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Abstract

Background: Osteoarthritis (OA) is the most widespread degenerative joint disease. Inflamed synovial cells contribute to the
release of inflammatory and catabolic mediators during OA leading to destruction of articular tissues. We have shown
previously that CO-releasing molecules exert anti-inflammatory effects in animal models and OA chondrocytes. We have
studied the ability of CORM-2 to modify the migration of human OA synoviocytes and the production of chemokines and
other mediators sustaining inflammatory and catabolic processes in the OA joint.

Methodology/Principal Findings: OA synoviocytes were stimulated with interleukin(IL)-1b in the absence or presence of
CORM-2. Migration assay was performed using transwell chambers. Gene expression was analyzed by quantitative PCR and
protein expression by Western Blot and ELISA. CORM-2 reduced the proliferation and migration of OA synoviocytes, the
expression of IL-8, CCL2, CCL20, matrix metalloproteinase(MMP)-1 and MMP-3, and the production of oxidative stress. We
found that CORM-2 reduced the phosphorylation of extracellular signal-regulated kinase1/2, c-Jun N-terminal kinase1/2 and
to a lesser extent p38. Our results also showed that CORM-2 significantly decreased the activation of nuclear factor-kB and
activator protein-1 regulating the transcription of chemokines and MMPs in OA synoviocytes.

Conclusion/Significance: A number of synoviocyte functions relevant in OA synovitis and articular degradation can be
down-regulated by CORM-2. These results support the interest of this class of agents for the development of novel
therapeutic strategies in inflammatory and degenerative conditions.
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Introduction

There is substantial evidence that synovitis contributes to the

progression of osteoarthritis (OA). The inflamed synovium releases

pro-inflammatory and catabolic mediators with ultimately destructive

consequences on articular tissues. Synovial cells attach to cartilage

and bone fragments and have been implicated in sustaining joint

damage [1]. Pro-inflammatory cytokines produced by both chon-

drocytes and synoviocytes have been involved in joint destruction

during OA [2,3]. In particular, interleukin(IL)-1b activates a broad

array of signaling pathways in joint tissues which shift cartilage

homeostasis toward catabolism [4]. Evidence from previous studies

indicate that OA synovial cells are activated by pro-inflammatory

cytokines to release cytokines and chemokines, reactive oxygen

species (ROS) and other mediators that likely contribute to sustain the

inflammatory response [5], as well as proteases such as matrix

metalloproteinases (MMPs) which act in a synergistic manner to

degrade the components of connective tissue [6].

Heme oxygenase-1 (HO-1) is induced by oxidative stress and

different stimuli as a cell defense mechanism due to its

antioxidant and anti-inflammatory effects (reviewed in [7]). It is

also known that one of the metabolites derived from HO activity,

carbon monoxide (CO) elicits essential biological functions and

mediates many of the effects that are attributed to HO activity.

Recently, CO-releasing molecules (CO-RMs) have been synthe-

sized as a new drug class able to reproduce many of the biological

effects of HO and CO [8,9]. We have shown previously that

CORM-3 exerts anti-arthritic effects in mice [10] and CORM-2

reduces the production of some inflammatory mediators and

MMPs in OA chondrocytes [11,12]. However, evidence to show

whether CO-RMs are capable of modulating the metabolism of

OA synoviocytes is lacking. Therefore, we investigated the

potential of CORM-2 to regulate key metabolic functions of

human OA synoviocytes in relation with synovitis and joint

degeneration.
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Results

CORM-2 does not induce HO-1 in the presence of IL-1b
stimulation

In some cellular systems, CO-RMs have been shown to induce

HO-1 [9]. To determine whether CORM-2 was able to induce

HO-1 in our experimental conditions, we examined the expression

of HO-1 using Western blot and quantitative PCR methods. We

found that CORM-2 treatment of basal OA synoviocytes weakly

increased HO-1 expression at protein and mRNA levels without

reaching statistical significance (Figure 1A and 1B). As described

previously [13], IL-1b decreased HO-1 expression in OA

synoviocytes. In cells stimulated with IL-1b, CORM-2 increased

HO-1 mRNA levels at 200 mM but failed to enhance HO-1

protein. Therefore, the possible effects of CORM-2 in OA

synoviocytes stimulated by IL-1b are not dependent on HO-1

induction. As expected, no effects were obtained with the negative

control RuCl3.

