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Abstract

Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and
polarization. We have hypothesized that these are mediated by separate modules that account for these processes
individually and that, when combined, recreate most of the behaviors of chemotactic cells. Here, we describe a
mathematical model where the modules are implemented in terms of reaction-diffusion equations. Migration and the
accompanying changes in cellular morphology are demonstrated in simulations using a mechanical model of the cell cortex
implemented in the level set framework. The central module is an excitable network that accounts for random migration.
The response to combinations of uniform stimuli and gradients is mediated by a local excitation, global inhibition module
that biases the direction in which excitability is directed. A polarization module linked to the excitable network through the
cytoskeleton allows unstimulated cells to move persistently and, for cells in gradients, to gradually acquire distinct
sensitivity between front and back. Finally, by varying the strengths of various feedback loops in the model we obtain
cellular behaviors that mirror those of genetically altered cell lines.
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Introduction

Cells have a remarkable ability to sense the direction of

chemical gradients and respond by polarizing and migrating

toward attractants. Chemotaxis is one of the fundamental

properties of single cell organisms, such as bacteria and

amoebae, as well as multicellular systems. Experiments suggest

that chemotaxis involves the coordinated action of separable but

interrelated processes: motility, gradient sensing, and polariza-

tion [1]. In fast moving amoeboid cells, such as the social

amoeba Dictyostelium discoideum or human neutrophils, motility

arises from the periodic extension of actin-rich pseudopods

whose nature is quite similar in chemoattractant stimulated and

unstimulated cells. Gradient sensing refers to the cell’s ability to

interpret extracellular gradients and to respond by directing

intracellular proteins to the site of highest chemoattractant

concentration. Experiments in eukaryotic cells in which motility

has been impaired by inhibitors of actin polymerization, such as

Latrunculin, demonstrate that gradient sensing occurs even in

immobile cells, indicating that cells employ a spatial sensing

mechanism that does not depend on movement. Finally,

polarization is the propensity of cells to assume stable anterior

and posterior edges leading to an elongated morphology. The

anterior region is more sensitive to chemoattractants so that in

response to a changing gradient polarized cells turn towards the

new direction [2]. In contrast to gradient sensing, polarization

depends on intact cytoskeleton.

The study of chemotaxis has benefitted greatly from the

interplay between experimental and theoretical studies [1,3–5].

A number of recent models propose that chemotaxis is a

consequence of an excitable network whose activity is biased in

the direction of chemoattractant stimuli [6–10]. Motility can be

achieved if this activity directs pseudopodial protrusions [11,12].

The basis for these models is the observation that cytoskeletal and

signaling pathways in cells exhibit excitable behavior, in the form

of patches and waves of activity seen along the cell cortex, and that

these activities coincide with the location of protrusions [10,13–

21].

We start with a previously described local excitation, global

inhibition biased excitable network (LEGI-BEN) that captured

some of the experimentally observed features of spontaneous and

chemoattractant-induced signaling events, and add two modules.

First, we use level set methods [22,23] and a viscoelastic

mechanical model to simulate cytoskeleton-mediated cellular

deformations and movements. Second, we incorporate a cytoskel-

eton-dependent polarity module that confers both the persistent

migration seen in unstimulated cells as well as other characteristics

of polarized cells. We use the model to consider a number of in

silico mutants and use the resulting simulated results to consider the

possible biochemical identities of elements in the model. Whereas

various previous models can account for different subsets of

behaviors of chemotaxing cells, we show that the complete

modular framework of the polarized LEGI-BEN model presented

here accounts for nearly all the reported observations.
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Results

Linking the Activity of the Excitable Network to Cellular
Protrusions

Previously we and others have proposed that the spontaneous

patches of signaling activity seen in motile cells could be explained

by an excitable network (EN) consisting of two components: an

activator (X) and an inhibitor (Y) (Fig. 1A) [7–10,15]. The

activator, which involves an autocatalytic positive feedback loop,

drives the inhibitor, which provides negative feedback. Experi-

mentally, excitable behavior is observed in cells that are not

stimulated by chemoattractant, indicating that the chemoattrac-

tant receptor is upstream of and not part of the EN [18]. The

spontaneous nature of these activities can be recreated by

including a stochastic element that triggers the EN randomly.

The activity of the EN around the perimeter of a one-dimensional

model of the cell can be observed by plotting the level of the

activator or inhibitor as a kymograph (Fig. 1B). These patches

represent localized signaling events that drive cell protrusion.

To determine whether this model could recreate cellular

protrusions leading to random cell motility, we coupled the EN

to a mechanical module of the cell cortex implemented in the level

set framework (Fig. 1C, Methods.) (Computational methods that

account for changes in cell morphology during migration are

reviewed in Ref. [5]). The mechanical description of the cell was

identified based on micropipette aspiration experiments using

Dictyostelium cells [22]. The mechanical module incorporates

several passive stresses, including the effect of cortical tension

driving Laplace-like pressures on the cell and volume conserva-

tion. It also includes active stresses allowing us to test the

effectiveness of the EN in driving cellular motion. In our

simulations, the activity of the EN was coupled to protrusive

forces, so that higher activity at one location gave stronger

protrusive stress (Fig. 1C, D). We envision that the effects of the

EN on the cytoskeleton mediate these protrusive forces. In these

simulations, local protrusions appeared randomly around the cell,

as would be expected in a cell undergoing random motility

(Fig. 1D; Video S1). Analysis of these simulations over time

revealed that the activities were uniformly distributed at the

population level over long time scales, though localized fluctua-

tions do occur in shorter time scales (Fig. 1D; inset). The localized

forces caused by these heterogeneities, however, were not

sufficiently persistent to propel the cells in a meaningful way.

Thus, the cellular boundary extended in random directions, but

the migration rate of the cell was negligible.

Incorporation of a Directional Sensing Module
To test the effect of a chemoattractant gradient we incorporated

a local excitation-global inhibition (LEGI) mechanism to the

excitable network, creating a LEGI-BEN system (Fig. 1E), as

previously described [8,10]. Because the response regulator in the

LEGI mechanism increases at the front and decreases at the back,

it brings the excitable system closer or farther from the threshold at

the front and back, respectively. This biases the likelihood of

triggering activity in response to external chemoattractant signals.

When a gradient was applied to an unstimulated cell, the activity

of the cell increased everywhere around its perimeter (Video S2).

Thereafter, signaling activity was found preferentially at the side of

the cell experiencing the greatest chemoattractant concentration

(Fig. 1F; Video S2). The cellular response to a change in gradient

was nearly immediate, and this was true for both steep (19%) and

shallower (6%, not shown) gradients. When simulating cell shape

changes elicited by this gradient, we found that after the

application of the stimulus, the cell elongated and moved in the

direction of the gradient. Analysis of the activity showed that the

directional response is quite accurate and most of the activities are

within the 230u to 30u region relative to the direction of gradient

(Fig. 1F, inset). The magnitude of the protrusive force was chosen

so that, at steady-state, the cells moved at approximately 10 mm/

min. After a shift in the direction of the gradient, the cell stopped

and reversed direction nearly instantly (Fig. 1F; Video S2).

