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Abstract 

Breast cancer (BC) remains the most frequent type of cancer in females worldwide. However, the pathogenesis 
of BC is still under the cloud, along with the huge challenge of early diagnosis, which is widely acknowledged as 
the key to a successful therapy. Metabolomics, a newborn innovative technique in recent years, has 
demonstrated great potential in cancer-related researches. The aim of this review is to look back on clinical and 
cellular metabolomic studies in the diagnosis of BC over the past decade, and provide a systematic summary of 
metabolic biomarkers and pathways related to BC diagnosis. 
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1. Introduction 
Breast cancer (BC) has become the most common 

cancer in women globally, accounting for nearly 2.1 
million newly diagnosed cases in 2018 based on the 
data from Globocan [1]. Previous researches have 
evidenced that early diagnosis and timely treatment 
of BC would exert a significant effect on improving 
the prognosis of BC patients [2]. As the most widely 
used tumor markers for BC, neither CA 15-3 nor CEA 
have satisfactory sensitivities and specificities for 
early diagnosis [3]. Although annual digital 
mammography (DM) has been regarded as an 
effective way to reduce the mortality of BC in 
age-appropriate asymptomatic women, the sensitivity 
tends to depend on tissue density and tumor growth 
patterns [4]. Recent studies indicated that the digital 
breast tomosynthesis (DBT) might have the potential 
to replace DM in the early detection of BC, with a 
preponderance of sensitivity in dense breast to some 
extent, but an overview of these small-scale evidences 
came to a conclusion that it is still insufficient to 
confirm a shift from DBT to DM [5]. Therefore, novel 
effective and convenient methods for early diagnosis 
of BC are urgently needed. 

Metabolomics is an emerging powerful 
technique measuring endogenous metabolic 
substances in response to internal and external 
changes of the whole body [6] (Figure 1). The 
molecules produced by cancer cells during their 
growth could enter into the urine, blood or tissue, 
which underlies the potential to discover valuable 
biomarkers for early diagnosis [7]. In recent years, the 
technique of metabolomics has been widely used in 
the discovery of biomarkers in various cancers and 
served as an effective approach for personalized 
medicine. 

In this study, we performed a systematic review 
about the clinical and cellular metabolomic researches 
in the diagnosis of BC over the past decade, pursuing 
an overall perspective over the potential application 
of metabolomics in the diagnosis of BC and discovery 
of reliable metabolic biomarkers and pathways for 
BC.  

2. Materials and Methods 
2.1 Literature Searching 

Researchers conducted an advanced retrieval on 
the PMC platform with the following searching 
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strings: (“metabolomics” OR “metabolic profiling” 
OR “metabolic profiles” OR “metabolic biomarkers” 
OR “metabolome” OR “metabolic protraits”) AND 
(“breast” OR “mammary”) AND (“tumor” OR 
“tumour” OR “cancer” OR “carcinoma” OR 
“neoplasm”). Literatures published between 
2008/01/01 and 2019/08/01 were included in the 
index, with a result of 12068 records. Two researchers 
searched the articles independently and the third one 
made the final decision if necessary. 

2.2 Inclusion and Exclusion Criteria 
To lower the missing rate of targeted records, 

relevant metabolomic studies were all included except 
the following: 1) purposes beyond the diagnosis of 
BC; 2) review articles; 3) metabolites detected without 
metabolomics methodology; 4) animal models; 5) 
deficiency of concrete metabolites or their level 
variations. Eventually, 50 items including 38 clinical 
researches, 11 cellular researches and 1 clinical and 

cellular research were remained with required 
information recorded (Figure 2). 

2.3 Data Extraction 
Information from selected literatures was 

extracted as followed. 
1) Title, first author and publication year; 
2) Purpose, study subjects (case and control) and 

analytical techniques; 
3) The significant metabolites with changing 

trends. 

2.4 Statistical Analysis 
Frequencies on detecting instruments, biological 

specimens, sample sizes, study designs and 
repeatedly reported biomarkers were counted and 
graphed. The pathway analysis of metabolite markers 
in BC, including enrichment analysis and pathway 
topology analysis, was performed using the online 
software of Metaboanalyst (http://www.meta 
boanalyst.ca/). 