Effects of CORM-2 on proliferation and migration of OA
synoviocytes stimulated by IL-1b

IL-1b activates OA synoviocytes leading to increased prolifer-

ation and migration. We investigated the possible regulatory

effects of CORM-2 on these cell functions. As shown in Figure 2A,

CORM-2 significantly reduced cell proliferation induced by IL-1b
at the concentrations of 100 and 200 mM. Interestingly, CORM-2

strongly inhibited cell migration in a concentration-dependent

manner, in the presence of IL-1b.

Treatment with CORM-2 down-regulates chemokine
production

According to the inhibitory effects of CORM-2 in cell

migration, we hypothesized that CORM-2 might affect the

production of key chemokines induced by IL-1b. Therefore, we

Figure 1. Effect of CORM-2 on HO-1 protein (A) and mRNA
expression (B) in OA synoviocytes. Cells were stimulated with IL-1b
(10 ng/ml) for 24 h (A) and 16 h (B) in the presence or absence of
CORM-2 (50, 100, 200 mM) or RuCl3 (200 mM). Protein expression was
determined in cell lysates by Western blotting and mRNA levels were
determined by real-time PCR. Relative expression of HO-1 and b-actin
protein bands was calculated after densitometric analysis. Data are
expressed as mean6S.E.M. Samples from 4 patients were used.
++P,0.01 with respect to nonstimulated cells. **P,0.01 with respect
to IL-1b.
doi:10.1371/journal.pone.0024591.g001

Figure 2. Effect of CORM-2 on synoviocyte proliferation and
migration rate. Cells were stimulated with IL-1b (10 ng/ml) for 24 h in
the presence or absence of CORM-2 (50, 100, 200 mM) or RuCl3
(200 mM). (A) Cell proliferation was determined by the MTT assay. (B)
Transwell chambers were kept in culture for 24 h. Upper compartment
was detached and cells migrated to the lower side were counted in 6–8
microscopic power fields. Data (A) are expressed as mean6S.E.M. of %
proliferating cells, considering 100% the proliferation induced in basal
conditions whereas data (B) are expressed as % of cells migrated to the
lower compartment, considering 100% the migration induced by IL-1b.
Duplicate samples from 6 (A) and 4 (B) patients were used. +P,0.05,
++P,0.01 with respect to nonstimulated cells. **P,0.01 with respect to
IL-1b.
doi:10.1371/journal.pone.0024591.g002

Effects of CORM-2 in OA Synoviocytes
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examined the presence of IL-8, CCL2 and CCL20 in the culture

medium of OA synoviocytes. CORM-2 at 100 and 200 mM

decreased the levels of these chemokines in the presence of IL-1b
stimulation (Figure 3A-C). In addition, we assessed gene

expression of IL-8, CCL2 and CCL20 in OA synoviocytes by

real-time PCR. Figure 4A shows that CORM-2 did not modify IL-

8 mRNA but it reduced CCL2 and CCL20 mRNA in cells

stimulated by IL-1b (Figure 4B and 4C).

CORM-2 regulates MMPs
IL-1b stimulation of OA synoviocytes results in the induction of

MMPs which play an important role in joint degradation. Figure 5A

shows that MMP activity released into the medium was significantly

decreased by cell treatment with either 100 or 200 mM CORM-2.

In particular, MMP-1 (collagenase-1) and MMP-3 (stromelysin-1)

are strongly induced by IL-1b in this cellular system and play a

relevant role in OA synoviocytes [14,15]. Our results indicated that

the observed reduction in MMP activity could be dependent on

inhibitory effects of CORM-2 on MMP-1 and MMP-3 secretion

into the medium (Figure 5B and 5C) and mRNA expression in OA

synoviocytes (Figure 6A and 6B).

Antioxidant effects of CORM-2
ROS are released during the inflammatory response of joint

tissues and are associated with cartilage degradation in OA [16].

