as did cellular proliferation of these 
tumors. Comparative genomics from this model identified RasGRP3 
as a critical signaling node upstream of MAPK pathway activation, a 
finding that had been independently reported by another group that 
used orthogonal methods (Chen et al., 2017).

These models have shed light on key features of uveal melanom-
agenesis. First, they demonstrate that GNAQ and GNA11 are potent 
oncogenes. The deletion of tumor suppressors was not required to 
form uveal melanoma; indeed, in the second model, the expression 
of the human GNAQ transgene was only 3.3% of that of the mu-
rine wild-type allele as measured by RT-PCR of primary melanocyte 
cultures from the affected mice (Huang et al., 2015). Second, they 
illuminate differences between the pigment cell-specific promoters 
used in induction. The constitutive expression of Mitf-cre beginning 
at E15.5 likely explains the earlier onset of tumor formation in the 
GNAQQ209L model as compared to the GNA11Q209L model in which 
Tyr-creERT2 is induced in 4-week-old mice (Huang et al., 2015; Moore 
et al., 2018). Interestingly, induction of Tyr-creER in 8-week-old mice 
in the GNAQQ209L model did not produce overt uveal melanoma. 
Whether this is simply due to the differences in induction (mouse 
age and type of inducible Cre recombinase) or the result of differing 
potencies of the oncogenic drivers remains to be explored. Finally, 
these GEMMs illustrate which populations of melanocytes are sus-
ceptible to oncogenic transformation by these mutations and down-
stream activated pathways.

Like other models, these GEMMs are not without their disadvan-
tages. Disease progression is considerably slower than in syngeneic 
or xenograft models due to the time required for tumor initiation. 
A problem specific to the GNAQQ209L model is the microphthalmia 
caused by the Mitf-cre allele (Alizadeh, Fitch, Niswender, McKnight, 
& Barsh, 2008). Additionally, inserting the oncogenes in the Rosa26 
locus is somewhat artificial. A model in which an activatable allele is 
targeted to the endogenous mouse Gnaq or Gna11 locus might bet-
ter model physiologic expression of these genes. This approach has 
been successful in generating valuable BrafV600E GEMMs of cutane-
ous melanoma (Dankort et al., 2007; Mercer et al., 2005).

A serious obstacle encountered in the above uveal melanoma 
GEMMs is the induction of transgene expression in melanocytes 
throughout the entire body. This complicates the models in numer-
ous ways. First, melanocytic neoplasms in other organs may cause 
pathology, such as the ataxic phenotype caused by melanocytosis 
of the vestibular system. Second, mice sometimes have to be eu-
thanized before the ocular tumor can be fully studied because of 
rapid growth of melanomas arising from the dermis. Third, the study 
of metastasis is difficult because of the number of primary tumors, 
including some that develop in vital organs such as the heart (Huang 
et al., 2015; Moore et al., 2018).
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An exciting recent publication describes a new method to over-
come these issues by utilizing adeno-associated viral delivery of Cre 
recombinase to the uveal tract (Li et al., 2019). In this model, the su-
prachoroidal injection of an AAV5-CMV-Cre vector produced ocular 
melanocytic tumors in adult mice carrying conditional null alleles of 
the Hippo kinases Lats1 and Lats2, which normally function to sup-
press YAP/TAZ signaling. Furthermore, a similar vector in which Cre 
expression is under the control of the pigment cell-specific tyrosi-
nase-related protein 2 (Trp2) promoter produced a comparable pheno-
type. Importantly, cells of these tumors were positive for melanoma 
markers Melan-A/Mart1 and HMB45 but negative for RPE65. This 
indicates that they arose from uveal melanocytes and not cells of the 

retinal pigment epithelium. Remarkably, the authors found that acti-
vation of the YAP pathway alone was both necessary and sufficient 
for initiation of uveal melanoma. Activation of the MAPK pathway 
using an inducible KrasG12D allele was not sufficient for tumor forma-
tion but did accelerate tumor growth and mortality in the Lats dou-
ble knockout mice. They explored this intriguing synergy between 
MAPK and Hippo signaling and discovered an interactive transcrip-
tional network in which AP1 factors amplify the oncogenic output 
of YAP/TEAD in uveal melanoma. The use of this AAV-Cre system 
represents a significant improvement upon the aforementioned Cre 
driver mouse strains in that it limits oncogenic transformation to me-
lanocytes within the uveal tract of adult mice. This is a powerful new 

TA B L E  3   Patient-derived mouse xenograft models of uveal melanoma

PDX model Source
Original Publication (Laboratory 
of origin) Inoculation site References

6 cases successfully grafted 3 times Liver metastases Kageyama et al. (2017) (Takami 
Sato)

Liver Kageyama et al. (2017)

MP34, MP38, MP41, MP42, MP46, 
MP47, MP55, MP71, MP77, and 
MP80

Primary tumors Némati et al. (2010) (Didier 
Decaudin)

Interscapular fat 
pad

Carita et al. (2016); 
Amirouchene-
Angelozzi et al. (2016, 
2014); Némati et al. 
(2014, 2010); Madic et 
al. (2012)

MM33 Subcutis metastasis

MM26, MM28, MM52, MM66, and 
MM74

Liver metastases

ØPI-204 Primary tumor Heegaard, Spang-Thomsen, and 
Prause (2003) (Jan Ulrik Prause)

Subcutaneous Heegaard et al. (2003)

TA B L E  4   Genetically engineered mouse models of uveal melanoma

Model genotype Induction Phenotype

Original Publication 
(Laboratory of 
origin)

Dct-rtTA/+; tet-HA-
GNAQQ209L/+; p16p19KO

5- to 6-week-old mice; 
doxycycline in food

>50% of mice developed cutaneous melanoma; no report 
of lesions in the uveal tract