The LEGI-BEN coupled to the mechanical module recapitu-

lates several consistently observed cellular behaviors such as

‘‘pseudopod splitting’’ and ‘‘cringing.’’ First, cells often generate a

new pseudopod by splitting an existing one [24–26]. In

chemotaxing cells, these bifurcations appear as a series of left-

right extensions. Our simulations of chemotactic cells also

exhibited ‘‘pseudopod splitting’’ (Fig. 2A). Because the midpoint

of the responding area has the highest activity, negative feedback

shuts down this region first, the signals propagate away in opposite

directions and the pseudopod splits. Though more pronounced in

stimulated cells, it was also observed during spontaneous

movement (Fig. 1D, 389 s). Nascent extensions grew from

localized patches of high signaling activity. These pushed the cell

forward, but eventually split in two (Fig. 2A, 20–40 s). While these

extensions sometimes co-existed for a while (Fig. 2A, 80 s), one

usually won out, at which point the ‘‘losing’’ pseudopod appeared

to retract into the cell (Fig. 2A, 100–120 s). This pattern often

repeated itself, giving rise to the appearance of side-to-side strokes

propelling the cell.

Application of a spatially uniform dose of chemoattractant to a

Dictyostelium cell results in a series of changes in cell morphology.

Cells stop moving and then transiently contract (or cringe). This is

followed by spreading and eventual resumption of movement. Our

simulation also recreated this phenomenon (Fig. 2B). Approxi-

mately 30 s after stimulation, the cell experienced a mostly global

rise in signaling activity (Fig. 2B). At this point the protrusive

stresses in our model sought to push out the cell everywhere, but

because of the passive constraints on cell morphology, this global

Author Summary

Chemotaxis is the movement of cells in response to spatial
gradients of chemical cues. While single-celled organisms
rely on sensing and responding to chemical gradients to
search for nutrients, chemotaxis is also an essential
component of the mammalian immune system. However,
chemotaxis can also be deleterious, since chemotactic
tumor cells can lead to metastasis. Due to its importance,
understanding the process by which cells sense and
respond to chemical gradients has attracted considerable
interest. Moreover, because of the complexity of chemo-
tactic signaling, which includes multiple feedback loops
and redundant pathways, this has been a research area in
which computational models have had a significant impact
in understanding experimental findings. Here, we propose
a modular description of the signaling network that
regulates chemotaxis. The modules describe different
processes that are observed in chemotactic cells. In
addition to accounting for these behaviors individually,
we show that the overall system recreates many features
of the directed motion of migrating cells. The signaling
described by our modules is implemented as a series of
equations, whereas movement and the accompanying
cellular deformations are simulated using a mechanical
model of the cell and implemented using level set
methods, a method that allows simulations of cells as
they change morphology.

Modular Description of the Chemotaxis Network
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increase in activity had the effect of rounding up the cell. The

increase of activator subsequently generates more inhibitor. Once

the inhibitor prevails, it suppresses activity all around cell. Thus,

the global firing was followed by an absence of signaling caused by

the refractory period that follows the firing of an excitable network

leading to further rounding of the cell. This was followed by

spreading and eventually activities reappeared stochastically

around the parameter (not shown).

Incorporation of a Polarity Module
While the simulations of Fig. 1 accurately displayed the

chemotactic behavior of unpolarized cells, they lacked two

important characteristics observed in stably polarized cells. First,

polarized cells moving in the absence of chemoattractants travel in

a persistent random walk, and this persistence is a result of having

pseudopodia extend in the same direction [26–31]. Second, they

have an elongated morphology with activity confined to the

Figure 1. The LEGI-biased excitable network model (LEGI-BEN). (A) The excitable network module is implemented as an activator (X)-
inhibitor (Y) system that is triggered by stochastic fluctuations. (B) Kymograph of a one-dimensional simulation in the absence of chemoattractant
stimulus. The colors refer to activity of Y (plots of X show similar, though noisier, behavior) around a cell. Blue indicates low activity; red marks high
activity. (C) Coupling of the excitable network to protrusive stresses (spro). Our simulations assume that the protrusive stress is proportional to Y. The
cell’s mechanical behavior is described by the viscoelastic model shown. (D) Level set simulations in which protrusive stresses coincide with the
location of high activity drive cellular deformations. The colors around the membrane are the same as in panel B. The dotted lines trace the trajectory
of the cell centroid (starting point is the red circle). The directional history of activity for this sample simulation is shown in the radial plot on the right
in blue. The red line represents the average activities of 20 simulations lasting 900 seconds (Video S1). (E) The local excitation (E)-global inhibition (I)
module (LEGI) takes chemoattractant stimulus (S) and drives a response regulator (RR). Response regulator acts to bias the activity of the excitable
network. (F) Level set simulations of the cell migrating in response to changing chemoattractant gradients. A gradient was applied at time 180 s at
90u and moved at time 500 to 270u. (Note that, to avoid the cell shapes being superimposed, we have moved the trajectory during the second half of
the simulation below that of the first; the dotted lines show how the two halves of the trajectory overlap.) The radial plot shows the average activities
in response to the two gradients. The blue line is for the time period from 0 s to 500 s; red is from 500 s to 900 s (Video S2).
doi:10.1371/journal.pcbi.1003122.g001

Modular Description of the Chemotaxis Network
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anterior portion of the cell. Dictyostelium cells at an early stage in

their developmental program are mostly unpolarized but the

degree of polarization increases as they differentiate [32]. In

contrast, once activated, neutrophils are highly polarized.

To overcome these limitations and recreate more realistic

cellular behavior, we introduced an additional polarity module

to create a polarized-EN system. To achieve polarity we

incorporated in our model a secondary set of feedback loops

from the cytoskeleton indicated by an arrow linking protrusive

stress to the signaling element (Fig. 3A). Positive feedback loops

have been a feature of most models of polarization (reviewed in

Refs. [4] and [33]) based on experimental evidence that

polarization is a consequence of such loops between actin and

signaling proteins (e.g. [34]). In our context, a local positive

feedback loop (element Z in Fig. 3A) biases the likelihood of

subsequent activity at the location of high protrusive stresses.

Thus, because stresses are caused by localized increases in

signaling activity, whenever high activity occurs at one

location, it is more likely that subsequent bursts of activity

will occur at that position again. However, only adding a

positive loop is not enough to realize polarity. First, there is a

lifetime to this persistence, and so the contribution of this loop

is expected to subside. Second, without a counteracting

negative feedback, the effect of the loop could increase over

time throughout the cell, and so lead to hyperactive cells. We

therefore included a global negative feedback loop that reduces

the activity throughout the cell. This loop was implemented as

a separate component (element W in Fig. 3A) that acts to

reduce polarization. A second possibility for this inhibition

would be to act against Z directly (dotted line in Fig. 3A) as

might be expected if the inhibition were in the form of

substrate depletion. Negative feedback loops are less common

in models of polarization, though several models assume mass

conservation of the polarity element, which has the same net

effect [35–37]. Importantly, averaged over the surface of the

cell, the two loops cancel each other out. However, the net

effect of the two components is positive at locations of high

stress and is negative elsewhere.

