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Abstract

Background: The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of a ubiquitin ligase complex,
which is best understood as a negative regulator of hypoxia inducible factor (HIF). VHL ubiquitinates and degrades the a
subunits of HIF, and this is proposed to suppress tumorigenesis and tumor angiogenesis. However, several lines of evidence
suggest that there are unidentified substrates or targets for VHL that play important roles in tumor suppression.

Methodology/Principal Findings: Employing quantitative proteomics, we developed an approach to systematically identify
the substrates of ubiquitin ligases and using this method, we identified the Myb-binding protein p160 as a novel substrate
of VHL.

Conclusions/Significance: A major barrier to understanding the functions of ubiquitin ligases has been the difficulty in
pinpointing their ubiquitination substrates. The quantitative proteomics approach we devised for the identification of VHL
substrates will be widely applicable to other ubiquitin ligases.
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Introduction

Mutation of the von Hippel-Lindau (VHL) tumor suppressor gene

is associated with a hereditary cancer syndrome called von Hippel-

Lindau (VHL) disease, which is characterized by an increased risk

of clear cell renal carcinoma, hemangioblastoma of the nervous

system, and adrenal pheochromocytoma (for reviews see [1–4]).

VHL disease patients harbor one wild-type and one defective VHL

allele while the tumors arising in these patients display somatic

inactivation of the remaining wild-type allele. Biallelic VHL

inactivation is also common in sporadic (non-hereditary) clear

cell renal carcinomas and hemangioblastomas. The VHL protein

is a component of a protein complex which contains elongin B,

elongin C, Cul2, and Rbx1 and this complex functions as an E3

ubiquitin ligase.

VHL is best understood as a negative regulator of hypoxia

inducible factor (HIF), a family of transcription factors regulating

genes involved in the cellular response to hypoxia. In the presence

of oxygen and iron, specific proline residues in HIF become

hydroxylated and these hydroxylated prolines are recognized by

VHL, which results in ubiquitination and degradation of HIF.

Hypoxia or depletion of iron inhibits the prolyl-hydroxylation of

HIF, causing stabilization of HIF and induction of HIF target

genes such as vascular endothelial growth factor (VEGF) and

erythropoietin. Downregulation of HIF by VHL explains some of

the phenotypes of tumors with VHL mutations: hemangioblasto-

ma and clear cell renal carcinoma are highly vascular tumors, due

at least in part to VEGF overproduction; hemangioblastoma, clear

cell renal carcinoma and pheochromocytoma sometimes secrete

erythropoietin, leading to overproduction of red blood cells.

However, it is also clear that VHL has functions other than

regulating HIF [1–4]: 1) VHL was shown to bind to other proteins

including fibronectin, atypical PKC family proteins, SP1 tran-

scription factor, RNA polymerase subunits Rpb1 and Rpb7, and a

de-ubiquitinating enzyme VDU-1. Among these, VHL ubiquiti-

nates Rpb1 [5,6] and Rpb7 [7]. 2) There is also evidence that

VHL plays HIF-independent roles in extracellular matrix control

[8,9]. 3) Type 2C VHL disease caused by specific VHL mutants

such as L188V and V84L predispose mutation carriers to familial

pheochromocytomas without hemangioblastomas or renal carci-

nomas. Importantly, these VHL mutants ubiquitinate and degrade

HIF as efficiently as wild-type VHL, which suggests that HIF-

independent function(s) of VHL play a role in the generation of

pheochromocytomas [9,10]. 4) Overexpression of constitutively-

active HIF in mice did not result in hemangioblastomas or renal

carcinomas [11], suggesting that deregulation of HIF is not
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sufficient to initiate tumors in mice. 5) Gain-of-function HIF-2a
mutations were recently identified in familial erythrocytosis

patients [12,13], but these patients did not display predisposition

to tumors, suggesting that activation of HIF is not sufficient to

induce tumors in humans. These findings suggest that deregulation

of HIF is not sufficient for tumorigenesis and that loss of

HIF-independent function(s) of VHL plays a critical role in

tumorigenesis.