 
 
 

 
Figure 1. Systems biology approaches. 
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Figure 2. Flow chart of the literature search and selection. 

 

3. Results  
3.1 Clinical Researches 

3.1.1 Study Characteristics 
A total of 39 articles[8-46] were included in the 

final analysis (Supplementary Table S1), among 
which 22 studies were performed with blood (serum 
or plasma), 8 with urine, 5 with tissue, 5 with saliva 
and 1 with ductal fluid (Figure 3A). 
Mass-spectrometry based metabolomics studies 
reached 35 articles, while NMR was adopted in 6 
studies (Figure 3B). Eighteen studies were targeted, 
and the other 22 studies were untargeted (Figure 3C). 
Study sample sizes summing the case and control 
varied from 3 to 1172, with only 2 studies bigger than 
500 (Figure 3D). 

3.1.2 Analysis of High Frequency Metabolic 
Biomarkers 

In all, 492 metabolite markers mentioned in these 
diagnosis-related studies were recorded. Table 1 
summarized 33 metabolic biomarkers with high 
frequency (reported in ≥ 3 studies). Tyrosine has the 
highest frequency with 12 hits in total, followed by 
alanine reported with 11 hits. In studies focusing on 
the tissue [16, 18, 36, 37, 40], most significant 
metabolites tended to be up-regulated except glucose. 
Notably, changes of some fatty acids like palmitic 
acid, linoleic acid and stearic acid were consistently 
increased in the blood.  

3.1.3 Analysis of Metabolic Pathways 
A total of 492 significant metabolites were 

imported to MetaboAnalyst for the identification of 

involved metabolic pathways (Figure 4). Those 
significantly enriched pathways (raw P<0.005) 
included arginine and proline metabolism, glycine, 
serine and threonine metabolism, aminoacyl-tRNA 
biosynthesis, alanine, aspartate and glutamate 
metabolism, glutathione metabolism and so on (Table 
2). Particularly, two pathways (alanine, aspartate and 
glutamate metabolism and arginine and proline 
metabolism) performed an impact of 0.85945 and 
0.70435, respectively. 

3.1.4 Diagnostic potential of metabolite markers for 
discriminating BC 

Twenty-two of these studies comparing BC 
patients with controls reported exact AUC values 
ranging from 0.627 to 1.000 (Table 3). In addition, 
Mónica Cala et al. [22] demonstrated that specific 
built-up biomarkers like dimethylheptanoylcarnitine 
and succinic acid could have a higher sensitivity and 
specificity (93.5%, 86.2%) than either dimethylhepta-
noylcarnitine (71.0%, 75.9%) or succinic acid (67.7%, 
75.9%). Notably, the stage of BC patients has a certain 
influence on the results according to three selected 
studies [13, 30, 41]. 

3.2 Cellular Researches 

3.2.1 Study Characteristics 
Cellular researches were relatively fewer than 

clinical researches, and 12 cellular studies [32, 47-57] 
were ultimately included (Supplementary Table S2). 
MCF-10A, mentioned in 8 articles, led the most 
common normal cell line being studied. As for BC cell 
lines, MDA-MB-231 was adopted most frequently in 8 
studies, followed by MCF-7 in 7 studies and both 
MDA-MB-453 and BT-474 in 3 studies (Figure 5A). 
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Only one study detected metabolites using a 
NMR-related methodology, and the other 11 studies 
all adopted mass-spectrometry based metabolomics 

(Figure 5B). Targeted and untargeted metabolomics 
both accounted for 6 articles (Figure 5C).  