Simulations of the polarized-EN system in an unstimulated cell

showed persistence in the location of the excitable behavior

(Fig. 3). For example, in the kymographs of Fig. 3B, high activity

during the period 0–500 s was centered around 290u whereas,

after 600 s, it was around +90u (Fig. 3C). These kymographs

show that polarity had a localized and transient biasing effect in

terms of activity. However, integrating the activity of 40

simulations (each 900 s long) showed that, on average, the

location of high activity was uniformly distributed around the cell

as would be expected in a randomly migrating cell (Fig. 3D). To

examine the temporal effect of the polarization module on the

appearance of excitable behavior in any one direction, we

computed the autocorrelation function for the activity at fixed

angles (Fig. S1). Without the polarity module, the autocorrelation

decreases to 0.3 in approximately 30 seconds and approaches

zero after about two minutes. With the polarity module, it

plateaus at about 0.4 after 30 seconds. The level of this plateau

can be changed by varying the coefficient that controls the

lifetime of the polarization element. To observe the effect of this

persistence on cell motility, we used the polarized EN (Fig. 3A) to

simulate cell motility and changes in cell morphology (Fig. 3E).

These simulations showed that unstimulated cells could move

significant distances, though the direction and net velocity were

random (Fig. 3F; Video S3). Moreover, as the strength of the

polarization increased (by varying parameter Q), the cells drifted

farther away from the initial position, as measured by the mean-

squared displacement (Fig. 3G,H). These results follow closely

observations which show that randomly migrating Dictyostelium

cells 5.5 hours into development have mean-squared displace-

ments that are approximately ten times higher than newly

developed cells [31]. The length of development time also

correlates with the degree of morphological polarization [32].

Figure 2. Changes in morphology of motile cells. (A) The signaling activity and corresponding cellular morphology is shown for a migrating cell
in a gradient. This cell demonstrates pseudopod splitting, pseudopod retractions, and a zig-zag pattern of activity. The cross is placed for spatial
reference. (B) This cell experienced a global (spatially uniform) chemoattractant stimulus at 0 s. The ensuing period of high activity (30 s) causes the
cell to start rounding up; this rounding increases during the refractory period of the excitable network (70 s).
doi:10.1371/journal.pcbi.1003122.g002

Modular Description of the Chemotaxis Network
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Integration of the Polarization Module with the LEGI-BEN
Response to uniform stimuli and gradients. We next

considered the effect of chemoattractant stimuli on our polarized-

EN, by reintroducing the LEGI mechanism (Fig. 4A). We refer to

this complete model as polarized LEGI-BEN. We first simulated

the response to a spatially homogeneous stimulus. Before

stimulation, the cell displayed random spontaneous activity

(Fig. 4B, C). In response to the stimulus, activity increased

transiently around the perimeter, lasting approximately 30 sec-

onds. Thereafter, activity subsided throughout, before resuming

their spontaneous activity (as the LEGI mechanism adapted to the

uniform stimulus). In contrast to cells lacking the polarity

mechanism (Fig. 4C, bottom), which displayed a strong secondary

peak of elevated activity around 120 seconds after the chemoat-

tractant stimulus, cells with the polarity mechanism do not exhibit

this secondary peak (Fig. 4C, top). Consistent with our simulation

results, there is widespread experimental evidence for a second

peak in early-stage less polarized cells, but it is less pronounced (or

nearly absent) in well-developed polarized cells [32]. Without the

polarity module, the second peak appears because the LEGI

module has not adapted completely, and so secondary firings of

the excitable system take place. With the polarization module, the

presence of an extra negative feedback loop (W) makes these less

likely, effectively eliminating them.

We next tested the effect of gradients of varying steepness

(Fig. 4E–M). In all cases the activity of the cell aligned

preferentially in the direction of the gradient. In 19% gradients

the activity was concentrated in an arch around 630u and lateral

pseudopods were rarely observed. In 6% gradients the response

was still predominantly biased in the direction of the stimulus, but

lateral pseudopods were observed occasionally. In 1% gradients

there was alignment, but considerable more spread.

The alignment of the activity with the gradient in simulations of

cells lacking the polarity mechanism also showed dependence on

the gradient steepness (Fig. 4D, F, H). In all cases, the activity in

polarized cells showed better alignment with the gradient and less

variability. Using the level set simulations to compare the

trajectory of cells in response to these varying gradients revealed

a similar gradient-dependency. Cells responded better to the

steeper gradients, as evidenced by straighter trajectories (Fig. 4J–L)

and greater chemotactic indices (CI) (Fig. 4M). For cells with the

polarity module, these ranged between 0.1760.02 to 0.6460.21 to

0.9360.02 in 1%, 6% and 19% gradients, respectively (n = 7 in

each case). These are similar to reported values in the literature.

For example, CIs of 0.2, 0.6 and 0.9 were measured for cells

chemotaxing in relative gradients of 1.4%, 4.8% and 10%,

respectively [26]. The latter gradients were imposed by a cAMP-

filled micropipette. In gradients created by microfluidics, which

are closer to ours since they are not formed by a point source, CIs

of 0.1–0.3, 0.15–0.4 and 0.96–0.99 have been measured in 1.25%,

2.5% [38] and13.2% gradients [39].

Response to shifts in gradient. One of the main differences

between polarized and unpolarized cells is in the response to

changing gradients [2,40]. In a cell with the polarity module, we

first applied a 6% gradient, maintained this for 10 minutes, and

then shifted the gradient 90u (Fig. 5A; Video S4). Prior to any

stimulus, the cell migrated randomly. After sensing the first

gradient, the cell slowly aligned itself in the direction of the

gradient and began migrating (Fig. 5A). After the direction of the

gradient changed, the cell maintained its axis of activity and began

a slow turning motion eventually realigning with the new gradient

(Fig. 5A). A similar turning motion was observed when the

direction of the 6% gradient was changed 180u (Fig. 5B).

We next repeated this simulation in a cell without the polarity

mechanism (Fig. 5C; Video S5). The response in the direction of

the initial gradient was similar, although unpolarized cells lined up

faster than polarized cells. Furthermore, after the change in the

direction of the 6% gradient, the cell immediately shifted its

activity in the new direction, no longer extending pseudopods in

the old front but instead focusing its activity in the direction of the

new gradient (Fig. 5C inset). Thus, the cell trajectory exhibited a

nearly 90u turn. Finally, we carried out this simulation in a cell

with the polarity module, but in the presence of 19% gradients

(Fig. 5D; Video S6). The response to the initial gradient was

similar to the previous simulations, though the activity in response

to the steeper gradient was more focused than that toward the

shallower gradient (as previously observed in Fig. 4C, D) enabling

the cell to move further along the gradient during the initial 900 s

(compare the location of the cells at 900 s in Fig. 5A and 5D).

After the change in gradient location, however, the polarized cell

made a sharp 90u turn towards the new gradient. Thus, the

response of a polarized cell to steep (19%) gradient changes was

similar to that of an unpolarized cell to shallower (6%) gradient

changes. These simulations show that polarity can be overcome by

sufficiently strong gradients.

It has been observed experimentally that polarity can also be

reinforced by a period of directed movement in a gradient [41].

To investigate how the time during which a cell is exposed to a

gradient affects the development of polarity, we carried out

simulations in which the time between application of the two

gradients was altered. In Fig. 5E, F, cells migrated in response to a

12% gradient. The location of this gradient was changed 90u after

either 130 (Fig. 5E; Video S7) or 430 s (Fig. 5F; Video S8). When

the initial migration time was small, the cell made a sharp turn,

displaying little polarity. However, when the cell had been

migrating longer in the gradient, the cell displayed the turning

behavior associated with polarized cells. These simulations show

that, in our model, as in real cells, polarization is a property that

develops over time, and is reinforced by the time during which the

cell is exposed to a stable gradient.