In order to understand the HIF-independent function(s) of

VHL, it is important to identify novel VHL substrates/targets.

However, identification of substrates of ubiquitin ligases is

generally a difficult task because there is no established method

to systematically identify the substrates. Employing global protein

expression profiling by quantitative proteomics, we devised a

strategy to identify the degradation substrates of ubiquitin ligases

and using this strategy, identified the Myb-binding protein p160 as

a novel substrate of VHL.

Materials and Methods

Cell culture
Balb/c3T3, 293T, 786-O, and A498 cells were obtained from

ATCC. Balb/c3T3 cells were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% fetal calf

serum. 293T cells were cultured in DMEM supplemented with

10% calf serum. 786-O cells were cultured in RPMI1640 medium

supplemented with 10% fetal calf serum. A498 cells were cultured

in Minimum Essential Medium supplemented with 10% fetal calf

serum and non-essential amino acids. Calcium phosphate co-

precipitation was used for plasmid DNA transfection. MG-132

and desferrioxamine mesylate were purchased from Calbiochem/

EMD Biosciences. Mouse VHL siRNA pool (M-040755) and

control siRNA pool (D–001206–13) were purchased from

Dharmacon and were transfected using Lipofectamine 2000

reagent (Invitrogen). The target sequences for shRNAs are as

follows: human VHL, GAGGTCACCTTTGGCTCTTCA-

GAGA; luciferase, GCACTCTGATTGACAAATACGATTT.

VHL and empty vector adenoviruses were generated using

AdEasy XL adenoviral vector system (Stratagene).

Protein sample preparation, ICAT (isotope-coded affinity
tag) reagent labeling, and mass spectrometry

Mouse Balb/c3T3 fibroblasts were treated with 100 mM

desferrioxamine (DFO, iron chelator) for 24 hours. Soluble

protein fraction was prepared as described [14,15]. As a control,

protein sample was also prepared from untreated Balb/c3T3

fibroblasts. 2.5 mg each protein sample was dissolved in the ICAT

labeling buffer (0.5% SDS, 6 M urea, 200 mM Tris [pH 8.3], and

5 mM EDTA), reduced with 5 mM Tris(2-carboxyethyl) phos-

phine (TCEP) for 30 minutes at 37uC, and labeled (desferriox-

amine-treated Balb/c3T3 sample: isotopically-heavy ICAT re-

agent; untreated Balb/c3T3 sample: isotopically-light ICAT

reagent). The two labeled samples were combined, proteolyzed

to peptides with trypsin, and fractionated by cation-exchange

chromatography. ICAT reagent-labeled peptides were purified

using the biotin tag present in the reagent and analyzed by

microcapillary high performance liquid chromatography-tandem

mass spectrometry (mLC-MS/MS) using Thermo Fisher LCQ and

LTQ mass spectrometers as described [14,16–18]. Tandem mass

spectra were searched against mouse IPI protein database using

SEQUEST algorism with a 3Da peptide mass tolerance [19].

Peptide/protein identification was validated by Peptide/Protein-

Prophet software tools [20,21]. The ProteinProphet score of 0.5

was used as a cutoff, which corresponds to a false identification

rate of 3.5% in iron chelation experiment and 5.3% in p160 co-

immunoprecipitation experiment, respectively. Protein abundance

ratios were calculated using ASAPRatio software tool [22].

Immunoprecipitation and immunoblotting
Immunoprecipitation was performed as described [23]. The

indicated amounts of cell lysates were separated by SDS-PAGE

and were analyzed by immunoblotting as described [18]. Anti-

p160 rabbit polyclonal antibody was obtained from Drs. Tom

Gonda and Rebecca Keough. Anti-VHL (Ig-32) was purchased

from BD Pharmingen. Anti-VHL (FL-181) was purchased from

Santa Cruz Biotechnology. Anti-FLAG M2 and anti-tubulin

mouse monoclonal antibodies were purchased from Sigma. Anti-

hydroxyproline antibody was purchased from Advanced Targeting

Systems. Far-western blotting was performed as described [24].

