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Simple Summary: Behavioral sequences analysis is a relevant method for quantifying the behavioral
repertoire of animals to respond to the classical Tinbergen’s four questions. Research in ethology
and functional morphology intercepts at the level of analysis of behaviors through the recording and
interpretation of data from of movement sequence studies with various types of imaging and sensor
systems. We propose the concept of Neuroethological morphology to build a holistic framework
for understanding animal behavior. This concept integrates ethology (including behavioral ecology
and neuroethology) with functional morphology (including biomechanics and physics) to provide a
heuristic approach in behavioral biology.

Abstract: Postures and movements have been one of the major modes of human expression for
understanding and depicting organisms in their environment. In ethology, behavioral sequence
analysis is a relevant method to describe animal behavior and to answer Tinbergen’s four questions
testing the causes of development, mechanism, adaptation, and evolution of behaviors. In functional
morphology (and in biomechanics), the analysis of behavioral sequences establishes the motor pattern
and opens the discussion on the links between “form” and “function”. We propose here the concept
of neuroethological morphology in order to build a holistic framework for understanding animal
behavior. This concept integrates ethology with functional morphology, and physics. Over the
past hundred years, parallel developments in both disciplines have been rooted in the study of the
sequential organization of animal behavior. This concept allows for testing genetic, epigenetic, and
evo-devo predictions of phenotypic traits between structures, performances, behavior, and fitness in
response to environmental constraints. Based on a review of the literature, we illustrate this concept
with two behavioral cases: (i) capture behavior in squamates, and (ii) the ritualistic throat display
in lizards.

Keywords: ethology; functional morphology; behavior; Tinbergen’s questions; feeding; ritualization;
throat display

1. Introduction

Humans have formally developed representations of various postures and tentative
movements to show the behaviors and/or animal expressions we can observe [1]. A variety
of terrestrial and aquatic vertebrates illustrated on various substrates (e.g., stone, wood,
ivory) have been represented since the earliest days in all human cultures. Probably, one of
the first descriptions of animal movements was depicted in various parietal arts by rep-
resentations of their behaviors (e.g., feeding and vigilance behaviors in large herbivorous
mammals, predation behaviors in carnivores), and their “psycho-physiological” status
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through facial expressions (e.g., head expressions in hunting Felidae) [2,3]. For a long
historical period, the representation of postures (Figure 1) or a series of postures remained
the unique way to illustrate behaviors [4,5] related to human activities, such as hunting,
agriculture, war, religious ceremonies, entertainment (e.g., feasts, circus arena), and torture.
The illustrated postures of locomotion in many vertebrates (e.g., dogs, cats, horses, cows,
elephants) are typical examples of “frozen” representations of behavioral sequences. All
these representations are limited by human perceptual abilities (mainly visual) and/or
knowledge of the animal’s behaviors (e.g., direct observations, memory, reports). The quan-
tification of animal behaviors has been untimely supported by the technological rise of data
recording, and analysis based on (i) photography and filming at different speeds initiated
by Etienne Jules Marey (830–1904) and Eadweard Muybridge (1830–1904) [6–9]); (ii), em-
barked sensors [10–14]; (iii) imaging and computational technics [15,16]; and (iv) machine
learning systems [17]. The investigation of animal movements recorded in behavioral
sequences became the basis of our understanding of evolution and of the adaptation of the
animal behavior to their environment [18]. Such investigation is the basis of the conceptual
approach proposed in this paper.
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Figure 1. Represented postures of animal behavior on various substrates. (A) Magdalean bison.
(B) Timor horse head. (C) Dolphin on a Minoan pottery. (D) Hippopotami from Ancient Egypt.
(E) Horses on a Roman comb. (F) Chariot of the Goddess Athena from Ancient Greece.