It is known that products derived from HO-1 activity including

CO exert antioxidant effects [7]. Therefore, we next determined

whether CORM-2 could modify the production of ROS in this

cellular system. Figure 7A and 7B shows that CORM-2

treatment of synovial cells had no effect on basal oxidative

stress. In contrast, the increased oxidative stress produced upon

IL-1b stimulation was significantly reduced by CORM-2

(200 mM).

Figure 3. Effect of CORM-2 on the levels of chemokines
released into the medium by OA synoviocytes. (A) IL-8, (B)
CCL2 and (C) CCL20 protein levels. Cells were stimulated with IL-1b
(10 ng/ml) for 24 h in the presence or absence of CORM-2 (50, 100,
200 mM) or RuCl3 (200 mM). Protein levels were determined in cell
supernatants by ELISA. Data are expressed as mean6S.E.M. Duplicate
samples from 6 patients were used. ++P,0.01 with respect to
nonstimulated cells. *P,0.05 with respect to IL-1b.
doi:10.1371/journal.pone.0024591.g003

Figure 4. Effect of CORM-2 on chemokine mRNA levels in OA
synoviocytes. (A) IL-8, (B) CCL2 and (C) CCL20 mRNA levels. Cells were
stimulated with IL-1b (10 ng/ml) for 16 h in the presence or absence of
CORM-2 (100, 200 mM) or RuCl3 (200 mM). mRNA expression was
determined by real-time PCR. Data are expressed as mean6S.E.M.
Duplicate samples from 3 patients were used. ++P,0.01 with respect to
nonstimulated cells. *P,0.05, **P,0.01 with respect to IL-1b.
doi:10.1371/journal.pone.0024591.g004

Effects of CORM-2 in OA Synoviocytes
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Signal transduction pathways involved in IL-1b
stimulation of OA synoviocytes

To explore the potential mechanisms responsible for CORM-2

effects, we assessed the involvement of different signal transduction

pathways in cell responses induced by IL-1b in our experimental

conditions. For this purpose, cells were pre-treated with specific

inhibitors of mitogen-activated protein kinases (MAPK) extracel-

lular signal-regulated kinase 1/2 (ERK1/2), p38 and c-Jun N-

terminal kinase 1/2 (JNK1/2) which is involved in activator

protein-1 (AP-1) activation, as well as inhibitors of Akt and nuclear

factor-kB (NF-kB) activation. Figure 8A shows that the prolifer-

ative effect of IL-1b was reduced when synoviocytes were treated

with specific inhibitors of ERK1/2, JNK1/2 or NF-kB. Similarly,

the effects of IL-1b on chemokine mRNA expression were

decreased by inhibition of NF-kB and to a lesser extent of

ERK1/2 for all chemokines, in addition to JNK1/2 inhibition in

the case of CCL2 (Figure 8B–8D). Our results also showed that

NF-kB activation is involved in MMP-1 and MMP-3 induction,

with the contribution of MAPK (Figures 8E and 8F).

Effect of CORM-2 on MAPK and Akt activation
Stimulation of OA synoviocytes with IL-1b quickly induces the

phosphorylation of MAPK and Akt [14]. Figure 9A and 9B shows

that the phosphorylation of ERK1/2 and JNK1/2 was strongly

reduced by CORM-2 at 100 and 200 mM, lowering the expression

of phosphorylated proteins to basal levels. In addition, p38

phosphorylation was also reduced although to a lesser extent, with

a significant effect in the presence of 200 mM CORM-2

(Figure 9C). In contrast, CORM-2 treatment did not modify Akt

phosphorylation (Figure 9D).