In vitro ubiquitination assay
VHL-null 786-O cells were washed twice with cold hypotonic

extraction buffer (20 mM Tris (pH 7.5), 5 mM KCl, 1.5 mM

MgCl2, 1 mM dithiothreitol) and the cells were disrupted in a

Dounce homogenizer. Following lysis, crude extract was centri-

fuged at 10,0006g for 10 minutes at 4uC and stored in aliquots at -

80uC. Biotinylated p160 was in vitro translated using TNT

coupled transcription/translation system and TranscendTM tRNA

(Promega). Ubiquitination assays were performed at 30uC in a

total volume of 40 ml, containing 2 ml of in vitro translated,

biotinylated p160, 27 ml of 786-O cell extract, 4 ml of 106ATP-

regenerating system (20 mM Tris, pH 7.5, 10 mM ATP, 10 mM

magnesium acetate, 300 mM creatine phosphate, 0.5 mg/ml

creatine phosphokinase), 4 ml of 5 mg/ml ubiquitin (where

indicated), and 0.83 ml of 150 mM ubiquitin aldehyde (Biomol

International). Where indicated, 200 ng of purified GST-VHL

was preincubated with the reaction mixture at room temperature

for 5 min prior to the addition of the substrate. Aliquots were

removed at indicated times, mixed with SDS-PAGE sample

buffer, and analyzed by SDS-PAGE and protein blotting. The

detection of the blot was carried out using HRP-conjugated

Streptavidin (Invitrogen).

Results

Quantitative proteomic analysis of iron chelation-
induced protein expression changes

To identify novel ubiquitination substrates of VHL, we

undertook a proteomic screening using ICAT (isotope-coded

affinity tag) quantitative proteomics technology [16,25]. Unlike

other isotope-labeling proteomics approaches such as SILAC and

iTRAQ, the ICAT procedure selects only cysteine-containing

peptides (Note that 96% of all human proteins contain at least one

cysteine) and thus effectively reduces the complexity of peptide

mixtures, allowing sensitive detection of low-abundance proteins.

Since the VHL ubiquitin ligase catalyzes the formation of lysine-

48-linked poly-ubiquitin chains which target proteins for protea-

somal degradation, we reasoned that the VHL substrates would

accumulate in cells that do not have functional VHL, which can be

detected by comparing the global protein expression in cells with

and without functional VHL (Figure 1). Because the ubiquitination

and degradation of HIF by VHL can be inhibited by iron

chelation, we used iron chelation to inhibit protein ubiquitination

by VHL and analyzed the resulting protein expression changes.

Mouse Balb/c3T3 fibroblasts were treated with an iron

chelator, desferrioxamine, at 100 mM for 24 hours or left

untreated and the cell lysates were prepared. 2.5 mg each cell

lysate was analyzed for protein expression by the ICAT approach.

p160 as a Novel VHL Target
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The resulting dataset was subjected to statistical analysis [20,21]

and at a ProteinProphet probability score of 0.5 or higher

(corresponding to a false identification rate of 3.5%), 612 proteins

were identified and quantified. A partial list of protein changes

induced by iron chelation is shown in Table 1 (For complete lists of

proteins displaying more than 2-fold induction or reduction upon

iron chelation, see Tables S1 and S2). As expected, we determined

that HIF-3a as well as a number of HIF transcriptional targets is

induced by iron chelation. In addition, we also found other protein

changes such as upregulation of Myb-binding protein p160 and

downregulation of different mitochondrial proteins.

p160 was originally identified as a predominantly nucleolar

protein that binds to the negative regulatory domain of c-Myb

[26]. More recently p160 was shown to bind and inhibit the

coactivator PGC-1a [27], which results in downregulation of gene

expression of mitochondrial proteins and mitochondrial respira-

tion. Therefore, the reduced expression of several mitochondrial

proteins upon iron chelation (Table 1) may be due to upregulation

of p160. In the following sections, we investigated the possibility

that p160 is a degradation substrate of VHL.