2. Investigating Behavioral Sequences

Two types of behavioral sequences are investigated under experimental conditions
and in free-living animals: (i) sequences of a single individual (e.g., locomotion, feeding),
and (ii) sequences of a group of individuals (e.g., predation, schooling behavior, social
cooperation and competition, migration, play). In the case of collective motions, the study of
each animal sequence shows (i) the behavior of each individual, and (ii) the reciprocal effect
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of the action and postures of all the individuals [19–23]. In short, the data used to process
collective motions are quantitative observations of the responses of a variable number of
individuals [24,25]. This study permits the evaluation of when and how each individual
synchronizes their gestures and increases the predictability of the incoming signal realized
by each action of each individual on the others [26,27]. For example, the rushing motor
action of one individual in the courtship of Aechmophorus clarkii reciprocally influences the
response of the others [28,29] (Figure 2). In a group of sea birds preying on a fish shoal,
the action of each individual is independent but can modify the strategy of the others
(Figure 3). For instance, each Chroicocephalus ridibundus plunges independently toward
the fish and then exits the water with the prey (Figure 4; Supplementary Material S1).
Each animal must avoid all others. Larus marinus uses two strategies: (i) plunging from
the air, and (ii) diving from swimming position (Figure 5). By using this last strategy, the
bird probably has a better perception of the spatial position of most of the preying birds.
Various individuals from the same species preying simultaneously on one food resource
may show different “decision-making” variability, probably constrained by physical laws
as suggested by the mechanoethology approach (e.g., sensation, limit, and energy [22]).
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Figure 3. A group of seabirds preying on a fish shoal. All Chroicocephalus ridibundus plunge from
different heights toward the fishes. Each bird plunges independently, and must avoid all others to
catch its prey and get out of the water.
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(C,D) An individual (green circle) plunges while another begins to emerge (red circle) and another 
(yellow circle) flies out of the water with the prey in its beak. Time between two frames: 0.01 s. 

Figure 4. Motor sequence of three Chroicocephalus ridibundus closely preying on a fish shoal.
(A,B) One individual plunges (red circle) toward the fish, while another begins to emerge (yel-
low circle). (C,D) An individual (green circle) plunges while another begins to emerge (red circle)
and another (yellow circle) flies out of the water with the prey in its beak. Time between two frames:
0.01 s.
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cocephalus ridibundus (see Figures 3 and 4). (A,B) The swimming bird prepares to plunge by flap-
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Figure 5. Motor sequence of Larus marinus (red circle) preying on the same fish shoal as Chroicocephalus
ridibundus (see Figures 3 and 4). (A,B) The swimming bird prepares to plunge by flapping its wings.
(C,D) The bird plunges to catch the fish. The bird moves out of water (E)Time between two frames:
0.01 s.

3. Behavioral Sequences in Ethology

Behavioral sequences analysis is one (but not the only) relevant method to accurately
quantify the repertoire of actions to answer Tinbergen’s four questions (Figure 6).
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Primates successively adopt a typical posture (e.g., sitting or tripodal posture, Figure 
8), permitting them to freely extend the forelimbs to reach and grasp food, and to use 
their hands. Each movement involves the neuro-motor integration of different structures 
(e.g., axial and appendicular systems) with morphological properties (e.g., shape, length, 
articulation) under phylogenetic (historical) and ecological (e.g., degree of arboreality) 
constraints (Supplementary Materials S2 and S3). The hands are used to manipulate food 
in front of the trophic system, regardless of their morphological and mechanical traits, as 
in various tetrapods [34–36]. Each behavioral action resulting from the combined 
movements of different morphological systems (Figure 9) is also influenced by complex 
sensory filtered information from the food (e.g., food volume, size, texture [37–41]), the 
animal traits (e.g., age, sex, personality), and the environment. 

Figure 6. Classic schematic representation of Tinbergen’s four questions.

Animal behaviors can be divided into movements, gestures, and postures that corre-
spond to decision-making and result from motor actions [30,31]. Indeed, postures are the
result of dynamic activities of the whole body or of one of its anatomical components [32].
For example, feeding is a complex behavioral sequence integrating cranial and post-cranial
movements and postures [33], as demonstrated in primates (Figure 7).
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Figure 7. Sitting posture to reach the food (A), grasp it (B), and feed (C) in Symphalangus syndactylus
result from the integration of combined motor actions (movements) of the axial, and appendicular
systems (i.e., limb and hand) that are determined by analysis of animal sequences. The final posture
of each behavior corresponds to the end of a sequence of movements of the whole body and/or
one of its components under different motor controls.

Primates successively adopt a typical posture (e.g., sitting or tripodal posture, Figure 8),
permitting them to freely extend the forelimbs to reach and grasp food, and to use their
hands. Each movement involves the neuro-motor integration of different structures (e.g.,
axial and appendicular systems) with morphological properties (e.g., shape, length, articu-
lation) under phylogenetic (historical) and ecological (e.g., degree of arboreality) constraints
(Supplementary Materials S2 and S3). The hands are used to manipulate food in front of
the trophic system, regardless of their morphological and mechanical traits, as in various
tetrapods [34–36]. Each behavioral action resulting from the combined movements of
different morphological systems (Figure 9) is also influenced by complex sensory filtered
information from the food (e.g., food volume, size, texture [37–41]), the animal traits (e.g.,
age, sex, personality), and the environment.
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lating food and feeding in a bipedal posture. (B) C. capucinus manipulating food and feeding in a 
tripodal posture made by the two hindlimbs and the tail. (C) C. capucinus manipulating food and 
feeding in a “sitting” posture with food in the hindfoot (power grip). (D) A. fusciceps rubiventris 
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two hindlimbs and one forelimb. The structure of the limbs and the tail in both species influences 
the posture that the animals are able to use to handle food and feed. 