 

Table 1. High frequency clinical metabolic biomarkers related to BC diagnosis 

No. Metabolites Hits Changing Direction in BC 
up down 

1 Tyrosine 12 6 serum[15, 27], plasma[17], tissue[18], saliva[42], urine[46] 6 plasma[9, 34, 41], serum[14, 18, 23]  
2 Alanine 11 6 saliva[11, 42], serum[15], plasma[21, 41], urine[43] 5 plasma[9, 34], serum[14], urine[22], serum&plasma[30]  
3 Glutamic acid 10 6 serum[15], tissue[16,18], plasma[21], saliva[17,42] 4 plasma[9], serum[14], urine[22], serum&plasma[32]   
4 Valine 10 4 saliva[11, 42], serum[15], plasma[21] 6 plasma[9, 17, 24, 34], serum[14], urine[22] 
5 Phenylalanine 9 5 serum[15], tissue[18], saliva[26, 42], urine[46] 4 plasma[9, 34, 41], serum[18]  
6 Glutamine 9 4 saliva[11], serum[15],tissue[18], serum&plasma[32] 5 plasma[12, 17, 24, 41] serum[14] 
7 Lysine 9 3 plasma[17, 41], saliva[42] 6 plasma[9, 12, 24], serum[14, 23, 27] 
8 Isoleucine 8 4 saliva[11], serum[15], plasma[21], urine[43]  4 serum[14], plasma[17, 34], serum&plasma[32]  
9 Histidine 7 3 serum[15], tissue[18], saliva[26] 4 serum[14, 23, 27], plasma[41] 
10 Choline 7 3 saliva[11], plasma[12], tissue[36] 4 serum[23], serum&plasma[30, 32], plasma[34] 
11 Glycine 6 4 serum[15], tissue[37], plasma[41] , saliva[42] 2 urine[22], serum&plasma[30]  
12 Arginine 6 3 serum[10], saliva[11], plasma[17] 3 serum[14, 15], plasma[24] 
13 Asparagine 6 4 plasma[13], serum[15], serum&plasma[32], urine[43]  2 plasma[9], serum[27] 
14 Proline 6 3 serum[15], plasma[41], saliva[42] 3 plasma[13], serum[14, 27] 
15 Serine 6 5 saliva[11, 42], serum[15], plasma[21, 41]  1 serum&plasma[30]  
16 Creatine 6 3 tissue[18, 37], urine[43] 3 serum[18], plasma[24, 34] 
17 Leucine 6 2 saliva[11], urine[43] 4 plasma[9, 34], serum[14], urine[22]  
18 Tryptophan 6 1 serum[33]  5 serum[14, 18, 27], urine[22], plasma[41] 
19 Lactate 6 4 saliva[11], plasma[17, 21], tissue[37] 2 serum&plasma[32], plasma[34] 
20 Threonine 5 2 plasma[41], saliva[42] 3 plasma[9], serum[14], urine[22] 
21 Taurine 5 4 plasma[13, 24], serum[15], tissue[37] 1 saliva[42] 
22 Glucose 5 2 plasma[17], urine[43] 3 serum[23], plasma[34], tissue[37] 
23 Aspartic acid 4 3 serum[10], tissue[16], saliva[42] 1 serum&plasma[32] 
24 Stearic acid 4 4 plasma[13, 21, 24], serum[38]  
25 Ornithine 4 2 plasma[41], saliva[42] 2 plasma[9], serum[14] 
26 Cysteine 4 2 serum[15], serum&plasma[32] 2 urine[22], serum[27] 
27 Glycerophosphocholine 4 2 plasma[12], tissue[36] 2 serum&plasma[32], saliva[42] 
28 Pyruvate 3 2 serum&plasma[30], plasma[34] 1 serum[18] 
29 Linoleic acid 3 3 plasma[21, 24], serum[38]  
30 Palmitic acid 3 3 plasma[13, 21], serum[38]  
31 Uracil 3 2 serum&plamsa[32], urine[43] 1 urine[22] 
32 Urea 3 2 urine[43, 45] 1 plasma[8] 
33 Formate 3 1 urine[43] 2 serum[10], plasma[17] 

 

 
Figure 3. Characteristics of clinical studies. 
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Table 2. Significant metabolic pathways related to BC diagnosis in 
clinical researches 

Pathway Name Raw P Holm 
Adjust 

FDR* Impact 

Arginine and proline metabolism 6.69E-09 5.35E-07 5.35E-07 0.70435 
Glycine, serine and threonine metabolism 4.27E-08 3.37E-06 1.71E-06 0.53424 
Aminoacyl-tRNA biosynthesis 5.59E-07 4.36E-05 9.45E-06 0.22536 
Alanine, aspartate and glutamate 
metabolism 