Degradation of p160 by VHL
We confirmed the upregulation of p160 upon iron chelation

by immunoblotting (Figure 2A). Furthermore, co-expression of

VHL dramatically reduced the expression levels of FLAG-

tagged-p160 in 293T cells and this was abolished by a

proteasome inhibitor, MG-132, suggesting that VHL induces

proteasome-dependent degradation of p160 (Figure 2B). Degra-

dation of FLAG-p160 by VHL was also abolished by iron

chelation with desferrioxamine (DFO) (Figure 2C), indicating

that degradation of p160 by VHL requires iron as previously

demonstrated for HIF. When VHL expression was restored in

VHL-null 786-O renal carcinoma cells or A498 renal carcinoma

cells, VHL degraded endogenous p160 (Figure 2D and E).

Conversely, siRNA-mediated knockdown of VHL expression in

Balb/c3T3 cells resulted in stabilization of endogenous p160

(Figure 2F). Furthermore, specific and direct binding of VHL

and p160 was demonstrated by probing the blot of immuno-

precipitated FLAG-p160 with bacterially-produced purified

GST-VHL using Far-western technique (Figure 2G).

The proteomic analysis of the p160-containing protein complex

also confirmed the physical interaction of p160 and the VHL

ubiquitin ligase complex (Figure 3): FLAG-p160 was transfected

into 293T cells and the protein complex containing FLAG-p160

was purified by anti-FLAG immunoprecipitation under non-

denaturing conditions. As a control, we used 293T cells transfected

with FLAG empty vector. The protein components in the two

immunoprecipitation samples (FLAG-p160 and FLAG-vector)

were compared by the ICAT approach and the specific

components of the FLAG-p160 complex were identified by their

increased abundance in the FLAG-p160 immunoprecipitate

compared with FLAG-vector immunoprecipitate (Figure 3A). This

analysis identified the co-immunoprecipitation of FLAG-p160

with the components of the VHL ubiquitin ligase complex (VHL,

Figure 1. Outline of proteomic screen for VHL substrates. In cells with functional VHL, VHL(+), VHL substrates are ubiquitinated and degraded
by the proteasome. In cells without functional VHL, VHL(-), VHL substrates accumulate. By comparing the global protein expression of VHL(+) and
VHL(-) cells by quantitative proteomics, candidate VHL substrates can be identified.
doi:10.1371/journal.pone.0016975.g001

p160 as a Novel VHL Target
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elongin B, and elongin C) as well as a number of nucleolar proteins

(Figure 3C, for a complete list of proteins displaying more than 2-

fold enrichment in FLAG-p160 immunoprecipitate, see Table S3).

Collectively, these results suggest that VHL induces proteasome-

and iron-dependent degradation of p160 through direct physical

interaction.

To test whether VHL can ubiquitinate p160, we conducted in

vitro ubiquitination assays following a published procedure

[28,29]. In vitro translated p160 was incubated with cell extract

of VHL-null 786-O cells. Where indicated, 786-O cell extract

was supplemented with bacterially-produced purified GST-VHL

and/or ubiquitin. As shown in Figure 2H, while the 786-O cell

extract, which lacks functional VHL, induced modest ubiquiti-

nation of p160, addition of GST-VHL to the 786-O extract

resulted in more robust ubiquitination of p160 (ubiquitinated

p160 is indicated by asterisks).This suggests that VHL can induce

ubiquitination of p160 in vitro. Ubiquitination of p160 by VHL-

null 786-O cell extract also suggests the existence of other

ubiquitin ligase(s) that can ubiquitinate p160, which might

explain the relatively modest stabilization of p160 upon VHL

knockdown (Figure 2F). We then analyzed the role of VHL in

p160 ubiquitination in vivo. 293T cells were co-transfected with

FLAG-p160 and HA-ubiquitin and ubiquitination of p160 was

assessed by anti-FLAG immunoprecipitation followed by anti-

HA immunoblotting. As shown in Figure 2I right, VHL shRNA,

which can efficiently knock down VHL expression (Figure 2I

left), abolished ubiquitination of FLAG-p160, suggesting that

VHL mediates ubiquitination of p160 in vivo. Although it

remains possible that VHL indirectly mediates p160 ubiquitina-

tion, these results, together with the direct binding of VHL and

p160 (Figure 2G) as well as the prolyl hydroxylation of p160

(Figure 4E), suggest that p160 is a ubiquitination substrate of

VHL.

