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ABSTRACT: Mass-spectrometry-based proteomic analysis underestimates RNA-Seq
proteomic variation due to the absence of variant peptides and posttransla- | “| I ”“I‘ ” I‘l ||| ” h Analysis
tional modifications (PTMs) from standard protein databases. Each individual Lill R UniProt PTM

carries thousands of missense mutations that lead to single amino acid variants, m/z m/z m/z ‘Annotations
but these are missed because they are absent from generic proteomic search Sequence Variant Database Search
databases. Myriad types of protein PTMs play essential roles in biological with Global PTM Strategy
processes but remain undetected because of increased false discovery rates in Acyé&g)I{EaT,s\,T&DTsli
variable modification searches. We address these two fundamental short- 13BP AV QRAVIDTASDVLDK

. o SKEFVSSDESSDESSSGENK
comings of bottom-up proteomics with two recently developed software tools. PP

The first consists of workflows in Galaxy that mine RNA sequencing data to

generate sample-specific databases containing variant peptides and products of alternative splicing events. The second tool
applies a new strategy that alters the variable modification approach to consider only curated PTMs at specific positions, thereby
avoiding the combinatorial explosion that traditionally leads to high false discovery rates. Using RINA-sequencing-derived
databases with this Global Post-Translational Modification (G-PTM) search strategy revealed hundreds of single amino acid
variant peptides, tens of novel splice junction peptides, and several hundred posttranslationally modified peptides in each of ten
human cell lines.

KEYWORDS: bottom-up proteomics, proteomic database search, cancer cell lines, RNA-Seq, proteogenomics,
single amino acid variant (SAV), novel splice junction (NSJ), PTM, G-PTM

H INTRODUCTION and arginine (R) residues. After digestion, peptides are
chromatographically separated and analyzed by the mass
spectrometer. The database search strategy” determines which
peptides were measured in the mass spectra of a shotgun
proteomics run by first performing an in silico tryptic digestion of

Variations in the primary amino acid sequence of a protein or the
posttranslational modification (PTM) of amino acid side-chains
can have a significant impact on the structure, function, and
localization of proteins in a cell. Classic examples include the

various PTMs of histones that regulate chromatin folding and amino acid sequences in a search database and then matching
gene expression’ and the phosphorylation of the tumor each experimental spectrum to theoretical spectra for tryptic
suppressor protein pS3 in response to DNA damage, which peptide sequences from the database within a small mass range
modulates DNA binding properties and proteasomal degrada- from the measured peptide mass. The highest-scoring match is
tion signaling.” Similarly, amino acid substitutions can called the peptide spectral match (PSM). Traditionally, the
dramatically impact the structure of proteins, particularly the search database contains only sequences for known proteins (i.e.,
substitution of chemically distinct amino acids, such as the FASTA format) without PTM information. Therefore, because
glutamic acid to valine mutation in hemoglobin that causes sickle the database search strategy is generally limited to the search
cell anemia. While these variants have important biological database, special approaches are required to detect amino acid
consequences, they remain undetected in standard bottom-up variant peptides and PTM peptides.

proteomics analysis. We combined two approaches: sample- RNA-Seq proteogenomics is a growing field” that seeks to
specific proteomic databases generated using RNA-Seq and the uncover protein sequence variants that are invisible to standard

global posttranslational modification (G-PTM) search strategy
to reveal primary sequence variation and PTMs in shotgun
proteomics data.