5.61E-07 4.36E-05 9.45E-06 0.85945 

Nitrogen metabolism 5.91E-07 4.49E-05 9.45E-06 0.00830 
Glutathione metabolism 1.80E-05 0.0013531 2.41E-04 0.34568 
beta-Alanine metabolism 2.77E-05 0.0020517 3.17E-04 0.41674 

Pathway Name Raw P Holm 
Adjust 

FDR* Impact 

Glycerophospholipid metabolism 6.21E-04 0.0453150 0.006208 0.41257 
Cysteine and methionine metabolism 0.001042 0.0750390 0.009264 0.50502 
Glyoxylate and dicarboxylate 
metabolism 

0.001342 0.0952670 0.010734 0.46883 

Citrate cycle (TCA cycle) 0.003391 0.2373800 0.022608 0.42880 
Taurine and hypotaurine metabolism 0.003391 0.2373800 0.022608 0.46583 
Pantothenate and CoA biosynthesis 0.003890 0.2645400 0.023940 0.25300 

*FDR: false discovery rate 
 

 
 

 
Figure 4. Pathway analysis for clinical significant metabolites. 

 
Figure 5. Characteristics of cellular studies. 
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Table 3. The potential for metabolite markers in the diagnosis of BC 

Ref. Sample Sensitivity Specificity AUC Potential Biomarker(s) Note 
Baowen Yuan [9] 
(2019) 

plasma - - 0.870  all significant metabolites BC vs HC(training) 
- - 0.800  all significant metabolites BC vs HC(validation) 

Paniz Jasbi [13] 
(2019) 

plasma 80.00% 75.00% 0.890  all significant metabolites BC vs HC 
- - 0.760  proline BC vs HC 
86.00% 75.00% 0.870  all significant metabolites EBC vs HC 

Dan Tudor Eniu [14] 
(2019) 

serum 83.33% 76.92% 0.850  isoleucine BC vs HC 
66.67% 92.31% 0.850  tryptophan BC vs HC 

Xinyang Wang [15] 
(2018) 

serum - - 0.924  glutamic acid BC vs HC 
- - 0.901  taurine BC vs HC 
- - 0.749  ethylmalonic acid BC vs HC 

Shankar Suman [17] 
(2018) 

plasma - - 0.818  β-glucose BC vs HC 
- - 0.780  α-glucose BC vs HC 
- - 0.780  lactate BC vs HC 
- - 0.697 hydroxybutyrate BC vs HC 
- - 0.652  N-acetyl glycoprotein BC vs HC 
- - 0.627 lysine BC vs HC 

Tushar H. More [18] 
(2018) 

tissue - - 0.970  guanine  IDC vs HC 
- - 0.830  tyrosine  IDC vs BE 
- - 0.960  tyrosine  IDC vs HC 

serum - - 0.980  ascorbic acid  IDC vs HC 
- - 0.830  uridine diphosphate  IDC vs BE 

Mónica Cala [22] 
(2018) 

urine 93.50% 86.20% 0.915  dimethylheptanoylcarnitine +succinic acid BC vs HC 

Mariona Jové [24] 
(2017) 

plasma 100.00% 100.00% 1.000  C26H43ClN4S3 BC vs HC 
100.00% 100.00% 1.000  C26H51N5O4 BC vs HC 
100.00% 100.00% 1.000  C9H16O3S BC vs HC 
100.00% 100.00% 0.999  C23H30N2S BC vs HC 
100.00% 100.00% 0.995  caproic acid BC vs HC 
100.00% 90.00% 0.952  taurine BC vs HC 
90.00% 90.00% 0.959  stearamide BC vs HC 
100.00% 90.00% 0.935  linoleic acid BC vs HC 