Mechanism of p160 degradation by VHL
We then mapped the p160 domain(s) necessary for degradation

by VHL using a series of N-terminal deletion mutants of p160

(Figure 4A). An N-terminal deletion mutant to amino acid 632

(DN632) was still degraded by VHL, but an N-terminal deletion

mutant to amino acid 694 (DN694) was no longer degraded by

VHL. This suggests that there is a degron between amino acid 632

and 694 of p160 (Figure 4A). We noticed that this region of p160

contains a sequence motif similar to the one surrounding the

hydroxylated proline in HIF-a (Figure 4B). Importantly, mutation

of this proline residue (Pro693) to alanine (DN632 P693A)

abolished degradation by VHL (Figure 4C), consistent with the

notion that (hydroxylated) Pro693 is recognized by VHL for

ubiquitination. P693A substitution in the context of full length

p160 did not completely abolish degradation by VHL (data not

shown), suggesting that there are additional degron(s) in p160 that

are targeted by VHL.

Our current working hypothesis is that Pro693 of p160 is

hydroxylated in the presence of iron and oxygen, which results in

ubiquitination by VHL and degradation by the proteasome

(Figure 4D). To determine whether p160 can be prolyl

hydroxylated in vivo, 293T cells were transfected with FLAG-

p160 or FLAG-p160 DN694, which lacks N-terminal 693 amino

acids of p160 including Pro693. FLAG-p160 or FLAG-p160

DN694 was immunoprecipitated by anti-FLAG antibody and was

analyzed by anti-hydroxyproline or anti-FLAG immunoblotting.

As shown in Figure 4E, FLAG-p160, but not FLAG-p160ND694,

was detected by anti-hydroxyproline antibody, demonstrating the

prolyl hydroxylation of FLAG-p160. Consistent with the role of

prolyl hydroxylation in p160 ubiquitination, we found that HIF

prolyl hydroxylases (HPH1 and to a lesser extent HPH2 and 3)

induce laddering and smearing of the p160 protein band, which is

indicative of ubiquitination (Figure 4F). In addition, we also found

that co-expression of p160 dramatically stabilizes HIF-1a in 293T

cells (Figure 4G, lane 4), which is normally very unstable due to

VHL-mediated degradation. Stabilization of HIF-1a by p160 was

abolished by coexpression of VHL (Figure 4G, lane 3).

Stabilization of HIF-1a by p160 may be due to the titration of

VHL or HPHs.

Discussion

Our ICAT proteomic analysis identified the Myb-binding

protein p160 as a protein whose expression is induced upon iron

chelation, and further analyses demonstrated that p160 is a

ubiquitination substrate of VHL. VHL directly binds and degrades

p160 in an iron-dependent and proteasome-dependent manner.

p160 is a transcriptional co-repressor of the PGC-1a/NRF-1

transcription complex which controls the coordinated expression

of genes essential for mitochondrial function [27]. Interestingly,

Hervouet et al. reported that restoration of wild-type VHL

expression in VHL-deficient 786-O renal carcinoma cells results

in increased oxidative phosphorylation (OXPHOS) protein

expression and enhanced mitochondrial respiratory chain activi-

ties [30], which may be mediated by degradation of p160 by VHL.

In tumors with VHL mutation, p160 would be stabilized and

inhibit the expression of mitochondrial OXPHOS proteins,

leading to reduced mitochondrial respiration and concomitantly

increased glycolytic ATP production. This could be a molecular

basis for the well known ‘‘Warburg effect’’ (reprogramming of

tumor metabolism from oxidative to glycolytic metabolism, for a

review see [31]) in VHL-mutated tumors.

Among the mitochondrial protein genes regulated by the PGC-

1a/NRF-1 transcription complex is cytochrome c [32], which is a

Table 1. Partial list of protein expression changes upon iron
chelation.