In a typical bottom-up mass spectrometry-based proteomics
experiment, proteins are first cleaved at specific residues using a Received: September 2, 2015
protease, commonly trypsin, which cleaves proteins at lysine (K) Published: December 25, 2015
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mass spectrometry (MS) proteomic database searches by using
sample-specific proteomic databases derived from RNA-Seq
data. A number of studies have tackled this problem by mining
RNA-Seq data to include single amino acid variant (SAV)
peptides®™® or novel splice junction (NSJ) peptides®®™"" in the
custom protein sequence database to allow them to be detected.
Studies have also focused on other RNA features, such as RNA-
editing® or active translation by ribosomes using ribosome
profiling data.'” We have developed two workflows to construct
sample-specific proteomic databases containing SAV®’ and
NSJ*’ peptides from RNA-Seq data. These differ from other
studies”"” that use databases such as CanVarPro'* (human
cancer proteome variation) or TCGA" (The Cancer Genome
Atlas) to construct databases. Working directly from RNA-Seq
data provides the flexibility of working with samples that have not
been characterized in large consortium efforts like TCGA. In the
present study, we utilized publicly available MS/MS and RNA-
Seq data for 10 human cell lines to evaluate various criteria in
using RNA-Seq data for constructing proteomic databases. We
then recommend parameters for filtering sequence variants to
reduce the false discovery rates (FDRs) for SAV and NSJ
peptides.

New search strategies and databases are also meeting the need
for detecting a broad spectrum of PTMs from a single sample.
Traditionally, PTM-enrichment protocols and variable mod-
ification searches are used to discover new PTM sites.'® These
searches typically have high FDRs due to the exceptionally large
search space™'” resulting from the combinatorial explosion of all
possible PTM sites. The approaches used to address this large
FDR and limited scope of PTM detections include open search
mode'® and site-specific PTM annotated databases. ~ In open
search mode, all theoretical peptides are matched against an
experimental spectrum, allowing the identification of PTM
peptides by high-scoring matches with masses that vary from that
of a theoretical peptide by a precise, assignable amount, for
example, +79.97 Da for phosphorylation. This approach has the
advantage that it can detect new PTMs of many types while still
limiting the database size.”” The other approach, searching site-
specific PTM annotated databases, involves an adapted variable
modification search that includes only PTMs annotated at
specific residues for each sequence.'” Similar to open search
mode, this dramatically limits the combinatorial explosion that
leads to a high FDR for modified peptides, allows the detection of
many types of PTMs at known sites, improves the accuracy of
spectral matching, and identifies high-quality PTM peptide
spectral matches that are missed during sequence-only searches.
We developed this Global PTM (G-PTM) search strategy using
the proteomic search software Morpheus”' along with PTM
information available in UniProt to identify candidate PTM
peptides in a single-pass search that can then be further
validated."” While G-PTM does not detect unannotated PTMs,
it does reveal many more PTM peptides and types of PTMs than
a traditional variable modification search. In the current work, we
searched RNA-Seq proteogenomic databases with the G-PTM
search strategy to reveal hundreds of SAV peptides, tens of NS]J
peptides, and several hundred PTM peptides in each of 10
human cell lines (Figure 1).

B EXPERIMENTAL SECTION

RNA-Sequencing Data

RNA-Seq data (Table 1) for each of the 10 different cell lines
were obtained from multiple repositories (Table S-1) and used in
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Figure 1. Using the G-PTM search strategy with a RNA-Seq
proteogenomic workflow allows the identification of many sequence
variant and PTM-containing peptides. RNA-Seq data is used to identify
sequence variants and construct sequence variant peptide databases for
each of 10 human cell lines using the Galaxy-P computational interface.
MS proteomic data for the same cell lines are searched using the G-PTM
strategy with a sample-specific database that includes single amino acid
variant (SAV) peptides, novel splice junction (NSJ) peptides, and
UniProt protein sequences annotated with curated site-specific PTMs.

the construction of sample-specific proteomic databases. These
data were collected from a variety of experiments.