Feng et al. (2014) (J. 
Silvio Gutkind)

Rosa26-floxed stop-
GNAQQ209L/+; Mitf-cre/+

Embryonic (E15.5) 
activation by constitutive 
Cre driver

Skin hyperpigmentation overt uveal melanoma and 
occasional dermal melanoma at 3 months in 15/15 
mice; melanocytic neoplasia of the leptomeninges, 
harderian gland, cochlea, and vestibular system; putative 
metastases in the lungs at 3 months in 18/19 mice

Huang et al. (2015) 
(Catherine Van 
Raamsdonk)

Rosa26-floxed stop-
GNAQQ209L/+; 
Tyrosinase-creER/+

8-week-old mice; daily IP 
injection of tamoxifen and 
tail dip in 4-HT for 5 days

Skin hyperpigmentation; melanocytic hyperplasia of the 
uveal tract (but not overt melanoma) in 3/3 mice

R26-LSL-GNA11Q209L/+; 
Tyrosinase-creERT2/+

4-week-old mice; single IP 
injection of tamoxifen

Skin hyperpigmentation; overt uveal and dermal 
melanoma at 6 months in 50% of mice; melanocytic 
neoplasia of the leptomeninges, third ventricle, harderian 
gland, and heart; putative metastases in axillary lymph 
nodes and lungs at 3-6 months in 100% of mice

Moore et al. (2018) 
(Yu Chen)

R26-LSL-GNA11Q209L/+; 
BAP1lox/lox; 
Tyrosinase-creERT2/+

Compared to above: increased dermal melanoma burden 
and proliferative index, no change in number or size of 
uveal melanoma tumors or lung lesions

AAV5-CMV-Cre or AAV5-
Trp2-GFPCre; Lats1f/f; 
Lats2f/f

2- to 4-month-old mice; 
suprachoroidal injection 
of AAV

Eye bulging at 2 months and uveal melanoma formation at 
6 months in 12/14 and 8/10 mice, respectively

Li et al. (2019) 
(Junhao Mao)

AAV5-Trp2-GFPCre; 
Lats1f/f; Lats2f/f; 
LSL-KrasG12D

Compared to above: larger uveal melanoma tumors in 7/7 
mice and reduced survival (<4 months)
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tool that could be used in conjunction with both existing and new 
alleles to generate genetic mouse models that would enable the study 
of the entire disease process of uveal melanoma in vivo.

In addition to this AAV approach, the RCAS-TVA system might 
achieve similar results. This method has been used to generate nu-
merous GEMMs of cutaneous melanoma (Cho et al., 2015; Kircher 
et al., 2019; VanBrocklin, Robinson, Lastwika, Khoury, & Holmen, 
2010). RCAS subgroup A is an avian retrovirus capable of infecting 
cells that express the TVA receptor. Dopachrome tautomerase-TVA 
transgenic mice express this receptor in pigment-producing cells, 
and this strain could be crossed with one of the conditional knock-in 
alleles described above. Intraocular injection of RCAS virus that 
encodes for Cre would then activate oncogene expression in me-
lanocytes of the eye. An advantage of this model over the AAV ap-
proach is targeted delivery to cells of interest such that there is no 
requirement for inclusion of a pigment cell-specific promoter within 
the virus. This provides more room for genes of interest, which can 
be linked with Cre within the same viral vector to enable delivery to 
the same cells. Additionally, high titers of RCAS are easily produced 
in vitro using the chicken fibroblast DF-1 cell line (Fisher et al., 1999), 
and there is no need for helper virus in these cells. Retroviruses also 
permit long-term expression of genes due to genome integration, 
though this requires that the cells are dividing.

Despite these advancements in genetic models of uveal mela-
noma, the inherent differences in tumor biology between mice and 
humans cannot be ignored. Putative metastases that have been 
observed in published genetic models occur in the lungs, not the 
liver (Huang et al., 2015; Moore et al., 2018). Additionally, the loss 
of Bap1 did not enhance the aggressiveness of uveal melanomas; in 
fact, the ocular phenotype was weaker, and there was no increase 
in size or incidence of lung lesions compared with mice expressing 
GNA11Q209L alone (Moore et al., 2018). The basis for these differ-
ences is not understood and merits further investigation. It must 
also be acknowledged that the chromosomal abnormalities and epi-
genetic modifications observed in patients with uveal melanoma are 
nearly impossible to model in a mouse. Thus, while these GEMMs, as 
well as improved models, will continue to provide valuable insights 
into the progression of uveal melanoma in vivo, it is unlikely that 
any one model will fully recapitulate the human disease in all of its 
intricacies.

7  | CONCLUSIONS

In summary, although there is no perfect mouse model of uveal mela-
noma, currently available models have been instrumental in elucidat-
ing critical signaling pathways and testing new therapeutic strategies 
for this cancer. Each type of model has distinctive strengths and 
weaknesses. Syngeneic models are excellent for the investigation 
of tumor progression in an immunocompetent host but use cutane-
ous melanoma cell lines. Xenograft models allow for the study of 
human uveal melanoma cells and tumors in a living organism, but 
this does not include the immune response because recipient mice 

must be severely immunocompromised. Genetically engineered 
models allow for studies of autochthonous uveal melanoma forma-
tion and dissemination, yet tumors in these mice differ from those in 
patients in terms of molecular complexity and metastatic behavior. 
Investigators should leverage the models best suited to address their 
specific scientific questions. Future model development should aim 
to overcome current limitations and further enable efforts to inves-
tigate uveal melanoma biology and develop therapies most likely to 
succeed in patients afflicted with this cancer.
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