Regulation of transcription factors activation by CORM-2
Previous studies have indicated the importance of NF-kB and

AP-1 activation by pro-inflammatory cytokines in the transcription

of inflammatory and catabolic genes [17-21]. We assessed whether

the observed inhibitory effects of CORM-2 on cell proliferation,

Figure 5. Effect of CORM-2 on MMP activity and MMP levels
released into the culture medium in OA synoviocytes. (A) MMP
activity, (B) MMP-1 protein, (C) MMP-3 protein levels in the culture
medium. Cells were stimulated with IL-1b (10 ng/ml) for 24 h in the
presence or absence of CORM-2 (50, 100, 200 mM) or RuCl3 (200 mM).
MMP activity was analyzed by fluorometric procedures in cell
supernatants (A) and protein levels were determined by ELISA in cell
supernatants (B–C), Data are expressed as mean6S.E.M. Duplicate
samples from 6 patients were used. ++P,0.01 with respect to
nonstimulated cells. *P,0.05 with respect to IL-1b.
doi:10.1371/journal.pone.0024591.g005

Figure 6. Effect of CORM-2 on MMP mRNA levels in OA
synoviocytes. (A) MMP-1, (B) MMP-3 mRNA levels. Cells were
stimulated with IL-1b (10 ng/ml) for 16 h in the presence or absence
of CORM-2 (100, 200 mM) or RuCl3 (200 mM). mRNA expression was
measured by real-time PCR. Data are expressed as mean6S.E.M.
Duplicate samples from 6 patients were used. ++P,0.01 with respect
to nonstimulated cells. *P,0.05, **P,0.01 with respect to IL-1b.
doi:10.1371/journal.pone.0024591.g006

Effects of CORM-2 in OA Synoviocytes
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and chemokine and MMP expression could be dependent on the

regulation of these transcription factors. Figure 10A shows that

CORM-2 did not affect basal NF-kB-DNA binding but in the

presence of IL-1b stimulation, CORM-2 significantly reduced the

binding of this transcription factor to DNA. We further

investigated the mechanisms involved in this effect and observed

that CORM-2 decreased the translocation of p65 from the

cytoplasm into the nucleus (Figure 10B). As phosphorylation of

NF-kB inhibitory protein (IkB) is a key step for the degradation of

this protein allowing nuclear translocation of NF-kB, we also

determined whether IkBa phosphorylation could be affected by

CORM-2. Figure 10C shows that increased IkBa phosphorylation

induced by IL-1b was significantly down-regulated by CORM-2.

In addition, we studied the effects of CORM-2 on AP-1 activation.

As shown in Figure 10D, CORM-2 treatment of OA synoviocytes

resulted in a significant reduction in the binding of this

transcription factor to DNA.

Discussion

In the present study, we have demonstrated the inhibitory effects

of CORM-2 on a number of synoviocyte functions relevant in OA.

The available evidence suggests that intimal hyperplasia in OA is

dependent on local proliferation of synovial lining cells and

recruitment of cells of marrow origin [22]. Although the

proliferative response and invasiveness of synovial fibroblasts is

Figure 7. Effect of CORM-2 on oxidative stress levels in OA synoviocytes. Cells were incubated with IL-1b (10 ng/ml) in the presence or
absence of CORM-2 (100, 200 mM) or RuCl3 (200 mM) for 30 min. Oxidative stress was measured by the oxidation of dihydrorhodamine 123.
Rhodamine positive cells were counted in 6–8 microscopic power fields. Data are expressed as % of oxidative stress. Left panels: oxidative stress, right
panels: DAPI. Duplicate samples from 3 patients were used. +P,0.05 with respect to nonstimulated cells. *P,0.05 with respect to IL-1b. Original
magnification: x200.
doi:10.1371/journal.pone.0024591.g007

Effects of CORM-2 in OA Synoviocytes
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lower in OA compared to rheumatoid arthritis [23], pro-

inflammatory cytokines activate these cells leading to enhanced

proliferation, migration and production of mediators. In particular,

IL-1b is a potent stimulus for cell proliferation and chemokine

release in OA fibroblast synovial cells [24]. We have shown that

synoviocyte proliferation induced by IL-1b was reduced in the

presence of CORM-2. This response to IL-1b can be dependent on

NF-kB and AP-1 activation [23,25]. It is also known that inhibition

of ERK1/2 decreases synovial fibroblasts proliferation [26]. Our

results suggest that the reduced activation of these transcription

factors, ERK1/2 and JNK1/2 by CORM-2 treatment could

mediate the observed decrease in synovial cell proliferation.