The first step of RNA sequencing after extracting RNA from
the sample of interest is library preparation, in which RNA is
prepared for sequencing in part by reverse transcription to
complementary DNA (cDNA). The two most popular RNA-Seq
library preparation procedures involve isolating mRNA
sequences having polyadenylated tails (poly(A)+) or depleting
repetitive rRNA sequences that account for the majority of RNA
in most samples (rRNA-d). After library preparation, short
fragments of the full sequences are sequenced by Illumina
sequencing. Either one or both ends of each cDNA fragment are
sequenced, termed single- and paired-end sequencing, respec-
tively. The number of molecules sequenced (read count) and the
length of each sequence (read length) vary across the RNA-Seq
data sets used in this study. To compare the extent of RNA
sequencing for each cell line, we used the number of nucleotides
sequenced because this metric is neutral to the read count and

length.
Mass Spectrometry Data

Extensive tandem mass spectrometry (MS/MS) data from the
analysis of protein expression in 11 cell lines was provided by the
Mann group, and the methods for collecting these spectra are
described in their study.”” This data set has consistent and deep
proteomic coverage for each cell line (Table S-2) with 18 raw
MS/MS files from 3 technical replicates for each of 6 different
isolated fractions per cell line. The consistency of this data set
allows us to compare the proteomic search results obtained with
sample-specific databases constructed using different RNA-Seq
library preparation techniques, read lengths, and read types
(single- or paired-end). In addition, the depth of the data set
allows us to explore the full potential of using the G-PTM search
strategy with RNA-Seq proteogenomic databases. Note that the
MS/MS data for one of the 11 cell lines (GAMG glioblastoma)
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Table 1. Information about the Publicly Available RNA-Seq Datasets Used to Construct Sample-Specific Proteomic Databases for

Each Cell Line”

cell line RNA library preparation paired/single-end
AS49 poly(A)+ paired
HEK293 rRNA-D paired
HeLa rRNA-D paired
HepG2 poly(A)+ paired
Jurkat poly(A)+ paired
Ks62 poly(A)+ paired
LNCaP poly(A)+; poly(A)+; HiC** single
MCEF-7 poly(A)+ paired
RKO poly(A)+; unspecified single
U208 unspecified; PAR-CLIP-Seq”® single

read length read count total nucleotides sequenced
76 2.13 x 10° 3.24 x 10%°
50 1.75 X 10° 1.75 x 10"°
50 3.01 x 10% 3.01 X 10%°
76 245 x 10° 3.73 x 10"
101 1.13 x 10° 229 x 10"
76 233 x 10° 3.54 x 10"
36; 35; 50 2.62 % 10° 1.09 x 10"
76 2.60 X 10° 3.95 x 10'°
36; 76 1.04 x 10° 6.74 X 10°
101; 45 8.06 X 107 477 x 10°

“Multiple data sets were combined for LNCaP, RKO, and U20S. Repository information is listed in Table S-1. Abbreviations: poly(A)+,
polyadenylated tail selection; rRNA-d, rRNA depletion; HiC, all-versus-all chromosome conformation capture; PAR-CLIP-seq, photoactivatable-

ribonucleoside-enhanced cross-linking and immunoprecipitation.

was not used in this study because the corresponding RNA-Seq
data was not publicly available at the time of analysis.

Sample-Specific SAV and NSJ Database Construction

Galaxy-P, short for Galaxy for Proteomics, is a computational
interface that allows users to tie independent programs, such as
tools for sequence alignment, variant calling, and MS spectral
matching, together in workflows.”**">° The ease of maintaining
the same versions and settings of individual software makes
bioinformatic analysis more user-friendly and reproducible. The
Galaxy-P workflows used to produce SAV and NSJ peptide
FASTA databases were described by Sheynkman et al.””” Each
database employed in the present work is the union of three
databases: the sample-specific SAV database, the sample-specific
NSJ database, and the Homo sapiens (Human) UniProt reference
proteome containing protein sequences with site-specific PTM
annotations. The UniProt database format that includes these
PTM annotations is called the UniProt extended markup
language (UniProt-XML). The SAV and NSJ databases were
produced and appended to the reference proteome in UniProt
XML format to create a sample-specific database for each cell
line. For the present work, we adapted and combined scripts
from the works by Sheynkman et al.%”’ to develop software
named SampleSpecificDBGenerator used to perform this
process. This program and source code can be obtained at
https://sourceforge.net/projects/samplespecificdbgenerator/.
The Galaxy-P workflows for constructing SAV and NSJ
peptide databases both employ RNA-Seq data analysis to detect
nucleotide variants that lead to amino acid variation. The first
step of both workflows is the alignment of RNA-Seq reads to the
GRCh37 reference genome using the program Tophat;* the
alignment settings used for single- and paired-end SAV and NSJ
workflows can be found in Table S-3. Tophat attempts to align
whole RNA-Seq reads to the genome, and then it splits each
unaligned read into two sequences and aligns them within a
certain number of nucleotides from each other to allow
alignment of reads across splice junctions. Both workflows use
the Ensembl gene model (GRCh 37, version 73), which contains
all known and predicted splicing patterns of exons within genes,
to direct the alignment of reads across known splice junctions. In
the SAV workflow, the RNA-Seq read alignments are used to call
missense SNVs and other nucleotide variants that differ from the
reference genome using a program called SnpEff.”” The missense
SNV calls are then used to modify protein sequences from the
GRCh 37.73 reference proteome, and up to 33 amino acids on
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both sides of the variant amino acid are entered into a SAV
peptide database.