Figure 8. Various posture extracted at the end of body motor sequences during food transport and
feeding by (A–C) Cebus capucinus, and (D,E) Ateles fusciceps rubiventris. (A) C. capucinus manipulating
food and feeding in a bipedal posture. (B) C. capucinus manipulating food and feeding in a tripodal
posture made by the two hindlimbs and the tail. (C) C. capucinus manipulating food and feeding in
a “sitting” posture with food in the hindfoot (power grip). (D) A. fusciceps rubiventris feeding in a
bipedal posture. (E) A. fusciceps rubiventris feeding in a tripodal posture made by the two hindlimbs
and one forelimb. The structure of the limbs and the tail in both species influences the posture that
the animals are able to use to handle food and feed.

Each entity (or unit) with a distinct function or a set of functions involved in the behav-
ioral sequence was called “behavior-organ” by early ethologists [29]. Entities correspond to
complex movements and gestures recorded through the lens of complementary disciplines
(e.g., comparative and evolutionary ethology, phylogeny). Each of the behavioral entities is
characterized by a neuro-motor pattern corresponding to precise activation and coordina-
tion of the muscular system at various scales (e.g., muscles, fascicles, or fibers) under the
control of activated neural circuits called central pattern generators (CPGs). These entities
are similarly identified in neuro-ethology and functional morphology by (i) the kinematic
profiles (e.g., feeding) or particular representations such as gaits [42,43], and (ii) “motor-
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action” patterns (MP) controlled by hormonal and neuronal systems. Some entities are
rhythmic as identified from several decades [44], and some others are not. Differentiating
the types of entities is rather difficult in some behaviors. For example, food/prey catching
is a particular “one-shot” pattern immediately followed by rhythmic manipulation and
transport (Supplementary Material S4), and the hand is “frozen” in a typical posture at
some point in the behavioral sequence for food grasping, while the fingers show rhythmic
movement to screen the food resource (Supplementary Material S5).
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Figure 9. Typical non-rhythmic movement for single-handed food grasping in Semnopithecus entellus.
(A) View the animal posture during grasping. (B) Close-up view of the hand showing the grasping
movements of the digits. At time: −0.24 s, the animal examines the food source, and then scans the
environment during the grasping sequence (Time: −0.16 to 0.14 s). The white arrow indicates the
piece of food selected by the animal. Time 0.00 corresponds to the grasping of the food by the digits.
The animal is filmed at 100 Hz.

4. Behavioral Sequences in Functional Morphology

In functional morphology (and biomechanics), the analysis of behavioral sequences
makes it possible (i) to establish the properties (at various levels of its biological organiza-
tion) of a phenotypic trait (e.g., structure), (ii) to determine the kinematic profiles and MPs
governing the movements of this trait, and (iii) to discuss the links between the so-called
“form” and “function” of this trait [45]. Such studies contribute to the understanding
of evolutionary patterns and processes [46] in the approach that can be formalized in
Arnold’s paradigm [47] linking structure, performance, behavior, and fitness (Figure 10)
for an identified behavior (e.g., locomotion, feeding). This paradigm applies to all neu-
romotor patterns performed by animals, with the relationship between “behavior” and
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“performance” considered as distinct features [48] playing a key role in determining the be-
havior. Performance is extracted from precise studies of behavioral sequences investigated
using various filming techniques (e.g., high-speed 16 mm and video films, high-speed
X-ray films), embarked cameras, and diverse embarked sensors (e.g., electromyography,
accelerometers and experimental studies [49–51]). Although largely discussed, fitness is
simply defined here as the ability of the surviving organism to produce offspring that then
(at least in part) enter the gene flow process in a population, etc. [48]. In this modified
paradigm, “function” is represented as the biological role of the behavioral response to
the environmental factors [52]. The functional characteristics measured at various biolog-
ical levels (e.g., whole body, muscular and skeletal elements) of the design through its
performances [52] permit hypothesis testing that, in short, allows us to respond to the Tin-
bergen’s questions (Figure 5). The behavior determined by designs (structures) movements
quantified by these performances can also be determined as a “moving morphology” [53].
Actually, it is usual to measure these performances based on kinematic data (e.g., velocity,
acceleration) extracted from the behavioral sequences (at various speeds) combined (or
not) with many means of recording MPs such as electromyography ( EMG) [10], dynamic
imaging techniques (e.g., X-ray Reconstruction of Moving Morphology (XROMM) and
fluoromicrometry [53], and finite element analysis (FEA) [54]).
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Figure 10. Illustration of an extended view of the Arnold’s paradigm [47] used in functional mor-
phology, indicating the links between designs (structures), performances, behaviors, and fitness.
Phenotypic traits of structures depend on complex interactions between processes relating genetics,
epigenetics and development. A behavior is the result of movements of structures identified by a set
of performances that reversely affect the properties of the design. Each behavior has a biological role
in responding to properties of the environment [47].