Response to multiple gradients. When confronted by

conflicting gradients, unpolarized, immobile cells (e.g. Latruncu-

lin-treated) show elevated levels of signaling activity in the

direction of both sources [42], a response that is recreated by

the LEGI mechanism on its own [43]. Here we simulated the

effect of conflicting gradients on the complete model of the cell.

We started with a circular, unstimulated cell, applied two 19%

gradients 180u apart and maintained these gradients no matter

Figure 3. Polarized-biased excitable network in unstimulated cells. (A) Excitable network with polarization mechanism, which consists of
complementary local positive (Z) and global negative (W) feedback loops. The inhibitory term (W) can work either directly on polarity (P) or by
inhibiting Z (dotted line). The latter could represent depletion. In simulations we assumed the former. (B) Simulation results of excitable network with
polarity. Kymographs show the spatio-temporal distribution of Y, Z and W. (C) Analysis of activity for the simulation of panel B. The blue and red lines
represent the activities (Y) along the perimeter during the periods 70–490 s and 600–850 s, respectively. (D) Average activity of 40 simulations, each
900 s long. (E) Level set simulation of unstimulated cell shows persistent movement in the absence of stimulus. (F) Centroid trajectories of six
different cells during 900 s (Video S3). The asterisk denotes the trajectory of the cell from panel E (the trajectory in panel E was rotated for better
presentation). (G) Centroids of unstimulated cells with varying strengths of the polarity module’s contribution during 600 s simulations (n = 10 each).
(H) Average mean-square displacements as a function of time for the simulations of panel G.
doi:10.1371/journal.pcbi.1003122.g003

Modular Description of the Chemotaxis Network
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Figure 4. Response of polarized cells to external stimuli. (A) LEGI-Biased excitable network with polarity. (B) Signaling activity (Y) around the
cell in response to a spatially uniform stimulus at 300 s. (C) Average activity (red) and variance (one standard deviation) for 20 simulations. Activities
are integrated around the whole cell perimeter. Top graph represents the results of the polarized, LEGI-BEN; bottom is for the model without polarity.
(D–I) Radial distribution of signaling activities of the model responding to 1% (D,E) or 6% (F,G) and 19% (H,I) gradients. Panels D, F and H are for cells
without the polarization module; panels E, G, and I include this module. Data are average for ten simulations of 900 s. Red lines denote mean value

Modular Description of the Chemotaxis Network
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where the cell moved (Fig. 6A; Video S9). At first, the cell

sometimes hesitated and, in some cases, even tried to extend

pseudopods in both directions (e.g. at 120 s). However, as the cell

polarized, one direction won out and the cell migrated in this

direction. In contrast, cells that lacked the polarity module

oscillated but never settled on either source (Video S10). Thus,

polarization enables cells to select between two competing sources

[3,44]. We also simulated the effect of Latrunculin treatment by

setting the cytoskeletal link to the mechanical module to zero

irrespective of the EN behavior. The simulated Latrunculin-

treated cells displayed activity in both directions throughout the

period of the simulation (Fig. 6B; Video S11). Interestingly,

however, the stochastic component in the signaling meant that,

while the activity peaks pointed towards both gradients ‘‘on

average,’’ the relative strengths varied over time. This stochastic

behavior was also observed in cells that were stimulated with only

and black lines represent one standard deviation. (J–L) Sample trajectories of the cell centroid for level set simulations of cells incorporating the
polarization module under various gradients (all pointing to the right). The dotted lines point to the starting point and lines represent individual cells’
trajectories. All the simulations were run for 900 seconds. (M). Chemotactic indices for simulations of cells migrating under various gradients with or
without the polarization module. Error bars denote one standard deviation based on seven simulations each.
doi:10.1371/journal.pcbi.1003122.g004

Figure 5. Polarized cell’s response to changes in the direction of the gradient. (A–D) In these simulations the arrows indicate the direction
of the gradient from 300–900 s (red) and from 900–1500 s (green). Cells were unstimulated from 0–300 s. The simulations differ as to the steepness
of the gradient: 6% (A–C) and 19% (D), whether the polarity module is active (A, B, D) or not (C), and the direction of the second gradient: 90u (A,C,D)
and 180u (B). The insets show the direction of the signaling activity relative to the cell for various time intervals. See also Videos S4, S5, S6. (E, F). These
simulations show the response of a cell with all its modules (Fig. 4A) responding to a change in the direction of a 12% gradient for which the interval
during which the first gradient is imposed varies from 130 s (E) to 430 s (F). See also Videos S7 and S8.
doi:10.1371/journal.pcbi.1003122.g005

Modular Description of the Chemotaxis Network
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one gradient (Fig. 6C; Video S12). We also simulated cells that

were initially moving in response to an external gradient and to

which Latrunculin was added, by gradually reducing the link to

the mechanical module. These cells rounded up though they

continued to signal in the direction of the gradient (Fig. 6D).

Generation of ‘‘Mutant’’ Behavior by Altering Model
Parameters

We next considered the effect of altering the strengths of

individual loops in the signaling network. We first reduced the

strength of the negative feedback loop in the polarization

module by 50%. These cells could sense the gradient, however

their signaling response, though still pointing on average in the

direction of the chemoattractant gradient, was considerably

broader (Fig. 7A, top and middle cells; Video S13). This

resulted in chemotaxing cells that had multiple simultaneous

protrusions which, in many cases, did not point directly

towards the source. The cell morphology was quite different

from the WT cells, with a broad area facing the gradient. The

net movement was also slower. Cells where the negative

feedback loop in the excitable network was reduced showed

similar patterns of activity [10]. We also investigated the effect

of diminishing the strength of the positive feedback loop

(through Z) by 50%. The signaling in these cells was aligned

with the external gradient. However, the overall level of

activity was lower and so the cells moved only slowly in the

direction of the gradient (Fig. 7A).

Lastly, we considered the role of the LEGI mechanism in

enabling directional migration. We applied gradients to the cell

in which the LEGI inhibitor was not regulated by receptor

occupancy but is instead kept constant at the basal level. This

prevents the LEGI mechanism from adapting to spatially

uniform stimuli, although chemoattractant gradients are still

sensed and pass on the directional signal to the excitable

network. These cells could migrate in the direction of the

Figure 6. Effect of conflicting gradients. (A, B) In these simulations, two 19% gradients were applied 180 degrees apart. Panel A shows the
response of a cell with all components in Fig. 4A (Video S9); Panel B is that of a cell lacking motility and polarization (Video S11). Video S10 shows the
response of a motile cell lacking the polarity module. (C) Response of an immobile cell to a single 19% gradient (Video 12). (D) Level set simulation of
cell migration under gradient (applied at 0 s) with Latrunculin treatment at 300 s. The total simulation time is 600 s.
doi:10.1371/journal.pcbi.1003122.g006
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gradient, though the effectiveness was significantly impaired

(Fig. 7B; Video S14). When we raised the midpoint of the

chemoattractant signal, as might be expected when cells ap-

proach a chemoattractant source, the chemotactic efficiency was

further impaired compared to WT cells (Fig. 7C; Video S15).

Comparing the activity of the EN in both situations (Fig. 7D)

shows that the lack of adaptation causes the level of activity to

rise throughout the cell perimeter, and this has a negative effect

on movement, as multiple pseudopods can occur simultaneously

and in the wrong direction. This was not the case for cells with

an intact LEGI mechanism, where the inhibitor ‘‘filters out’’ the

mean level of chemoattractant (Fig. 7D).