Protein name (+)DFO : (-)DFOa

HIF-3a 2.75:1

Myb-binding protein p160 2.70:1

Upregulation of HIF targets

ER oxidoreductase 1-like 2.94:1

Lysyl oxidase 2.78:1

NDRG1 2.50:1

Lactate dehydrogenase A 2.50:1

Calgizzarin 2.27:1

CYR61/CCN1 2.08:1

Phosphoglycerate kinase 1 2.04:1

Triosephosphate isomerase 2.04:1

Downregulation of mitochondrial proteins

Mitochondrial processing peptidase a 0.15:1

Cytochrome b-c1 complex subunit 1 0.25:1

2-amino-3-ketobutyrate coenzyme A ligase 0.42:1

Electron transfer flavoprotein 0.43:1

Cytochrome b-c1 complex subunit 6 0.46:1

aRelative abundance of each protein in Balb/c3T3 cells with and without
desferrioxamine treatment [(+) and (-) DFO] is shown.

doi:10.1371/journal.pone.0016975.t001

p160 as a Novel VHL Target

PLoS ONE | www.plosone.org 4 February 2011 | Volume 6 | Issue 2 | e16975



Figure 2. Degradation of p160 by VHL. (A) Increased p160 protein expression upon iron chelation. Mouse Balb/c3T3 fibroblasts were treated
with or without 100 mM desferrioxamine (DFO, iron chelator) for 24 hours and the p160 and tubulin expression was analyzed by immunoblotting
using 30 mg whole cell lysate. (B) VHL degrades p160 by a proteasome-dependent mechanism. 293T cells were transfected with FLAG-p160 with or
without VHL. Where indicated, the transfected cells were treated with 10 mM MG-132 for 12 hours. The expression of FLAG-p160 was examined by
immunoblotting using 30 mg whole cell lysate. (C) Degradation of p160 by VHL is abolished by iron chelation. 293T cells were transfected with FLAG-
p160 with or without VHL. Where indicated, the transfected cells were treated with 100 mM desferrioxamine (DFO) for 12 hours. The expression of
FLAG-p160 was examined by immunoblotting using 30 mg whole cell lysate. (D) Degradation of endogenous p160 by VHL in 786-O cells. VHL-null
786-O renal carcinoma cells were infected with VHL or empty adenovirus vector and 48 hours after infection, the expression of p160, VHL, and
tubulin was analyzed by immunoblotting using 30 mg whole cell lysate. (E) Degradation of endogenous p160 by VHL in A498 cells. VHL-null A498
renal carcinoma cells were infected with VHL or empty adenovirus vector and 48 hours after infection, the expression of p160, HIF-2a, VHL, and
tubulin was analyzed by immunoblotting using 30 mg whole cell lysate. (F) Effect of VHL knockdown on p160 expression. Balb/c3T3 cells were
transfected with control or VHL siRNA and 72 hours after transfection, the expression of p160, VHL, and tubulin was analyzed by immunoblotting
using 30 mg whole cell lysate. (G) VHL directly binds p160. FLAG-p160 was immunoprecipitated from transfected 293T cells (FLAG empty vector as
control), fractionated by SDS-PAGE, and transferred to nitrocellulose membrane. Triplicate protein blots were probed with anti-p160 antibody (left),
bacterially-produced purified GST-VHL (middle), or GST (right). (H) In vitro ubiquitination of p160 by VHL. In vitro translated p160 was incubated at
30uC with the extract of VHL-null 786-O cells and ATP-regenerating system in the presence or absence of GST-VHL and ubiquitin as indicated.
Aliquots were removed at indicated times and were analyzed for protein ubiquitination. 0 minute samples were removed after assembling the
reaction mixture at room temperature without incubation at 30uC. Ubiquitinated p160 is indicated by asterisks. (I) Effect of VHL knockdown on p160
ubiquitination in vivo. Left: 293T cells were transfected with FLAG-VHL and luciferase shRNA or VHL shRNA expression vector and 48 hours after
transfection, the expression of FLAG-VHL was analyzed by anti-FLAG immunoblotting. Right: 293T cells were transfected with FLAG-p160, HA-
ubiquitin, luciferase shRNA, or VHL shRNA where indicated, and FLAG-p160 was immunoprecipitated by anti-FLAG antibody and was analyzed by
anti-HA or anti-FLAG immunoblotting.
doi:10.1371/journal.pone.0016975.g002
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central mediator of apoptosis. Hence, mutation of VHL may result