Naila Irum Hadi [25] 
(2017) 

serum 96.00% 100.00% 0.990  all significant metabolites BC vs HC 

Liping Zhong [26] 
(2016)  

saliva 92.60% 91.70% 0.929  MG(0:0/14:0/0:0) BC vs HC 
77.80% 100.00% 0.920  LysoPC (18:1) BC vs HC 
81.50% 91.70% 0.920  LysoPC (22:6) BC vs HC 

Qingjun Wang [27] 
(2016) 

serum 90.30% 87.40% 0.944  all significant metabolites BC vs BE(HC) 

Takahiro Takayama [28] 
(2016) 

saliva 68.90% 74.40% 0.744  spermine. BC vs HC 

Luisa Matos Do Canto [29] 
(2016) 

ductal fluid 90.70% 88.40% 0.956  all significant metabolites BC vs HC 

Sijia Huang [30] 
(2016) 

plasma - - 0.986  all significant metabolites BC vs HC(training) 
- - 0.995  all significant metabolites EBC vs HC(training) 
- - 0.923  all significant metabolites BC vs HC(testing) 
- - 0.905  all significant metabolites EBC vs HC(testing) 

serum - - 0.995  all significant metabolites BC vs HC(validation) 
- - 0.902  all significant metabolites EBC vs HC(validation) 

Guoxiang Xie [32] 
(2015) 

plasma 100.00% 100.00% 1.000  aspartic acid BC vs HC(training) 
100.00% 94.30% 0.996  glycerolphosphate BC vs HC(training) 

plasma 85.40% 95.10% 0.935  aspartic acid BC vs HC(validation) 
95.10% 93.20% 0.971  glycerolphosphate BC vs HC(validation) 

Yunping Qiu [35] 
(2013) 

plasma 98.10% 96.00% - LysoPC a C16:0, PC ae C42:5 and PC aa C34:2 BC vs HC 

Tone F. Bathen [37] 
(2013) 

tissue 91.00% 93.00% - all significant metabolites BC patients 
tumor tissue vs non-involved adjacent tissue 

Wuwen Lv [38] 
(2012) 

serum 82.80% 85.30% 0.892  C16:0 BC vs HC 
89.70% 85.00% 0.925  C16:0 BC vs BE 

Yohei Miyagi [41] 
(2011) 

plasma - - 0.778  all significant metabolites BC vs HC 
- - 0.813  all significant metabolites Stage 0 BC vs HC  
- - 0.754  all significant metabolites Stage I BC vs HC 
- - 0.786  all significant metabolites Stage II BC vs HC 
- - 0.755  all significant metabolites Stage III BC vs HC 

Masahiro Sugimoto [42] 
(2010) 

saliva - - 0.973  all significant metabolites BC vs HC 

Carolyn M. Slupsky [43] 
(2010) 

urine 100.00% 93.00% - all significant metabolites BC vs HC 

Hojung Nam [45] 
(2009) 

urine - - 0.790  all significant metabolites BC vs HC 
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Figure 6. Pathway analysis for cellular significant metabolites. 

 

Table 4. High frequency cellular metabolic biomarkers related to 
BC diagnosis 

No. Metabolites Hits Changing direction in BC 
up down 

1 Leucine 2  2[47, 51] 
2 Isoleucine 2  2[47, 51] 
3 Valine 2  2[47, 51] 
4 Phenylalanine 2  2[47, 51] 
5 Glutamine 2  2[47, 57] 
6 Glucose 2  2[53, 57] 
7 Phosphocholine 2 2[53, 56]  
8 3-Methylcytidine 2 2[49, 52]  
9 5-Methyluridine 2 2[49, 52]  

 

Table 5. Significant metabolic pathways related to BC diagnosis in 
cellular researches 

Pathway Name Raw P Holm 
Adjust 

FDR* Impact 

Aminoacyl-tRNA biosynthesis 6.23E-08 0.00000 4.98E-06 0.11268 
Nitrogen metabolism 9.91E-07 0.00008 3.97E-05 0.00830 
Glycerophospholipid metabolism 1.66E-05 0.00129 4.42E-04 0.32074 
Glycolysis or Gluconeogenesis 7.21E-05 0.00555 0.0014422 0.14226 
Alanine, aspartate and glutamate 
metabolism 

3.62E-04 0.02753 0.0057956 0.51757 

Valine, leucine and isoleucine 
biosynthesis 

5.79E-04 0.04345 0.006910 0.06148 

Glycine, serine and threonine 
metabolism 

6.05E-04 0.04474 0.006910 0.13604 

Cyanoamino acid metabolism 0.0015061 0.10995 0.015061 0.00000 

*FDR: false discovery rate 
 

3.2.2 Analysis of High Frequency Metabolic 
Biomarkers 

There were 84 significant metabolites in the BC 
cells compared with normal breast epithelial cells. 