Discussion

Rationale for the Framework of Interacting Modules
Chemotactic cells display a variety of behaviors under various

experimental conditions (Table 1). 1) Migrating cells display

persistence. 2) New pseudopodia appear to split from previous

ones. 3) The pseudopodia that bring about random migration

coincide with patches of elevated signaling as well as cytoskeletal

activity. 4) The cytoskeletal and signaling activities propagate as

waves which lead to the patches of activity seen on the

pseudopodia. The propagating waves suggest that these

networks are excitable. 5) When exposed to spatially uniform

Figure 7. Response of cells with altered modules. (A) Response to a chemoattractant gradient of cells with reduction in feedback strengths in
W or Z by 50%, compared to WT cells (Video S13). (B, C) Response of a cell to a gradient in which the LEGI inhibitor is not regulated by receptor
occupancy assuming that the midpoint in gradient concentration is changed (Videos S14 and S15). The bottom cell in panel C shows the response of
a WT cell in response to the increased midpoint concentration. (D) Directional distribution of the responses from panels B (blue) and C (red) with
different gradient midpoints. Dotted lines show the corresponding distributions for the model with the LEGI module.
doi:10.1371/journal.pcbi.1003122.g007
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chemotactic stimuli, cells ‘‘freeze’’ movement and then round

up or ‘‘cringe’’, then spread projections in multiple directions,

and finally resume normal migratory behavior. 6) These events

are driven by a stereotypical kinetically complex signaling

response (i.e. Ras activation or PIP3 production) which is

observed in immobilized as well as control cells. Within seconds

of stimulus addition, cells produce an initial response around the

whole perimeter that shuts off rapidly within 30 seconds and is

followed by secondary patches lasting several minutes. 7) During

persistent stimulation cells eventually adapt to the current level

of stimulation but will respond again if the stimulus is increased

or is reapplied after a period of recovery. 8) When cells are

exposed to a gradient of chemoattractant, they produce

directional responses and migrate directionally. 9) In immobi-

lized cells, patches of response are stochastic but biased towards

the high side of the gradient. 10) The directional response is

amplified compared to the external gradient in the sense that it

is confined to the anterior of the cell. 11) Immobilized cells

exposed to two gradients produce responses on both ends, while

migrating polarized cells choose one or the other sources. 12)

Adaptation enables chemotactic cells to adjust their sensitivity

and respond only to the steepness but not the midpoint

concentration of the gradient. 13) The intrinsic polarity of cells

is regulated. In Dictyostelium, for example, developed cells are

more polarized than young cells. Polarity can also be enhanced

by a period of migration in a gradient. 14) Polarized cells will

turn when the gradient is shifted rather than creating a new

front. As shown in Table 1, the modular framework of the

polarized LEGI-BEN model accommodates all of these behav-

iors and experimental conditions whereas earlier models only

account for various subsets of them.

The overall network topology has similarities with previously

published models. Edelstein-Keshet and coworkers have proposed

a number of models for cell polarity, motivated by the front-back

appearance of Rho GTPases observed in neutrophils. Our model

is similar to one of their proposed models (Model 4 in Ref. [45]).

There, multiple positive feedbacks (or double negative feedback

loops, for example Rac x Rho xCdc42RRac, RacRPIP3RRac,

Rac x Rho x PIP3RRac) generate a bistable system. While no

direct negative feedback loop is included, each of the GTPases is

found in both active and inactive states, and so substrate depletion

(the inactive states of the GTPases) can be considered as a negative

feedback loop.

The combination of EN and Polarity modules is also

comparable to a model proposed by Meinhardt [6] (who did not

differentiate between the different processes) to explain chemo-

taxis. This model involved a positive feedback loop counterbal-

anced by two negative feedback loops – one local, the other global.

Our combined Polarity-EN (excluding the LEGI mechanism) has

two negative feedback paths, one that is local (XRY x X), and the

other global (XRYRW x PRX). If we combine the two positive

feedback loops of the excitable network (XRX) and the

polarization model (XRYRZRPRX) then the topology of the

models is similar. Neilson et al. carried out level set simulations of

the Meinhardt model and generated results similar to ours for

polarized cells, including pseudopod splitting, persistent random

migration and turns in response to shallow gradients changing

direction [12].

Models without a LEGI mechanism, or with only one positive

feedback loop miss out on a number of important aspects of the

overall response, however. These models do not adapt when given

spatially uniform stimuli and cannot recreate the complex biphasic

Table 1. Behaviors simulated.

Behavior [Ref.] Fig. A B C D E F G

Unstimulated cells

1) Persistent motion [26–31]. 3B–H + 2 2 2 NA 2 +

2) Pseudopod splitting [24–26] 2A + 2 2 2 NA 2 +

3) Random patches [63–65] 1D + + + 2 NA + +

4) Excitable behavior [10,13–21] 1B + + + 2 NA 2 2

Spatially uniform stimulus

5) Freeze, cringe, spread [41] 2B + + NA 2 NA 2 2

6) Signaling events [32,65,66] 4B, C 2 + NA 2 NA 2 2

7) Adaptation [63,64,67–71] 4B, C 2 + NA + NA 2 2

Spatially graded stimulus

8) Directional response/migration 4D–I + NA + +/2 + +

9) Biased patches [72] 6C + + NA 2 NA 2 2

10) Amplified response [42,73] 4D–I + + NA + + 2 2

11) Simultaneous cues [42] 6A, B 2 + NA + 2 + +

12) Sensitivity adjustment [42,68–70] 7D 2 + NA + 2 2 2

13) Adjustment of polarity [74] 5A–F 2 2 NA 2 + 2 2

14) Turning [24,74,75] 5A–F + 2 NA 2 NA 2 +

A: Biased excitability with polarity models: [6,9,12].
B: LEGI-biased excitability without polarity models: [10]; other biased ENs [11,76];
C: Excitability-only models: [7,15,17]; reviewed in Ref. [7].
D: LEGI models: [43,77–79].
E: Polarization only: [45,80]; others reviewed in Ref. [3,4].
F: Stochastic with external bias models: [27,81].
G: Stochastic with persistence [27,30,82] (*these are models that fit statistics, rather than signaling models).
doi:10.1371/journal.pcbi.1003122.t001
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responses observed. Cells without an adaptation mechanism do

not adjust sensitivity when the midpoint of the gradient is raised

and hence perform less efficient chemotaxis (Fig. 7C,D). These

simulations, however, show that adaptation is not absolutely

required for chemotaxis. In fact, it is known that the response of

migrating fibroblasts to uniform PDGF stimulation does not adapt,

though these cells can only respond to gradients over a relatively

narrow range of chemoattractant concentrations [46], as in our

simulations of cells lacking the LEGI mechanism. In models with a

single positive feedback loop, the simulated cells are always

polarized. In reality, polarized and unpolarized cells can coexist in

a population and cells can acquire increased polarity during a

period of directed migration.