In the search results, SAV peptides are required to contain the
variant amino acid, and only fully tryptic fragments with one or
two missed cleavages are counted. Tryptic peptides that do not
contain the variant amino acid are counted as standard PSMs.
Peptides containing a variation between leucine and isoleucine,
which cannot be distinguished by standard methods of tandem
mass spectrometry, are also counted as standard PSMs.

The NSJ workflow uses two other Tophat alignments. The
first is similar to the alignment in the SAV workflow in that the
goal is to search for known splice junctions annotated in the gene
model, differing in the absence of a “coverage search” that
provides added sensitivity for nsSNV detection and in the
presence of an indel search (see Table S-3). The second one
searches for novel splice junctions in addition to the known splice
junctions. The splice junctions crossed by RNA-Seq reads are
recorded in Browser Extensible Data (BED) files, which contain
the genomic coordinates of the two exons flanking each splice
junction and the number of reads crossing it. The known splice
junctions from the first alignment are subtracted from the second
BED file containing both known and novel splice junctions, and
then a special tool called Translate BED Sequences’ translates
each nucleotide sequence of the two concatenated exons into an
amino acid sequence that is entered into the NSJ peptide
database. We modified the original Translate BED Sequences
program to include only tryptic peptides containing the NSJs and
to include the gene names in each NSJ peptide entry name if an
exon is located within a gene region annotated in the gene model.
This simplifies the analysis of NSJ] PSMs and reduces NSJ
peptide FDRs (Figure S-2) over the previous strategy of entering
the peptide sequence translated from stop codon to stop codon
into the NSJ peptide database.

The read depth across missense SNVs and NSJs is recorded in
the SnpEff output and splice junction BED files. Requiring that
variants have more than a certain number of reads crossing the
feature often led to an improvement in the SAV or NSJ peptide
FDR, so the read depth across the variant feature was used as a
criterion to filter variants before entering them into the sequence
variant proteomic databases. Other filtering criteria were
explored, but they did not lead to significant reductions in the
sequence variant peptide FDRs. Information about these
experiments can be found in Figures S-1 and S-2.

The UniProt-XML reference proteome was downloaded on
January 5, 2015, and the protein accession numbers can be found
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in Table S-4. All GRCh 37.73 reference files were obtained from
Ensembl. This specific version was used to maintain consistency
with previous studies on these workflows.””

Spectral Matching

The software program Morpheus (version 142) was used for all
database searching and spectral matching by the G-PTM
strategy.19 It can be obtained at http://morpheus-ms.
sourceforge.net/. The G-PTM strategy first requires a UniProt-
XML database be specified in Morpheus. Then, all curated
modifications are extracted from the database, and the details of
each modification (name, mass shift, and target amino acid) are
read from a local copy of a text file containing the modifications
that may exist in the database. (The current version of this file
may be obtained from http://www.uniprot.org/docs/ptmlist.
Version 112014 was used in this work.) All valid modifications
are added to the variable modifications box in the Morpheus
graphical user interface with the prefix “UniProt” and are selected
by default.