Differential metabolites reported in two studies 
included decreased amino acids (e.g. leucine, 
isoleucine, valine, phenylalanine [47, 51] and 
glutamine [47, 57]), increased lipids (e.g. 
phosphocholine [53, 56]) and RNA metabolites (e.g. 
3-methylcytidine and 5-methyluridine [49, 52]). 
Moreover, decreased glucose was observed in two 
studies [53, 57] (Table 4).  

3.2.3 Analysis of Metabolic Pathways 
A total of 84 metabolites were imported to 

MetaboAnalyst for the identification of involved 
metabolic pathways (Figure 6). Finally, significantly 
enriched metabolic pathways (raw P<0.005) included 
aminoacyl-tRNA biosynthesis, glycerophospholipid 
metabolism, glycolysis or gluconeogenesis, alanine, 
aspartate and glutamate metabolism, glycine, serine 
and threonine metabolism and so on (Table 5). 
Notably, alanine, aspartate and glutamate metabolism 
had the highest impact value (impact= 0.51757). 

4. Discussion 

In this study, we performed a systematic 
analysis of clinical and cellular metabolomic studies 
on BC diagnosis. As a result, a series of potential 
biomarkers were reported and summarized. A total of 
33 high-frequency metabolites in clinical researches 
(reported in ≥3 studies) were listed, and some 
metabolic biomarkers (e.g. palmitic acid, linoleic acid, 
stearic acid and lipids.) showed consistent changing 
trends. In addition, pathway analysis revealed several 
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important metabolic pathways for BC, particularly 
alanine, aspartate and glutamate metabolism with the 
highest impact, both in cellular and clinical studies. 

When comparing clinical and cellular researches, 
we found that some significant metabolites (e.g. 
leucine, isoleucine, valine, phenylalanine, glutamine 
and glucose) were repeatedly reported in both types 
of studies. Moreover, five metabolic pathways were 
significantly enriched in both types of studies 
(FDR<0.05), including glycine, serine and threonine 
metabolism, aminoacyl-tRNA biosynthesis, alanine, 
aspartate and glutamate metabolism, nitrogen 
metabolism and glycerophospholipid metabolism. 
Along with the heterogeneity of BC, metabolites in 
different patients could vary based on different 
samples, tumor characteristics and dietary structures 
[58]. By contrast, cellular studies have an advantage of 

avoiding the heterogeneity resulting from diverse 
samples. However, metabolites detected could also be 
fluctuant, which is induced by the incubation time [47, 
51] and PH of mediums [48].  

Screening mammography has been 
acknowledged as the gold standard for early 
detection of BC, with sensitivities of 54%~77% [59]. 
Despite the rapid development of many imaging 
techniques, their utilizations are limited to the high 
cost and insufficient sensitivities and specificities [60]. 
Due to the important role of immune system in the 
process of tumors’ origin and development, tumor 
antigen-specific autoantibodies can be potentially 
applied to cancer detection as early biomarkers. 
However, currently used tumor markers usually have 
low diagnostic specificities and sensitivities as well 
[61]. Vathany’s study suggested that cancer 