The ability of the polarized LEGI-BEN to simulate cell

movement under a number of varying scenarios illustrates the

relative complexity and sophistication of the chemotactic signaling

machinery. Experiments have demonstrated that the pathways

governing chemotaxis have considerable redundancy at the

biochemical level [47]. Our simulations show a similar redundan-

cy at a systems-level, as they demonstrate that directional

migration can be achieved without a LEGI mechanism (Fig. 7C,

D), or without polarity (Fig. 1F). However, both mechanisms

improve efficiency. As argued above, the LEGI mechanism allows

the cells to respond to chemoattractant gradients over a wide

range of mid-point concentrations. The polarity mechanism

enables cells to migrate persistently in the absence of chemoat-

tractant gradients and allows them to use the small directional bias

obtained from the gradient to focus most activity towards the

source (Fig. 4E, G).

Putative Biochemical Entities Associated with Model
Elements

The modular framework of the polarized LEGI-BEN model

gives rise to the entire spectrum of reported behaviors of cells but it

is a conceptual model where individual biochemical entities are

not assigned to specific model components or modules. An

advantage of the modular approach is that, as additional data

becomes available, the biochemical network within each module

can be modeled in detail without altering the overall behavior of

the other modules. Nevertheless, we can use several criteria to

begin to assign various biochemical entities to the different

modules (Table 2). First, the kinetic behaviors of certain

biochemical and model components match under different

conditions. Second, when levels of components and strengths of

feedbacks within modules are varied, our simulated cells can

‘‘phenocopy’’ the behavior of various loss- and gain-of-function

mutants.

We propose that the LEGI module incorporates the ‘‘upstream’’

components of the receptor signaling pathway (the chemoattrac-

tant-sensing GPCRs and associated G-proteins). Receptor-medi-

ated G-protein dissociation is consistent with the local excitation

process since during uniform or gradient stimulation they both rise

rapidly and reach a steady-state level proportional to the level of

receptor occupancy. Unfortunately, the biochemical identity of the

global inhibition process that is expected to rise slowly and balance

the persistent G-protein dissociation to bring about adaptation

remains unknown. The receptors and G-proteins are not part of

the excitable network since cells in the absence of chemoattractant

or lacking G-protein function display excitability [18].

We propose that Ras and PI3K activity as well as other

components traditionally viewed as elements of signal trans-

duction pathways are part of the excitable network. Some of

these, including Ras, PIP3, and Rac display excitable behavior

such as wave propagation along the basal surface of the cell

[10,17,19–21]. Furthermore, constitutive Ras activity and

inhibition of PIP3 degradation cause excessive cytoskeletal

activity and cellular extensions while inhibition of PI3K

activity reduces this spontaneous activity [48–50]. We have

also included many signal transduction components that either

regulate, or are regulated by, Ras, PI3K, or Rac in this

module. While biosensors are not available to directly test the

premise, the participation of these components in propagating

waves is expected since most of them behave coordinately with

Ras and PI3K during uniform chemotactic stimulation. While

many cytoskeletal proteins have also been shown to display

excitable behavior, we have included these in the module that

mediates protrusions [13–15,18].

The polarity module is likely to include both cytoskeletal and

signaling proteins and well as ‘‘polarity-specific’’ components.

Cells with elevated levels of PIP3 or Ras activity or lacking

myosin II appear to have decreased polarity [51–53].

However, it may be difficult to assign these components

specifically to the polarity module since simulations in which

the strengths of the negative feedback loops in either the

polarization or excitable network modules are reduced lead to

signaling levels and morphologies that are quite similar (Fig. 7A

and Ref. [10]). Recently, it has been suggested that an activity

akin to that achieved by W in the polarization module could be

provided by membrane tension thus arguing for a role for cell

mechanics [54,55]. Cells with impaired dynacortin, a global

actin linking protein, are softer and also form more pseudo-

pods that are less aligned with the gradient, reminiscent of

simulations in which W is reduced.

Experimental Assessment of the Model
Here we suggest some possible experimental tests of our

polarized LEGI-BEN model. 1) One assumption in the model

is that the time-scale of adaptation (minutes) is longer than that

of the excitable network (20–30 s). This can be tested by

exposing cells to chemoattractant for several minutes, thus

elevating the level of the global inhibitor in the LEGI module,

and then removing the stimulus. Since excitation (E) is

Table 2. Putative model components.

Modules Possible components

LEGI Chemoattractant Receptors (GPCRs), G-proteins, Global Inhibitor (unknown)

Excitable network Ras GTPases, Ras GEFs, Ras GAPs, PI3K, PTEN, PIP3, TorC2, PDKs, PKBs, PKB substrates,
Rho family GTPases

Protrusion Scar complex, Arp complex, formins, actin, actin-binding proteins

Polarity Cytoskeletal proteins, membrane tension

doi:10.1371/journal.pcbi.1003122.t002
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predicted to fall more rapidly than the inhibitor (I), the output

of the LEGI module will transiently drop below its basal level.

During this period of time, the spontaneous firing of the

excitable network as well as its ability to be triggered by

external stimulus will be decreased. 2) Currently the major

evidence for excitability is observation of propagating waves.

Further evidence of excitability could be obtained by testing

whether cells generate all-or-none responses to supra-threshold

stimuli, and whether they display a refractory period to

repeated stimuli. According to our model, these hallmarks of

excitable behavior should be largely independent of the actin

cytoskeleton. 3) Treatment of cells with inhibitors of the

cytoskeleton not only stops motility but also removes the

polarity [42]. According to our model, without the mechanical

or polarity module, a biased excitable network remains and

activity is biased towards the gradient (Fig. 6C). We have

recently found this prediction to be true when observing the

dynamics of Ras and PI3K activity in cells treated with

latrunculin in a steady gradient. 4) Our model hypothesizes

that the persistence observed in unstimulated cells (item 1 in

Table 1) is due to the same mechanism (the polarization

module) that leads to polarized cells. One way to test this

would be to track, in the absence of chemoattractant stimulus,

the persistence of genetically modified cells that show poor

polarity (e.g. cells lacking tsunami [56] or dynacortin [54]).

Methods

Signaling Network
We assume that the signaling network behaves as an excitable

network [10]. It consists of two species (Fig. 1A). Component X

acts as the activator: it is autocatalytic (it has strong positive

feedback), and also activates the downstream component — we

refer to this as the feedforward loop. The Y component provides

negative feedback to X. A reaction-diffusion network, consisting of

the following partial differential equations:

LX

Lt
~DX +2XzkXX

X 2

k2
MzX 2

{k{X X{kYX YzkUX U

LY

Lt
~DY +2YzkXY X{k{Y Y

describes the evolution of the activities of these two species. Both

components in this subsystem can diffuse spatially, with diffusion

coefficients DX and DY, respectively. The signal U is the input to

the excitable system, which incorporates several components: a

basal level of activation (B), a stochastic component (N),

contribution from the LEGI response regulator (R, described

below) and the polarization component (P, also described below).

The contribution of each of these is additive:

U~BzNzl R{Rinitð ÞzQP:

The stochastic component is modeled as zero mean, white noise

process with variance 1. Note that, in this context, the external

gradient and the internally developed polarity compete to direct

cell motion [57,58].