The G-PTM search strategy differs from a standard variable
modification approach by considering only site-specific mod-
ifications annotated in UniProt-XML database entries instead of
all possible sites at which these modifications could occur.
Limiting the possible PTMs to reported sites on the protein
sequences in the database dramatically reduces the number of
combinatorial PTM peptide isoforms. Morpheus takes each base
peptide sequence in the database and generates all possible
isoform combinations given the annotated PTM sites and the
variable modifications selected, up to a user-defined limit (1024
by default).

Proteomics searches were performed on several computers
with 8, 16, or 32 GB of RAM using 4 to 8 processing units. The
following settings were used in all searches: Protease = trypsin
(no proline rule); Maximum Missed Cleavages = 2; Initiator
Methionine Behavior = variable; Fixed Modifications =
carbamidomethylation of C; Variable Modifications = oxidation
of M; Maximum Variable Modification Isoforms Per Peptide =
1024; Precursor Mass Tolerance = +10 ppm (monoisotopic)
unless otherwise noted; Precursor Monoisotopic Peak Correc-
tion = disabled; Product Mass Tolerance = +0.01 Da
(monoisotopic); Maximum False Discovery Rate = 1%.

Search Results

The search results for each of the final 13 searches can be found
in the Supporting Information, with a summary presented in
Table S-5. All identified peptides are summarized in Table S-6,
and more specific information on unique SAV peptides and
unique NSJ peptides are summarized separately in Tables S-7
and S-8. The corresponding protein and sequence variant
peptide identifications are provided in Table S-9.

To count each sequence variation only once, we counted
unique SAV and NSJ peptides differently than PTM and
unmodified peptides. We allowed up to two missed tryptic
cleavages in the database searches to detect peptides containing
lysine and arginine residues that were not cleaved by trypsin. The
uniqueness of SAV or NSJ peptides in this work arises from a
single site of variation, and so missed cleavage products were
counted as a single unique SAV or NSJ peptide to avoid double-
or triple-counting the unique sequence variant. The information
on SAV and NSJ peptide identifications in Tables S-7 and S-8 is
grouped in this way, and so they can be used to generate these
unique SAV or NSJ peptide counts.

Missed cleavage products of PTM peptides differ from SAV
and NSJ peptides in that they may be adorned with unique
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arrangements of PTMs, including modified lysine or arginine
residues that were missed by trypsin. Therefore, each missed
cleavage product of a PTM peptide was counted as a unique
peptide. The identified peptides listed in Table S-6 are separated
by missed cleavage, and so they can be used to generate these
unique PTM and unmodified peptide counts.

Global False Discovery Rates

The Morpheus proteomic search software uses a simple scoring
algorithm®' for PSMs based on peptide fragmentation spectra.
The Morpheus score is a combination of two values related to
peptide fragmentation. The primary score is simply the number
of matching peptide fragments. The secondary score is the
fraction of theoretical b- and y-ion abundances that are matched
in the experimental fragmentation spectrum. The composite
Morpheus score is the sum of the primary and secondary scores,
and it is used to sort the list of all PSMs (unmodified, SAV, NS]J,
PTM) from highest to lowest confidence after searching a
sample-specific database.

The global FDR for each database search is estimated using
this sorted PSM list and the target-decoy approach.”® Decoy
peptide sequences are generated from the reverse of all modified
and unmodified target sequences, and they compete with target
peptide sequences for matches to experimental spectra. Decoy
PSMs represent false-positive matches and generally cluster at
low scores, allowing a cutoff decision for high-scoring target
PSMs based on an estimation of the false-positive rate. The
global FDR is calculated by dividing the number of decoy PSMs
by the number of target PSMs above any score in the sorted PSM
list. We allowed a 1% global FDR throughout this work for
reporting PSMs.