5. Core Concept of Neuroethological Morphology
5.1. Integrating Ethology and Functional Morphology

It is salient to note that both disciplines tend to understand “how” and “why” organ-
isms perform behaviors in response to their proximal and distal environments (Figure 11).
Indeed, research in ethology and functional morphology intercept at the level of the analysis
of behaviors primarily through data recorded on the sequences of animal movements and
gestures. Ethologists and neuro-ethologists compare behaviors, MPs, and CPGs to under-
stand the evolutionary mechanism(s) underlying one or several activities [55]. Functional
morphologists compare “kinematics” (e.g., profiles and performances), and behavioral
MPs to understand the links between “form” and “function” associated with one or more
behaviors (e.g., functional trade-off) [56–59].
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Figure 11. Neuroethological morphology’s heuristic approach to integrating Arnold’s paradigm [47]
into Tinbergen’s four causes of behavior: ontogeny (development), mechanism, adaptive significance,
and evolution. Certain links play a major role in our understanding of the causes of behaviors.
The ontogeny of behavior is mainly concerned with the links between structures and performance
(blue ellipse). Mechanism is primarily concerned with the links between structure, performance and
behavior (red ellipse). Adaptive significance is mainly concerned with the links between performance,
behavior and fitness (grey ellipse). Evolutionary pathways (black line) concern all links between
structure, performances, behavior and fitness during changes in environments over geological time.
Green rectangles: environments (see Figure 10).

Integrating approaches from both disciplines can greatly contribute to the understand-
ing of the “how” and “why” [60] in addressing questions based on the investigation of
behavioral sequences [52]. The investigation of movement and MP is the main language
common to both disciplines. Investigations on behavior show the need to combine data on
pattern declined in kinematics, MP, and CPG with morphological and functional data (e.g.,
physiological and mechanical) to understand the links between structures and performance,
their optimization and their limits. The integration of the ethological, morphological and
functional characteristics of each animal behavior provides the holistic view to understand
the action of the natural and sexual selections on the origin, development, adaptive signifi-
cance, and evolution of any behavior. Such integration opens the possibility to investigate
“organism–environment” interactions and to suggest hypotheses on the evolution of animal
behaviors in changing environments [43].

Recently, the novel concept of mechanoethology has opened the door to the integra-
tion of ethological studies and physics by integrating physics with behavioral studies.
Three major concepts play a key role in the mechanoethology: (i) energy, (ii) limits, and
(iii) sensation [22]. This mechanoethology also incorporates physical approaches of or-
ganism’s responses to environmental factors summarized in the ecomechanical paradigm
proposed by Higham et al. (2021) [51]. Both approaches conceptually explore responses
of organisms based on physical laws applied to the properties of morphological designs
and their performance. In animals, the studied responses through these concepts involve
behavior determined by flexible movements, gestures, and postures.
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5.2. Definition of Neuroethological Morphology

We propose the concept of neuroethological morphology (Figure 11) in order to build
a holistic framework for understanding animal behavior. This concept integrates ethology
(including behavioral ecology and neuroethology already classically associated), with func-
tional morphology (including biomechanics and physics). This interdisciplinary concept
can help understand the characteristics of all behaviors that are capable of modulating or
initiating MPs to exploit respond to the environement (e.g., feeding in vertebrates [52,57,61])
and communicate [62,63]. Over the past fifty years, the parallel development of both disci-
plines is rooted in the study of the sequential organization of behaviors in animals. In the
concept of neuroethological morphology, we propose to combine data obtained from these
disciplines in order to increase our understanding of “how” animal behave, that are strongly
related to questions about “organism–environment” interactions. Furthermore, combining
ecological and historical constraints through the data contributes to understand “why”
animals behave under particular biotic and abiotic conditions. Thus, this concept allows
for the testing of evo-devo, genetic, and epigenetic hypotheses [64] to propose predictions
about (i) the properties of each of the levels of the paradigm (e.g., structure, performance,
behavior), and (ii) their linkages that build the “realization” of the behavioral entities (e.g.,
movements or gestures) across intra- and inter-individual variabilities evoked by a stimulus
situation [65,66]. The tentative answers to these hypotheses open the discussion on the
effect of various selective pressures (internal vs. environmental regimes) on the behaviors of
organisms at any level (e.g., individual vs. group), and therefore open falsifiable predictions
about the evolutionary and adaptative mechanisms of organisms under any environmental
conditions (from the molecular to the behavioral level). Two examples illustrate the interest
of the interdisciplinary bridges between ethology and functional morphology proposed in
the concept of neuroethological morphology.