Receptor Signaling: Local Excitation, Global Inhibition
The LEGI mechanism involves three interacting processes

(Fig. 1E). An external signal, which represents the local level of

receptor occupancy (S), drives two of them: a fast, local excitation

(E), and a slow, global (diffusible) inhibitor (I). These two control a

response regulator, which can be active (R) or not (RT – R), where

we have assumed that the total concentration (RT) of the response

regulator is constant. The system equations are given by:

LE

Lt
~{k{EEzkES

LI

Lt
~{k{I IzkI SzDI+2I

LR

Lt
~{k{RIRzkR(RT{R)E

In the gradient simulations, the initial stimulus level is given by

S(r)~S0
ln r?{ln r

ln r?{ln rneedle

:

where r distance from each point on the cell boundary to the

location of a hypothetical needle, which is either 10 mm (19%

gradient) or 100 mm (6% gradient) away. This equation corre-

sponds to the steady-state solution of the diffusion equation from a

5 mm needle in radial coordinates. The gradient is not updated as

the cell moves to ensure that the gradient steepness is maintained.

The gradient in our paper is defined as follows:

Gradient~2
Sfront{Sback

SfrontzSback
:

In simulations that tested the LEGI mechanism without

inhibitor (Fig. 7B, C), the response regulator is described as

follows:

LE

Lt
~{k{EEzkES

LR

Lt
~{k{RRzkR(RT{R)E:

Polarity Mechanism
The polarity mechanism is given by P = Z2W, where the

individual components are also implemented as a local excitation,

global inhibition mechanisms:

LZ

Lt
~{k{ZZzkZsprozDZ+2Z

LW

Lt
~{k{W WzkW sprozDW +2W :

For simplicity, we let Dw be sufficiently high that W is spatially

independent. The polarization module is activated by signal spro,

which represents actin polymerization and is proportional to Y.

Model of Cellular Deformations
To determine the effect of the model activities on the shape of a

cell we used a level set framework to simulate cell shape changes as

previously described [22,59]. In short, in the level set method

(LSM) the cell is described as the zero-level set of a potential

function Q(x,t), xMR2. Initially, we use a signed distance function as

the potential function, defined by:
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Q(x,C)~

{d(x,C), if x is inside the cell,

d(x,C), if x is outside the cell,

0, otherwise:

8><
>:

Here d(x,C) is the distance of position x to the cell boundary

(initially a sphere of radius 5.1 mm). The evolution of the potential

function is described by the Hamilton-Jacobi equation

LQ(x,t)

Lt
zv(x,t):+Q(x,t)~0,

where v(x,t) describes the local velocity of the potential function. To

obtain this velocity we apply different stresses on the cell and use a

viscoelastic mechanical model of the cell to determine the local

velocity. In our case we use:

_xxm~{(K=D)xcorz(1=Dz1=B)stot

_xxcor~{(K=D)xcorz(1=D)stot,

where stot is the total stress applied on the cell, xm and xcor are the

local displacements of the boundary and cortex, respectively, and

K, D and B are viscoelastic components of the cell describing the

elasticity (K) and viscosity (D) of the membrane, and the viscosity of

the (B) of the cytoplasm. The velocity is given by v = dxm/dt.

The total net stress (stot) includes the vector sum of the stresses

acting on the cell. This stress includes contributions from passive

components, such as surface tension, sten = ck(x)n, where c is the

local cortical tension, k is the local curvature, and n is a normal

unit vector. Protrusive forces are proportional to the signal Y (using

X leads to similar results) according to spro =s0Y(h)n, representing

actin polymerization. The conversion factor between the activity Y

and the force is 35 nN/mm2. Based on the typical maximum

activity level for Y seen in the simulations (,0.05 A.U.), this

resulted in protrusive forces in the range of 1–3 nN/mm2,

consistent with measured values of the maximum protrusive

pressure due to actin polymerization (in the range of a few nN/

mm2 [60,61]). We also include a stress that acts to ensure surface

area conservation, svol = karea(A(t)-A0), where A is the surface area

enclosed by the cell boundary either at time t or initially. Using

these elements, we compute the total stress stot =spro+sten+ svol

and use this to update the viscoelastic model parameters (xm and

xcor) above.

Model Implementation
The model and all simulations are implemented using Matlab

(MathWorks, Natick, MA). Simulations were carried out in two

steps. First, the PDEs for the signaling were solved around by

representing the cell boundary as a one-dimensional system using

periodic boundary conditions. This was discretized in space using

360 points. Spatial diffusion terms, which contain the second

derivatives, are approximated by central differences in space; and

by doing that, the partial differential equations are converted to

ordinary differential equations. The solution of the stochastic

differential equations was obtained using the SDE toolbox for

Matlab [62]. The time step for simulation was set to 0.025 sec-

onds. After solving the concentrations of all species (e.g. X, Y, W,

Z), we compute the protrusive force using the concentration for Y,

and use this protrusive force to update the potential function in the

level set simulations, as described above. The potential function is

solved on a Cartesian grid with spatial discretization of 19 points

per mm. The assignment of Y activity levels to the protrusive force

is done on a point-to-point pairing based on correspondence

between angular positions relative to the cell centroid. The level

set simulations were carried out using the Level Set Toolbox for

Matlab using the first order forward Euler method [57].

Parameters
All model parameters are found in Table 3. Parameters for the

LEGI and EN components were used in our previously published

model [10]. The parameters of viscoelastic model were obtained

using by fitting experimental measurements of aspirated Dictyos-

telium cells using a micropipette, as previously reported [22,59].

To choose the parameters for the polarization model we used as

a benchmark that the persistence of cells is in the order of two

minutes. Since the equations driving the polarity module are

linear, the appearance of a pseudopod (represented by a sudden

increase in spro) leads to an increase in Z followed by an

exponential decay with rate exp(2k2zt) (ignoring diffusion). Our

nominal value for k2Z is such that (1/k2Z) is approximately 1/

66 seconds, which implies that the effect of that pseudopod is

reduced to only e22<0.13 after two minutes. Note that during this

time, more firings are possible, so that the effect of that initial

pseudopod will likely be felt for longer periods. The time scale for

the inhibitory element of the polarization module was chosen

initially chosen in the same way. To arrive at the final values, we

iterated in an ad hoc fashion, making sure that the activity of the

excitable system (X and Y) showed some persistence in angle, but

did not become locked in one position (sufficiently large feedback

through the polarity module can lead to a bistable system). One

way of measuring this is through the autocorrelation function C(t),

measured at a fixed angles:

Table 3. Model parameters.

Local excitation, global inhibition [10]

ke 0.5 s21 k-e 0.5 s21

ki 0.1 s21 k-i 0.1 s21

kr 0.06 s21 k-r 0.1 s21

RT 2 A.U. DI 1 mm2/s

rn 5 mm r‘ 1 m

S0 0.1 A.U. (0.2 in Fig. 7C)

Excitable signaling network [10]

DX 1.6 mm2/s DY 3.8 mm2/s

kXX 2.5 s21 kXY 0.019 s21

k-X 2.3 s21 k-Y 0.088 s21

kM 0.32 B 20.063

kYX 8.6 s21 Rinit 1.25

kUX 0.8 s21 l 2

Q 2

Polarization (this paper)

kz 0.023 s21 k-z 0.015 s21

kw 0.035 s21 k-w 0.012 s21

Dz 4 mm2/s

Mechanical parameters [22,59]

K 0.098 nN/mm3 D 0.064 nN-s/mm3

B 6.09 nN-s/mm3 c 1.00 nN/mm

s0 35 nN/mm2

doi:10.1371/journal.pcbi.1003122.t003
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C(t)~

P
i Yh(ti){mð Þ Yh(tizt){mð ÞP

i Yh(ti){mð Þ2
,

where m is the mean level of signal. We computed this for

unstimulated cells (where any persistence would come from the

polarization module (Fig. S1) by choosing 10,000 angles and time

points at random. Without the polarity module, the autocorrela-

tion decays quickly (to less than 0.2) in approximately 30 seconds.