Variant and Modified Peptide FDRs

The FDR for each type of peptide identification (SAV, NSJ,
PTM) is calculated by dividing the number of decoy PSMs by
target PSMs meeting a global 1% FDR cutoff.'””” We use the
variant peptide FDRs to compare our methods for constructing
sample-specific databases, with the goal of choosing a minimum
read depth across missense SN'Vs or NS]Js that reduces the FDR
of SAV or NSJ peptides and thus improves the quality of
sequence variant identifications.

B RESULTS

Constructing sample-specific databases from RNA-Seq data
involves important considerations related to the data set
employed. We first show the impact of the RNA-Seq data set
size on the number and quality of sequence variant database
entries. Next, we filter missense SNVs and NSJs using the RNA-
Seq read depth across the variant features to improve the quality
of sequence variant peptide identifications. Lastly, we show that
searching MS/MS data with the resulting sample-specific
databases for each of the 10 human cell lines allowed the
identification of hundreds of SAV peptides, tens of NS]J peptides,
and several hundred diverse PTM peptides.

Impact of RNA Sequencing Depth

Generating more RNA-Seq reads for a sample generally increases
the detection of nucleotide-sequence variants present in low-
abundance transcripts. We investigated whether this effect also
leads to more protein-sequence variant identifications upon
searching a database constructed from larger RNA-Seq data sets.
Subsets of the MCF-7 RNA-Seq data set were chosen at random
and used to construct sequence variant peptide databases using
all missense SNVs and NSJs. Combined with the UniProt-XML
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(dark) and unique peptide identifications (light), while having little impact on (C) the SAV peptide FDR. The impact of RNA-Seq depth on NSJ
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in the number of NSJ PSMs (dark) and unique peptide identifications (light). Additional NSJ peptide identifications are obtained beyond 1 X 10"
nucleotides, while no increase is observed in the NSJ peptide FDR seen in panel F, indicating that deep RNA sequencing is advantageous for detecting
NS]J peptides. The number of sequenced nucleotides was chosen as a metric for experimenting with the read depth because it is neutral to read length and

type: paired- or single-end, which varied for the 10 data sets used.

reference proteome, these peptide databases were then searched
against the MCF-7 MS/MS data set. More SAV peptides are
identified from databases constructed using larger RNA-Seq data
sets, but the size increase in the RNA-Seq data set yields
diminishing returns for SAV peptides (Figure 2A,B). At 10"
nucleotides of sequencing depth, the number of additional SAV
PSMs, unique SAV peptides, and SAV database entries begins to
plateau, indicating 10" nucleotides of raw RNA-Seq data is
adequate for this type of proteogenomic experiment. The quality
of these SAV peptide identifications is quite good, as exhibited by
the FDR of <1% (Figure 2C), less than the global FDR for all
peptide identifications.

In contrast with the SAV peptide results, the number of NSJ
PSMs, unique NSJ peptides, and NSJ peptide database entries
continues to grow linearly with additional sequencing depth
(Figure 2D,E). The number of NSJ PSMs increases from 127 to
247 between 1 X 10" and 2 X 10" nucleotides of sequencing
depth, while the NSJ peptide FDR decreases slightly (Figure 2F).
Overall, deep RNA sequencing appears to be beneficial for
detecting NSJ peptides. Therefore, we utilized the full RNA-Seq
data sets for constructing sample-specific databases in the
remainder of this work.

Impact of RNA-Seq Read Type

Either a single end or both ends of cDNA sequence fragments
can be sequenced in RNA-Seq These methods are termed single-
end (SE) and paired-end (PE) sequencing. PE data should
provide an advantage over SE data for detecting NSJs because
splice junctions can be inferred from a pair of reads that align
farther apart than the length of the insert between them.”® To
determine if this intuitive advantage leads to improved
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identification of NSJ peptides, we searched sample-specific
databases constructed for SE and PE RNA-Seq data using NSJ
read depth cutoffs of 0, 0.01, and 0.02 reads per million (Figure
3), which are calculated by dividing the required read depths by
the total read counts in millions of reads.