6. Examples of Neuroethological Morphology
6.1. Prey Capture in Squamates

Food/prey capture has been extensively studied in many representative squamates
species [67,68], from the anatomical and mechanical properties of trophic designs (e.g., jaw
and tongue), to their MPs and performance [67–69]. Kinematic data collected using various
techniques, especially high-speed films (e.g., video and fluoroscopy techniques) and sensors
(e.g., electromyography, pressure, accelerometers), mainly in experimental conditions,
provide the opportunity to show the relationship between some properties of the structures,
and their performance in prey capture. The holistic approach of the neuroethological
morphology concept shows the bridge between ethology and functional morphology
to understand “how” these tetrapods are able to exploit their food and where natural
selection acts.

Based on the investigation of behavioral sequences in numerous species, two modes
of prey capture have been determined in squamates: (i) jaw grasping (Figure 12), and
(ii) lingual grasping (Supplementary Material S6) with the dorsal or the ventral side of
the tongue [67–72], independent of the trophic system morphology. Each prey/food
capture demonstrates invariant MPs resulting from muscular activities and kinematics of
coordinated gape and hyo-lingual cycles, regardless of the morphological traits and their
individual plasticity (e.g., personality). The proximal food sign stimulus acts on motor
actions at two levels: (i) change in performance of the trophic system (capture mode), and
(ii) modulation of trophic and post-cranial performance [71–74]. Three examples help to
demonstrate the value of the neuroethological approach in understanding the evolution
of prey capture in squamates. The ethological approach permits the determination of
capture behavior, and the functional approach determines how structures constrain the
performance of the post-cranial or trophic system.
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manner, and remains in contact with the food. In the case of wet food (e.g., juicy fruits), 
the lizard is able to only modulate the lingual protrusion from “lingual prehension” to 
“tongue pinning” (Supplementary Material S7) to ensure successful capture [67]. This ar-
boreal lizard never changes its capture mode in jaw prehension. The postcranial system is 
always employed in a similar MP (e.g., gait). In contrast, the capture behavior is more 
complex in the scincid Tiliqua scincoides that forage in various habitats including forests, 
grasslands, and human-altered habitats to find various food resources (e.g., plants, ar-
thropods, snails, small vertebrates). This terrestrial species may use jaw or lingual pre-
hension for different but also similar food items [71], and lingual protrusion may be 

Figure 12. Two examples of successive images of jaw prehension in two highly different species
showing the stereotyped lunge phase to catch insects. (A) Eublepharis macularius. (B) Tupinambis
texeguin. Time (ms) in each frame is calculated relative to jaw contact on the prey (time = 0).

Iguana iguana is an arboreal lizard mainly exploiting plant material freely available
in its habitat. In adult iguanas (Iguana iguana), the performance of the postcranial system
to capturing food is stereotyped. The lunge phase includes classic tetrapod diagonal
locomotion (postcranial structures) to approach food, regardless of the substrate (e.g., flat
substrate and large branches). The tongue is always protruded onto the food in a similar
manner, and remains in contact with the food. In the case of wet food (e.g., juicy fruits),
the lizard is able to only modulate the lingual protrusion from “lingual prehension” to “tongue
pinning” (Supplementary Material S7) to ensure successful capture [67]. This arboreal lizard
never changes its capture mode in jaw prehension. The postcranial system is always
employed in a similar MP (e.g., gait). In contrast, the capture behavior is more complex in
the scincid Tiliqua scincoides that forage in various habitats including forests, grasslands,
and human-altered habitats to find various food resources (e.g., plants, arthropods, snails,
small vertebrates). This terrestrial species may use jaw or lingual prehension for different
but also similar food items [71], and lingual protrusion may be modulated differently
during lingual prehension [72]. This suggests an effect of proximal sign-stimulus on the
MP of the tropic system at two levels: (i) change of the jaw-tongue control, (ii) modulation
of the MP of the lingual muscular system. Other lizards using lingual prehension such as
Anolis carolinensis and Pogona vitticeps do not modulate their lingual movements and MP,
but modulate their postcranial MP. Kinematic profiles showing coordinated jaw and lingual
movements show stereotyped MP [67,68]. However, these species modulate their whole
body positions to catch prey [75], in relation to proximal habitat factors (e.g., diameter,
surface of the substrate). For example, A. carolinensis approaches the prey in a variable
manner (e.g., jump capture vs. head-up capture). In the head-up capture mode, the lizard
approaches the prey with its body lowered nearly parallel to the substrate, stops, and then
lunges for the lingual grasp (Supplementary Material S8). The lizard secures its approach
with small, continuous “postural” movements of the body and limbs.