in upregulation of p160 and protection against apoptosis, which

would provide a selective advantage to cancer cells. In fact, several

studies demonstrated that VHL sensitizes cells to apoptosis

induction by different stimuli such as TNF-a, DNA damage,

and NGF withdrawal [33–35]. Furthermore, forced overexpres-

sion of VHL in VHL-null 786-O cells was shown to induce

apoptosis [36]. Restoration of VHL expression in VHL-null 786-

O renal cells also results in reduced tumor growth in nude mice

[36,37]. VHL may suppress tumors by sensitizing cells to apoptosis

through downregulation of p160.

We employed a quantitative proteomics approach to analyze

the components of the p160 complex (Figure 3). Conventional

approach for analyzing the components of protein complex is to

fractionate the immunopurified protein complex along with a

control purification sample by SDS-PAGE, excise the protein

bands specific to the protein complex sample, and determine their

identities by mass spectrometry (Figure 3B, left). Although this

approach is widely used and allows sensitive detection of protein

complex components, each band has to be analyzed separately

and some protein complex components can be missed due to gel

background: In the example shown in Figure 3B, left, protein Y is

Figure 3. Proteomic analysis of p160-interacting proteins. (A) Outline of the IP-ICAT approach. To identify p160-interacting proteins, FLAG-
p160 is immunoprecipitated from transfected 293T cells, which results in isolation of FLAG-p160, its associated proteins ‘‘X’’ and ‘‘Y,’’ and non-
specifically contaminating protein ‘‘E.’’ As a control, lysate of 293T cells transfected with empty FLAG vector is also immunoprecipitated, which
isolates non-specifically contaminating protein ‘‘E.’’ The relative abundance of the protein components in the two immunoprecipitates can be
determined by the ICAT quantitative proteomics approach. The specific components of the FLAG-p160 complex display enrichment in the FLAG-p160
IP sample whereas non-specific contaminant does not. In this way, specific components of the protein complex can be distinguished from non-
specific contaminant. (B) Comparison of the conventional SDS-PAGE-based approach and IP-ICAT approach for the analysis of protein complexes. In
the conventional approach, immunopurified protein complex is fractionated by SDS-PAGE and the protein bands specific to test IP sample (absent in
control IP sample) are excised and analyzed for peptide sequence determination. The protein ‘Y’ is specific to test IP sample, but can be missed by
this approach due to a co-migrating background band. In the IP-ICAT approach, the components of the test IP and control IP samples are compared
without using a gel. (C) Partial list of proteins identified in the p160 complex. Components of the VHL E3 ligase complex as well as several nucleolar
proteins were identified as p160-interacting proteins. VHL displayed obvious enrichment in the FLAG-p160 IP sample, but was difficult to quantify,
which is indicated by ‘‘.’’.
doi:10.1371/journal.pone.0016975.g003
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specific to FLAG-p160 complex, but it may not be identified

because of a co-migrating background band. On the contrary, the

use of ICAT quantitative proteomics to compare specific and

control IP samples (IP-ICAT approach, Figure 3B, right) allows

simultaneous detection of multiple protein complex components

without using a gel. Gentle purification conditions would more

likely preserve unstable protein-protein interactions, but may also

yield higher purification background, which creates a problem for

gel-based analysis. The gel-free IP-ICAT approach is not affected

by purification background and allows the use of more gentle

purification conditions. Using this IP-ICAT approach, we were

able to show that p160 interacts with endogenous VHL ubiquitin

ligase complex (Figure 3C).