We found a moderate-to-strong difference between the
numbers of NSJ PSMs, with PE data leading to more matches
(p values of 0.010, 0.012, and 0.027 using Welch’s ¢ test,
respectively). The number of unique NSJ peptides was also
significantly higher for PE experiments without RNA-Seq read
depth cutoffs (p value of 0.010 using Welch’s ¢ test). With cutoffs
above zero reads per million, the elimination of many NSJ
database entries led to a reduction in NSJ peptide identifications,
including many potential true positives, and the number of
unique NSJ peptides in PE experiments fell from a mean of 41 to
1S unique peptides nearly to the low values of the SE
experiments, which had means ranging from 7 to 11 unique
peptides. We found no significant difference between the NSJ
peptide FDRs for SE and PE experiments (p values of 0.381,
0.839, and 0.392, respectively). We recommend the use of
paired-end data whenever possible for improved identification of

NSJ peptides.

Improving SAV and NSJ Peptide FDRs by Filtering Variants
on Read Depth

RNA-Seq proteogenomic methods for detecting protein
sequence variation typically involve aligning many short
sequencing reads to a reference genome. Single nucleotide
variants can be observed in sequence reads at loci where missense
mutations may have occurred. The number of reads that cross a
variant, and thus the number of observations, leads to higher
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Figure 3. Paired-end (PE) sequencing aids the detection of NSJ
peptides. PE sequencing, shown as darker points, yields more NSJ
peptide PSMs than single-end (SE) reads, shown as lighter points in
panel A (p values of 0.010, 0.012, and 0.027 using Welch’s ¢ test for the 0,
0.01, and 0.02 reads per million NSJ depth cutoffs). The number of
unique NSJ peptides (panel B) was also better for PE reads at zero
cutoffs than SE reads (p value of 0.010 using Welch’s ¢ test). There was
no significant difference between the NSJ peptide FDRs (panel C) for
PE and SE reads (p value of 0.381 using Welch’s ¢ test).

confidence that the variant exists. Similarly, splice alignment
programs (e.g,, Tophat) can be used to discover novel splice
junctions when reads cross an unannotated junction, so more
reads spanning such a junction build confidence in the NSJ.
Therefore, we investigated the effect of filtering nucleotide
variants on the RNA-Seq read depths across missense SNVs and
NSJs. We constructed sample-specific databases for each of the
10 cell lines using a range of depth filters for either missense SNV
or NSJ reads and then searched them against the MS/MS spectra
for the cell line. The results for more stringent depth filters are
similar to those previously obtained for constructing sample-
specific databases with smaller RNA-Seq data sets. As the
required read depth increases, fewer sequence variants are
identified in the RNA-Seq data, leading to fewer SAV and NSJ
peptide database entries (Figure 4A,D) and fewer PSMs (Figure
4B,E). The FDRs for both SAV and NSJ peptides also generally
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decrease with more stringent read depth filters (Figure 4C,F).
This makes read depth filters useful for constructing sample-
specific databases that produce more accurate sequence variant
peptide identifications. The results for the Jurkat cell represent an
exception to this trend in Figure 4F, showing an increase in FDRs
at higher read depths. These results are likely anomalous due to
the small number of NSJ PSMs available to calculate the NSJ
peptide FDR at stringent cutoffs.

Identification of Variant Peptides

SAV and NS]J depth cutoffs were selected with a general strategy
for each cell line using the data shown in Figure 4. First, applying
no read depth cutoff to missense SN'Vs led to higher SAV peptide
FDRs than the global FDR for three of the sample-specific
databases. Then, increasing the read depth cutoft from zero led to
drop-offs in these sequence variant FDRs, indicating higher
quality database entries. These improvements were observed in 7
of the 10 cell lines for NSJ peptide FDRs; however, they were
accompanied by decreased numbers of SAV PSMs and a steep
decrease in NSJ peptide PSMs, and so we developed a
preliminary strategy for choosing a cutoff that balanced this
trade-off. To construct a final sample-specific database, we chose
the least stringent depth cutofts that yielded a significant drop in
the SAV and NSJ FDRs while being accompanied by a similar
drop in the respective peptide identifications. For example, 100
NSJ PSMs at 20% FDR would ideally drop to 90 PSMs with a
10% FDR for NSJ peptides by eliminating ~10 false-positive
PSMs; however, if a decrease to 10% FDR was accompanied by a
drop to 20 PSMs, then the cutoff eliminated ~60 potential true
positive PSMs and was deemed too strict for a meaningful
experiment with the RNA-Seq data set. While this strategy
illustrates the advantage and generalizability of filtering on the
read depth with certain variants, it requires multiple proteomics
searches. Thus, future analysis of the root causes of high SAV and
NSJ FDRs may yield a more universal strategy for choosing the
best cutofls.