 
Figure 7. Metabolism in the diagnosis of BC. The red stand for metabolites with hits more than 3, and the green stand for 2-hit frequency metabolites. Abbreviation: G-6-P: 
glucose-6-phosphate; F-6-P: fructose-6-phosphate; F-1,6-2P: fructose-1, 6-bishosphate; G-3-P: glyceraldehyde-3-phophate; 1,3-DPG: 1,3-diphosphoglyceric acid; 3-PGA: 
3-phosphoglycerate; 2-PGA: 2-phosphoglycerate; PEP: phosphoenolpyruvate; DHAP: dihydroxyacetone phosphate; TG: triglyceride; Glycerol-3-P: glycerol-3-phosphate; 
1,2-DAG: 1,2-diacylglycerol; PE: phosphatidyl ethanolamine; PC: phosphatidylcholine; CDP DG: cytidine-5'-diphosphate 1,2-diacyl-sn-glycerol; GPC: glycerophosphocholine; 
MVA: mevalonic acid; HMG CoA: β-hydroxy-β-methylglutaryl- coenzyme A; TCA: tricarboxylic acid. 
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biomarkers could be measured in serum by 
immunological techniques with superiorities of 
convenience, relative non-invasion and being tested 
independently by operators [61]. As evidenced by the 
preponderant sensitivities and specificities in 
previous studies, metabolomics has shown 
advantages in the early diagnosis of BC. It is well 
known that an acceleration of glyconeogenesis, 
glycolysis and fat mobilization, and a decrease in 
protein synthesis, are the main metabolic changes in 
malignant tumors. The following discussion will 
expand from three basic metabolic pathways to 
discover their sensitivities and specificities for BC 
(Figure 7).  

4.1 Energy Metabolism 
Altered utilization of energy relative to normal 

cells caused by the proliferative tumor cells is an 
acknowledged hallmark of several cancers [62]. In 
glycolysis metabolism, a decreasing trend of glucose 
[23, 34, 37, 53, 57] and an increasing tendency of 
lactate [11, 17, 21, 37, 57] were observed in BC. This 
phenomenon might be accounted for a shift in energy 
production of tumor cells with a preference to 
anaerobic glycolysis even in the presence of oxygen, 
known as the Warburg effect [63], which is a better 
way for the rapid acquisition of energy and 
self-protection by immune disruptions with an acidic 
environment [64]. As a result of favoring the carbon 
source, MCF-7 cells were more likely to accomplish 
the complete oxidation of carbon consumption than 
48R cells [57]. Moreover, higher lactate levels had 
been found associated with lower 5-year survival 
rates [65]. Notably, an increasing level of pyruvate can 
be bound up with an enhanced glycolytic activity [43, 
66]. A high level of anaerobic glycolysis could reduce 
intermediates in the TCA cycle, resulting in a 
suppressed TCA cycle [43], which might be one of the 
reasons for down-regulations of branched chain 
amino acids (BCAAs) in the tissue of BC including 
leucine, isoleucine and valine [67]. 

4.2 Amino Acid Metabolism 
Former studies suggested that several decreased 

amino acids might be the result of excessive 
consumption or preferential utilization to sustain the 
uncontrolled growth of BC cells [18, 22, 24, 27, 42, 47, 
51, 68]. Based on clinical metabolomic studies, 
tyrosine and alanine shared the highest frequency 
with 12 hits, indicating they might be sensitive 
metabolites in the diagnosis of BC. Although the 
changing trend of tyrosine among different studies 
were inconsistent, previous research has 
demonstrated that tyrosine deficiency could result in 
BC cell growth arrest [69], and inhibition of tumor 

growth has been confirmed in low phenylalanine and 
tyrosine diets in an animal study [70]. Recent studies 
also showed that alanine had a significant difference 
between estrogen receptor positive and estrogen 
receptor negative breast cancer [71-72]. In addition, 
alanine and valine could result in cell damage by 
decreasing the activity of manganese superoxide 
dismutase (MnSOD), thereby converting benign 
tumor to malignant tumor [73].  