This example emphasizes the relevance of building links between ethology and func-
tional morphology. Ethological approach quantifies the capture behavior, particularly
determining: (i) the use of the cranial and postcranial systems, and (ii) the prehension
modes (lingual vs. jaw). Functional morphology investigations compare kinematic profiles
and MP of body and lingual movements. Combining these two approaches in a neuroetho-
logical conceptual approach (Figure 11) allows us to show “how” different species are
able to respond to proximal environmental features (e.g., food properties and substrate
characteristics) by integrating the properties and links between the structure and fitness
of the cranial and postcranial systems in prey capture. The integrated interdisciplinary
approach provides a comprehensive understanding of the evolution of capture behavior in
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these tetrapods and tests the effect of proximal environment complexity on evolutionary
pathways (e.g., crossing prey properties and habitat with historical constraints) of the links
between the “moving morphology” and behavior.

6.2. Ritualized Behaviors

It is commonly accepted that a majority of the behaviors used as signals in communica-
tion are « ritualized », as stated by Lorenz (1966), who defines ritualized behavior as follows:
“ . . . A phylogenetically adapted motor pattern which originally served the species in dealing with
environmental necessities, acquires a new function, that of communication” [76]. Ritualization is
considered a key evolutionary process driving the evolution of the pattern of movements,
gestures, and postures involved in animal communication (man included [77]), as notified
by Morris: “Now, it is a fundamental characteristic of the communicatory behaviour of animals
that the signal patterns used are derived from non-signal sources (see, in particular, Daanje 1950,
Tinbergen 1952, and Morris, 1956a. This signalisation may occur either in the phylogeny of an
animal (when it is called ritualization), or in its ontogeny (when it may be termed stylization). In
either case it results in the need for a fundamentally variable reaction becoming constant in form.
These conflicting demands, of variability and stability, lead in many cases to a compromise: Typical
intensity.” [78]. The ritualized evolve from behaviors that can be considered originally
as “cues”, and it is discussed that ritualized behaviors are one of the three pathways to
explain the rise of communication and its evolution (e.g., ritualized behavior, sensory
manipulation, and transformation of non-communication behavior). The interpretation
of the origin of behaviors used in communication still remains unclear, but these authors
suggest two stages in the emergence of ritualized behavior acting in communication:
(i) coercion, and (ii) becoming a signal [79]. Display behavior is considered improbably
evolved “de novo”. Non-communicative behaviors, which may have “preadapted” value
for communication, have somehow evolved into ritualized behavior with a communication
function [80]. The possible origins of ritualized behavior are numerous, and it is suggested
that the MPs of ritualized behaviors derive from a wide variety of MPs of other behaviors
such as (i) rhythmic behavior, (ii) displacement behavior produced by the somatic nervous
system [81], (iii) ambivalent attack and flight behaviors, and (iv) intention movements
are often considered at the origin of ritualized behavior [29,82,83]. To our knowledge,
only a few studies demonstrate the origin of ritualized behavior on the basis of integrated
neuroethological data [83–88].

Here, we suggest that the holistic approach of the neuroethological morphology
concept allows us to address the question of the origin and co-evolution of ritualized MP
and hyoid morphological devices in squamates. The case study of these behaviors is mainly
based on (i) recorded data from photography/filming techniques associated with various
sensors, and (ii) some experimental studies [89] of the throat skin and hyoid morphological
properties [90–92].

Throat gestures or movements are depicted in numerous species (Supplementary Ma-
terial S8), as demonstrated in the pioneer work of Charles Carpenter [93]. These gestures per
se are included (or not) in motor sequences (Figure 13), variably involving body (“push-up”)
and head movements (e.g., “head-bobbing” or head-nodding”), showing the complexity of
cooperation of the cranial, axial, and appendicular systems in the performance of ritualized
behaviors (Figure 14).