The selected read depth cutoffs recorded in Table S-S5 were
used to construct sample-specific databases in the UniProt-XML
format for each cell line. The results of the searches for these 10
cell lines were compiled into a master list of variant peptides.
Across the 10 cell lines, 1605 unique SAV peptides and 309
unique NSJ peptides were identified. Of these variant peptides,
the numbers unique to a particular human cell line were 1242
SAV peptides (77.4%) and all NSJ peptides. For comparison,
only 35.0% of the unique unmodified peptides from the UniProt
reference database (i.e., lacking a SAV, NSJ, or PTM) were
unique to a cell line. The uniqueness and potential biological
importance of these observed variant peptides make them
particularly interesting for proteomics investigations seeking to
reveal new factors contributing to particular phenotypes.

Identification of PTM Peptides

Across the 10 cell lines, 2212 unique PTM peptides were
identified and 1015 PTM peptides (45.9%) were unique to a
particular human cell line. This potentially valuable new
information is enriched by the diversity of PTM peptides
revealed by these searches. In each cell line, 31 + 4 different types
of modifications were identified, as illustrated in Figure S and
Table S-10. In all, 42 unique types of modifications were revealed
in these data. (Note that some distinct PTM types, such as
asymmetric and symmetric isomers of dimethyllysine, cannot be
distinguished by parent masses of the modified peptides in the G-
PTM approach; they are noted as distinct PTM types because
they are annotated as such in the UniProt database.) These PTM
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results illustrate the power of leveraging UniProt PTM
annotations in database searches. They provide an alternative
to traditional variable modification searches, which reveal only a
single type of PTM peptide with substantially higher FDRs than
the 0.6 to 1.4% FDRs for the G-PTM results in this work.

B CONCLUSIONS

We report a combined approach of searching custom databases
constructed by RNA-Seq proteogenomics with the G-PTM
search strategy that allows the identification of a diverse array of
protein variants. We report a single-pass MS/MS proteomic
search that allows the detection of sample-specific amino acid
variants and many types of candidate PTM peptides. This may
allow the proteomics community to draw new connections
between the expression of these protein sequence variants and
PTMs, potentially informing biochemical mechanistic inves-
tigations.

The selection of RNA-Seq data types and filtering parameters
for sequence variants identified from the data is important for
confident identification of these diverse protein variants. We
determined that deep paired-end RNA sequencing with, for
example, 2 X10' nucleotides of sequencing depth, leads to
improved detection of NSJ peptides. By controlling the quality of
sequence variants identified in RNA-Seq data using the read
depth covering the variant, this workflow also allows
identification of protein sequence variants with 1.1 + 0.5%
FDR for SAV peptides and 14.3 + 6.0% FDR for NSJ peptides.

In each of 10 human cell lines, hundreds of SAV peptides, tens
of NSJ peptides, and several hundred PTM peptides were
identified. Many types of PTMs adorn these PTM peptides, with
31 + 4 types of modifications identified in each cell line. In all, 42
different types of modifications were identified in these data with
the G-PTM search strategy. Amino acid variants, including SAV
and NSJ peptides, are invisible to the proteomic database search
strategy without RNA-Seq proteogenomic databases, and PTM
peptides are identified by the G-PTM search strategy at a much
lower FDR than those from variable modification searches. This
opens the door for proteomic analyses to consider these diverse
and important variations that play roles in cell regulation and
human health.
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