 Pathway analysis showed that alanine, aspartate 
and glutamate metabolism played an important role 
in the development of BC. The down-regulated 
glutamine indicated that glutamic acid might be 
accumulated in the body, which promotes the 
occurrence of BC by enhancing the proliferation of 
mammary epithelial cells [73] through ATP 
production and biosynthesis of nucleotides [74]. 
Moreover, the up-regulated glutamic acid via 
glutaminolysis could maintain the TCA cycle [75]. 
Researchers also observed that the reversibility of 
glutamine-glutamate was decreasing in MCF-7 cells, 
implying that BC cells might be partial to the 
irreversible glutaminase [57]. The change of 
glutamine could be reflected in the fluctuant levels of 
alanine and aspartic acid through the abnormal 
transport of ammonia. Higher activities of histidine 
decarboxylase might result in decreasing histidine 
since decarboxylation of histidine by this enzyme in 
the colorectal cancer has been reported [76-77]. 
Therefore, the low concentrations of histidine could 
be accounted for increased aspartic acid and glutamic 
acid, which could be converted to oxaloacetic acid and 
α-ketoglutaric acid, the intermediates of TCA cycle. 
Aspartic acid has been shown to possess a higher 
sensitivity for BC compared with gastric and 
colorectal cancer [32]. Therefore, increasing utilization 
of aspartic acid by BC cells might result in 
down-regulated aspartic acid and oxaloacetate in the 
blood. Notably, as a transamination product of 
aspartic acid, asparagine has a vital influence on the 
metastasis of BC [78]. Furthermore, with the role of 
modifying the indices of oxidative stress and 
membrane damage, increased hypotaurine could be 
potentially linked with BC [79].  

4.3 Lipid Metabolism 
Previous studies had put large efforts to figure 

out the importance of lipid metabolism in the 
diagnosis of breast cancer [21, 26, 31, 35, 38-40, 50, 54, 
56], but deterministic conclusions are still on the road 
due to the complexity. It is well known that an 
increase of choline in the tissue could be a hallmark of 
aggressiveness breast cancer [80], therefore, excessive 
consumption of choline could result in its lower blood 
levels [23, 30, 32, 34]. The phenomenon that 
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phospholipid metabolism shares the trend of 
upregulation integrally [21, 23] could be explained by 
an enhanced fatty acid (FFA) oxidation to confer 
limitless growth or survival advantage[81], mainly 
through inducing more exalted cell membrane 
turnover and lipid activity in intracellular signal 
transduction [82-84]. Remarkably, increased 
phosphocholine has been reported in other cancers, 
such as lung cancer [85], prostate cancer [86], brain 
cancer [87], colorectal cancer [88] and cervical cancer 
[89]. Fatty acid synthase (FANS) has also been 
confirmed to be highly expressed in the MCF-7 cells 
and tissue of BC patients [90]. Linoleic acid, stearic 
acid and palmitic acid were consistently detected in 
different studies with elevated levels in BC. Linoleic 
acid could promote BC via modulating Breast Cancer 
Susceptibility Gene 1 (BRCA1) [91]. Meanwhile, 
linoleic acid could increase the production of 
20-hydroxyeicosatetraenoic acid (12-HETE), 
15-hydroxyeicosatetraenoic acid (15-HETE) and 
prostaglandin E2 [92], which helps increase the 
modulation of adhesion and the membrane fluidity to 
promote BC [93]. Palmitic acid and stearic acid, as two 
common saturated fatty acids, were confirmed to 
inhibit insulin metabolism and attenuate insulin 
signal transduction [94]. Furthermore, a previous 
study demonstrated that a high level of palmitic acid 
in erythrocyte could increase the risk of BC [95]. 
Acetone, one of ketone bodies, was also suggested to 
be an aggressive biomarker of BC cells [53]. As 
another important way to provide energy in lipid 
metabolism, ketone bodies that are promoted by 
glycolytic stromal cells might provoke tumor growth 
and metastasis by accelerating oxidative 
mitochondrial metabolism [96].  

5. Conclusions 
In conclusion, numerous available publications 

have demonstrated the potential of metabolic 
profiling applied to the diagnosis of BC. Our review 
presents that there indeed exist certain metabolisms in 
BC patients, which could lay foundation for 
biomarker discovery for BC diagnosis and shed new 
light into the development and progression of BC. 
Moreover, with the advantages of convenience and 
relative non-invasion compared with imaging 
screening and tissue biopsy, metabolomics may be 
considered as an applicable tool in the diagnosis of 
early BC. 
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