The links between morphological (e.g., cartilage, musculature), and biomechanical
features of the hyoid apparatus in the display have been mainly investigated in iguanid and
agamid squamates, and in some other species such as varanids [90–92,94–103]. The shape of
the exhibited throat is highly variable within and among squamate species, as demonstrated
by the enormous literature on the diversity of dewlap features (e.g., Anolis dewlap size
and shape [98,104–106]). For example, the Saharan lizard Varanus griseus uses two types of
rhythmic rapid throat movements: (i) a throat movement associated with the ventilatory
cycle (and song production), and (ii) successive rhythmic rapid throat movements per-
formed while the body remains completely inflated [101]. In Anolis, the throat is variably
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extended and pulsed in a complex sequence determined by spatiotemporal movements
of the head and the body (Figure 15). In Iguana, the dewlap vibrates following the head
bobbing (Supplementary Materials S10).
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Figure 15. Schematic representations of the hyoid apparatus in relation to the recorded throat
extension in lizards. Anatomical description of all elements of a hyoid apparatus (Anolis carolinensis)
is provided in the upper left corner. The hyoid anatomy and display behaviors are illustrated for
various lizards. (A) The hyoid apparatus of Lacertoidea. The display in Lacertoidea involves a very
small throat extension often associated with gaping (red arrow). (B) Representative hyoid apparatus
in Toxicofera, Pleurodonta (Sceloporus sp.) and Acrodonta. The display of most of the species shows a
limited throat extension. (C) Representative hyoid apparatus in Acrodonta Chameleo sp. The display
(illustrated in Brokesiinae) remains to be investigated functionally. The black arrow shows the
potential effect of additional lingual movement on the shape of the signal. (D) Representative hyoid
apparatus in Chlamydosaurus kingi. This lizard uses frill erection. a. Resting posture. b. Full frill
erection. Yellow arrows indicate Grey’s cartilage (black areas) helping support dorsally the fully
erected frill. (E) Representative hyoid in Varanus sp. (Toxicofera, Anguimorpha). The display in
Varanus sp. Involves various throat extension (see Figure 16D). bo, hyoid body, br I, ceratobranchial
I; br II, ceratobranchial II; eb, epibranchial; eh, epihyal; hy, ceratohyal; hyp, hypohyal; li, lingual or
entoglossal process. The hyoid elements are colored following their relative movements. Red, the
hyoid body, entoglossal process and ceratobranchials II in solidarity movements; yellow, hypohyal;
brown, ceratohyal; blue, ceratobranchial I.
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muscle produces rotation of the hypohyals and extension of the central posterior ele-
ments, the ceratobranchials II, operating as a first-order lever in the dewlap of iguanids 
(e.g., Anolis, Iguana) [18,89,90,100] and in the extension Varanus’ throat [101]. In frill erec-
tion, regardless of size and shape (e.g., Pogona and Chlamydosaurus), this muscle contrac-
tion also produces coordinated movements of the ceratobranchials I, acting directly on 
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The hyoid movements driving to all kinds of throat signal in lizards are produced by 
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Figure 16. The dewlap exhibition associated with whole body movements shows different patterns
and shapes in Anolis species. (A,B) Dewlap and headbob display showing interindividual difference
in Anolis aureus (redrawn from [107]). (C) Dewlap shape in Anolis aureus. (D) Dewlap in Anolis
limifrons. (E) Dewlap shape in Anolis limifrons. (F) Dewlap and headbob display in Anolis opalinus.
(G) Dewlap shape in Anolis opalinus. (H) Dewlap and headbob display in Anolis sagrei. (I) Dewlap
shape in Anolis sagrei. (J) Posture of maximum dewlap extension in Anolis marmoratus (Guadeloupe,
courtesy L. Legendre, Guadeloupe). (K) The throat in Anolis can be variably extended during
encounters as shown in Anolis marmoratus (courtesy L. Legendre, Guadeloupe), suggesting possible
neuromotor control of throat extension under sensory and internal (e.g., hormonal) behavioral control.
(D,F,H) are redrawn from [108]. The bar in (A,B): 1 s; the bar in (D,F) and (H): 7 s.

Neuroethological studies suggest that the MP of all ritualized throat displays in lizards
is conservative. Available data (e.g., EMGs; muscular stimulations [89,90]) demonstrate
that the pattern of this signal is based on the relative movements of the lateral hyoid
elements, with the key role played by the muscle M. cerato (branchio) hyoideus located
between the ceratohyal and the ceratobranchials I (Figure 16). Contraction of this muscle
produces rotation of the hypohyals and extension of the central posterior elements, the cer-
atobranchials II, operating as a first-order lever in the dewlap of iguanids (e.g., Anolis,
Iguana) [18,89,90,100] and in the extension Varanus’ throat [101]. In frill erection, regardless
of size and shape (e.g., Pogona and Chlamydosaurus), this muscle contraction also produces
coordinated movements of the ceratobranchials I, acting directly on the skin to produce
lateral expansion (Pogona) and frill erection (Chlamydosaurus).