The quantitative proteomics approach we devised for the

identification of VHL substrates (Figure 1) will be widely

applicable to other ubiquitin ligases. It is estimated that there

are several hundred E3 ubiquitin ligases encoded in the human

genome, but in most cases, their ubiquitination substrates are

poorly characterized. Ubiquitin ligases and their substrates often

do not interact stably, which has been hampering the identification

Figure 4. Mechanism of p160 degradation by VHL. (A) Deletion mapping of the p160 degron. A series of N-terminal p160 deletion mutants
(diagram shown below) was analyzed for their sensitivity to VHL-mediated degradation in transfected 293T cells by immunoblotting. (B) p160 has a
motif similar to the one surrounding the hydroxylated proline in HIFs. Alignment of p160 amino acid 686-701 and the C-terminal oxygen-dependent
degradation domain (ODD) of HIF-1a, HIF-2a, and HIF-3a is shown. (C) Proline 693 is critical for degradation of p160 by VHL. The effect of co-
transfection of VHL on FLAG-p160DN632 or FLAG-p160DN632P693A was analyzed in 293T cells. Whereas p160 DN632 was efficiently degraded by
VHL, mutation of proline 693 to alanine abolished degradation by VHL. (D) Model for the degradation of p160 by VHL. (E) Prolyl hydroxylation of
p160. FLAG-p160 or FLAG-p160DN694 was transfected into 293T cells and was analyzed by anti-FLAG immunoprecipitation followed by anti-
hydroxyproline or anti-FLAG immunoblotting. (F) Effect of prolyl hydroxylases on p160. 293T cells were transfected with FLAG-p160 alone or in
conjunction with HIF prolyl hydroxylase HPH1, 2, or 3, and p160 expression was analyzed by anti-FLAG immunoblotting using 30 mg whole cell lysate.
(G) Stabilization of HIF-1a by p160. 293T cells were transfected with HA-HIF-1a alone or together with p160 and/or VHL as indicated and the HA-HIF-
1a expression was analyzed by anti-HA immunoblotting using 30 mg whole cell lysate.
doi:10.1371/journal.pone.0016975.g004
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of ligase-substrate pairs. Our protein expression profiling approach

allows the identification of candidate substrate proteins by their

increased abundance in cells without functional ubiquitin ligase

compared with cells that retain the ubiquitin ligase. These

candidates can then be verified by biochemical and molecular

biological analyses. Although mass spectrometry-based quantita-

tive proteomics cannot currently detect every protein in mamma-

lian cells [25], proteomic analysis of sub-proteomes such as

subcellular fractions can increase the proteome coverage by

quantitative proteomics. Protein expression profiling in the

subcellular compartment where a given ubiquitin ligase resides

would enable more sensitive detection of its ubiquitination

substrates. Further refinement of proteomics-based screen we

presented here will allow the identification of ubiquitination

substrates for many other ubiquitin ligases.

Supporting Information

Table S1 List of proteins displaying more than 2-fold
induction upon iron chelation.

(XLS)

Table S2 List of proteins displaying more than 2-fold
reduction upon iron chelation. The list of proteins induced or

reduced by more than 2-fold upon iron chelation is available as

‘list of proteins induced by iron chelation.xls’ and ‘list of proteins

reduced by iron chelation.xls’ files, respectively. These datasets

contain proteins with ProteinProphet probability score$0.5.

Protein abundance ratios were calculated using ASAPRatio

software tool. The description of each column in these data files

is as follows: A: ProteinProphet probability score B: Protein

abundance ratio (desferrioxamine (+)/desferrioxamine (-)) C:

Protein name

(XLS)

Table S3 List of proteins coimmunoprecipitated with
p160. The list of proteins that displayed more than 2-fold

enrichment in FLAG-p160 immunoprecipitate is available as ‘list

of proteins coimmunoprecipitated with p160.xls’ file. This dataset

contains proteins with ProteinProphet probability score$0.5.

Protein abundance ratios were calculated using ASAPRatio

software tool. Abundance ratio of 999 denotes that the protein

displayed obvious enrichment in the FLAG-p160 immunoprecip-

itate, but was difficult to quantify. The description of each column

in this data file is as follows: A: ProteinProphet probability score B:

Protein abundance ratio (FLAG-p160/FLAG-vector) C: Protein

name

(XLS)
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