With the nominal parameter values of the polarization module,

there is a decay (the initial correlation can be accounted by the

firings of the excitable system) but the autocorrelation plateaus at

approximately 0.4. Increasing the timescale of the polarization

component (by making the degradation slower can increase this

plateau. Increasing the degradation constant of Z eliminates any

long-term correlation.

We also carried out parameter sensitivity analysis on several

components of the system. Previously, we have demonstrated that

the LEGI mechanism is extremely robust to parameter variations.

The parameters in the mechanical model were experimentally

obtained [22], and tested previously. For this reason we focused

our analysis on the polarization module and the excitable network.

We had previously carried out sensitivity analysis on the latter, but

because the polarity module acts in feedback with this, we included

it in this analysis. This consisted of varying the nominal

degradation/production rates and observing the spatial distribu-

tion of X and Y, which show similar patterns. Because these drive

the mechanical model in open loop, we did not do extensive tests

on morphology, being constrained by the computational burden of

the level set simulations.

Our results show that small changes (620%) in the rates

controlling X and Y can have quite a strong effect on the excitable

behavior (Fig. S2), as we noted previously [10]. These small

differences in the rates of Z and W do not affect the spatial

distribution of activity much or the peak levels of activity. To

probe the robustness of the polarization module further, we also

considered large (610 or 1/10) changes in the parameters of the

polarization module (Fig. S3). Changes of this size on the rates of

W change the spatial distributions of Y, but by values smaller than

the change in the parameter. For example, increasing the

degradation of W tenfold only increases the peak activity level

by approximately 60%; decreasing this rate to 1/10th its nominal

value decreases the peak level of activity to approximately half.

Moreover, the spatial distribution is largely unaffected. Changing

the rates of Z has the greatest effect.

Chemotaxis Index
Chemotaxis index was computed using this following formula:

CI~

P
di cos hiP

di

:

After application of the gradient the cell trajectory was sampled

every 5 seconds: Pi. The values di are the distances from sample

points Pi and Pi-1; hi is the angle between the line connecting Pi and

Pi-1, and direction of the gradient.

Supporting Information

Figure S1 Auto-correlation of Y activity. Autocorrelation of

the activity of Y for fixed angles h under varying scenarios on the

lifetime of the polarization module. Changes in the lifetime were

obtained by varying the parameter k2Z. that specifies the

degradation rate of Z.

(TIF)

Figure S2 Parameter sensitivity. These plots show the

spatial distribution of Y under various parameter perturbations.

Red line shows the mean level of activity for twenty, 900 s

simulations. The shaded grey area represents one standard

deviation.

(TIF)

Figure S3 Parameter sensitivity for polarization. These

plots show the spatial distribution of Y under various parameter

perturbations in the polarization module. Red line shows the mean

level of activity for twenty, 900 s simulations. The shaded grey

area represents one standard deviation.

(TIF)

Video S1 Lack of persistence. Simulation showing sponta-

neous protrusions in an unstimulated cell with no polarity (Fig. 1D).

(AVI)

Video S2 Movement of an unpolarized cell in changing
gradients. Simulation of the LEGI-BEN module under changing

19% gradients. The initial 19% gradient, which points to the top

was applied at 180 s. At 500 s, it was switched to point towards the

bottom. This simulation corresponds to Fig. 1F, though it was

rotated to fit the figure better.

(AVI)

Video S3 Movement of polarized cells in the absence of a
gradient. This video shows the movement of five cells with the

polarized LEGI-BEN modules, but no external gradient (as in Fig. 3F).

Each cell was simulated individually, and the trajectories superim-

posed, so was possible for different cells to overlap in the movie.

(AVI)

Video S4 Response of a polarized cell to a shift in the
direction of a 6% gradient. The initial 6% gradient was

applied at 300 s and pointed to the right. At 900 s, the direction

was shifted to point to the top. This video corresponds to the

simulation in Fig. 5A. This simulation uses the polarization, LEGI

and EN modules.

(AVI)

Video S5 Response of an unpolarized cell to a shift in the
direction of a 6% gradient. The initial 6% gradient was applied at

300 s and pointed to the right. At 900 s, the direction was shifted to

point to the top. This video corresponds to the simulation in Fig. 5C.

This simulation uses the LEGI and EN modules.

(AVI)

Video S6 Response of a polarized cell to a shift in the
direction of a 19% gradient. The initial 19% gradient was

applied at 300 s and pointed to the right. At 900 s, the direction

was shifted to point to the top. This video corresponds to the

simulation in Fig. 5D. This simulation uses the polarization, LEGI

and EN modules.

(AVI)

Video S7 Development of polarity over a short exposure
to a gradient. This simulation uses the polarization, LEGI and

EN modules. A 12% gradient is applied at the beginning of the

simulation (pointing to the right) and redirected at 130 s (pointing

to the top). This video corresponds to the simulation of Fig. 5E.

(AVI)

Video S8 Development of polarity over a long exposure
to a gradient. This simulation uses the polarization, LEGI and

EN modules. A 12% gradient is applied at the beginning of the

Modular Description of the Chemotaxis Network

PLOS Computational Biology | www.ploscompbiol.org 15 July 2013 | Volume 9 | Issue 7 | e1003122



simulation (pointing to the right) and redirected at 430 s (pointing

to the top). This video corresponds to the simulation of Fig. 5F.

(AVI)

Video S9 Response of cell to simultaneous gradients.
Competing 19% gradients were applied to the cell (forming a ‘‘V’’-

shape with the bottom of the ‘‘V’’ at the center of the cell.) This

simulation uses the polarization, LEGI and EN modules. This

video corresponds to the simulation of Fig. 6A.

(AVI)

Video S10 Response of unpolarized cell to simultaneous
gradients. Competing 19% gradients were applied to the cell.

This simulation uses the LEGI and EN modules. The red line

marks the track of the cell centroid.

(AVI)

Video S11 Response of immobilized cell to simulta-
neous gradients. Competing 19% gradients were applied to the

cell at 180 s. This simulation uses the LEGI and EN modules but

sets protrusive stresses to zero. The video corresponds to Fig. 6B.

(AVI)

Video S12 Response of immobilized cell to single 19%
gradient. A single 19% gradient, pointing to the right, was

applied to the cell at 180 s. This simulation uses the LEGI and EN

modules but sets protrusive stresses to zero. The video corresponds

to Fig. 6C.

(AVI)

Video S13 Response of cells with varying polarization
modules loop strengths altered. The cells are responding to

a 19% gradient pointing to the right. This video corresponds to

Fig. 7A.

(AVI)

Video S14 Simulation of cells lacking adaptation. This

simulation shows the response of the cell to a 19% gradient

pointing to the right. The inhibitor level of the LEGI mechanism

has been set constant, so the cell cannot adapt or adjust sensitivity.

This video corresponds to Fig. 7B.

(AVI)

Video S15 Simulation of cells lacking adaptation in
higher midpoint concentration. This simulation shows the

response of the cell to a 19% gradient pointing to the right. The

inhibitor level of the LEGI mechanism has been set constant, so

the cell cannot adapt or adjust sensitivity. The midpoint

chemoattractant concentration has been increased. This video

corresponds to Fig. 7C.

(AVI)
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