The hyoid movements driving to all kinds of throat signal in lizards are produced
by a conservative MP and CPG [83]. Throat extension and dewlap are produced by
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movements of the extended ceratobranchials II, and lateral expansion by the coordinated
lateral movements of the ceratobranchials I.

The signal itself is affected by the morphological constraints, as shown in functional
studies: (i) the 3D-shape of the hyoid (Figure 16) [83], (ii) the functional properties of the
muscle systems [97,98], and (iii) the properties of the skin [92,103]. Indeed, it seems that
one of the key elements that shapes the throat gesture is the morphological (e.g., scales) and
biomechanical properties of the skin [92,103]. For example, skin pleats (involving three con-
vex and two concave folds) are erected during the full frill erection in Chlamydosaurus, with
the so-called Grey’s cartilage connecting the dorsal part of the frill to each side of the head
allowing the movement of its upper part [103]. Therefore, the evolution of the shape of
the signal in this agamid is the combined result of the conservative MP integrated with
the properties of the skin, and the 3D-structural properties of the hyoid elements with
addition of a dorsal cartilage. This additional morphological system is unique in lizards
exhibiting frill erection. All other signal characteristics (e.g., color pattern) can be added
(e.g., size, shape, color) to this signal by sexual selection. The origin and mechanism of
throat display as part of the ritualization process remain to be investigated in squamates
within the concept of neuroethological morphology. For example, the role of the tongue
(when it exists) remains to be clarified in many lizard species. The neuroethological concept
(Figure 11) linking performances and structure of the hyolingual apparatus permits the
hypothesis that the origin of the throat display in lepidosauromorph diapids evolved only
once under the process of ritualization during their evolution and change through their
broad geographical distribution [109]. The co-evolution of morphological features (e.g.,
hyoid and skin) governs and limits the shape of the signal without affecting the other
behavioral activities (e.g., feeding, drinking).

7. Concluding Remarks

We show the key role of the links between ethological and functional studies to support
the concept of neuroethological morphology in two behaviors of lizards. On the basis of
the behavioral sequences analysis, this concept integrates three disciplines that investigate
the behavioral biology of animals: ethology, neuroethology, and functional morphology.
This conceptual approach should be adopted for the diversity of behaviors selected by
organisms in their organism–environment interactions, regardless of their biotic or abiotic
environmental constraints. We suggest that this interdisciplinary approach is helpful for
understanding the evolution of behavior, its origin, and adaptive significance through the
investigations formalized in the Arnold’s paradigm, and permits the investigation of the
evolutionary patterns and processes, such as ritualization.

Supplementary Materials: The following supporting information can be downloaded at: https://
zenodo.org/record/6606197#.YpnUaCdByUl, Video S1. Preying behavior in a group of Chroico-
cephalus ridibundus. A lot of birds plunge independently at various heights (speed: 0.09 fps).
Video S2. Sitting posture of Symphalangus syndactylus for food reaching. The animal takes his
sitting posture from a bipedal erected locomotion (speed: 0.07 fps). Video S3. Sitting posture of
Semnopithecus entellus for food reaching. The animal takes his sitting posture at the end of a classical
quadrupedal locomotion (speed: 0.07 fps). Video S4. Semnopithecus entellus grasping a piece the
food “one-shot” movement (speed: 0.09 fps). Video S5. Semnopithecus entellus uses finger rhyth-
mic movements to screen the food before grasping one piece (speed: 0.09 fps). Video S6. Lingual
prehension in Anolis carolinensis on flat substrate (speed: 0.05 fps). Video S7. Typical response of
Iguana iguana facing to a wet food (fruit). The lizard always uses the tongue to contact the food, and
modulates the lingual and jaw movements in the two successive attempts to be able to catch the wet
fruit (Speed: 0.016 fps). Video S8. Lingual prehension of Anolis carolinensis on an artificial branch.
The lizard controls the prey approach by postural changes of the body (Speed: 0.05 fps). Video S9.
Throat display and head bobbing in Anolis ferreus in the Archipelago of Guadeloupe (Marie-Galante)
(Speed: 0.05 fps). Video S10. Throat display and head bobbing in the alien Iguana iguana in the
Archipelago of Guadeloupe (Speed: 0.09 fps).

https://zenodo.org/record/6606197#.YpnUaCdByUl
https://zenodo.org/record/6606197#.YpnUaCdByUl
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