Figure 8. Effects of specific inhibitors of MAPK, Akt and NF-kB on IL-1b induced cell proliferation and chemokine and MMP mRNA
expression in OA synoviocytes. (A) Cell proliferation, (B) IL-8, (C) CCL2, (D) CCL20, (E) MMP-1, (F) MMP-3 mRNA expression. Cells were treated with
UO126 (10 mM), SP600125 (25 mM), SB202190 (10 mM), MK2206 (20 mM) or PS1145 (10 mM), specific inhibitors of MEK/ERK1/2, JNK1/2, p38, Akt and
IkB kinase, respectively, 1 h before adding IL-1b for a total incubation time of 24 h (A) or 16 h (B–F). Cell proliferation was determined by the MTT
method whereas mRNA expression was analyzed by real-time PCR. Data are expressed as mean6S.E.M. Duplicate samples from 3 patients were used.
+P,0.05, ++P,0.01 with respect to nonstimulated cells. *P,0.05, **P,0.01 with respect to IL-1b.
doi:10.1371/journal.pone.0024591.g008

Effects of CORM-2 in OA Synoviocytes
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Chemokines are important soluble factors secreted by OA

chondrocytes and synoviocytes to attract and activate inflamma-

tory cells [27]. Both cell types express chemokine receptors and are

activated upon binding of specific ligands to produce inflammatory

and catabolic mediators [28,29]. In addition, synoviocytes migrate

in response to chemokines. We have shown that CORM-2

treatment inhibits synoviocyte migration in the presence of IL-1b.

These effects of CORM-2 on cell migration could be dependent

on the inhibition of chemokine production.

Our data indicate that CORM-2 reduced the production of

chemokines with an important role in synovitis. It is interesting to

note that CCL2 and IL-8 produced by synovial cells have been

shown to attract peripheral monocytes leading to the accumulation

of macrophages in the rheumatoid synovium [30]. In addition, IL-

8 and other chemokines of the same family decrease the expression

of interstitial collagens type I and type III in rheumatoid synovial

fibroblasts [31]. Synoviocytes from arthritic joints of mice and

humans also release a large amount of CCL20, which is regulated

by local production of pro-inflammatory or anti-inflammatory

cytokines [32]. Interestingly, recent studies suggest that the

therapeutic efficacy of anti-tumor necrosis factor-a therapies

may result from the inhibition of CCL20 in rheumatoid arthritis

synovium [33] as this chemokine mediates key pathogenic events

such as the recruitment of Th17 cells to the inflamed joints [32].

The spontaneous production of IL-8 and CCL2 as well as the

induction of the last chemokine by IL-1b are NF-kB-dependent in

OA synovium [17,18]. Our results have confirmed the participa-

tion of this transcription factor in chemokine induction by IL-1b.

Figure 9. Effect of CORM-2 and IL-1b on Akt and MAPK phosphorylation in OA synoviocytes. Cells were stimulated with IL-1b (10 ng/ml)
for 5 min in the presence or absence of CORM-2 (100, 200 mM). Protein expression was determined in cell lysates by Western blotting using specific
antibodies against phosphorylated or total proteins. Relative expression of phosphorylated and total protein bands was calculated after
densitometric analysis. AU = arbitrary units. Data are expressed as mean6S.E.M. (samples from 3 patients). ++P,0.01 with respect to nonstimulated
cells. *P,0.05, **P,0.01 with respect to IL-1b.
doi:10.1371/journal.pone.0024591.g009

Effects of CORM-2 in OA Synoviocytes
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Nevertheless the role of NF-kB in the induction of IL-8 by IL-1b
in OA synoviocytes is not completely understood as IkBa
overexpression failed to modify it [34] and inhibition of NF-kB

activation can give different results depending on synovial cell

strains [23]. Our data show that CORM-2 exerts inhibitory effects

on chemokine production induced by IL-1b in OA synoviocytes.

We have also demonstrated that the down-regulation of CCL2

and CCL20 mRNA by CORM-2 could be mediated by the

reduction in NF-kB transcriptional activity which would be

dependent on the inhibition of IkBa phosphorylation leading to

a lower rate of nuclear translocation of this transcription factor.

However, CORM-2 did not modify IL-8 mRNA levels, suggesting

complex regulatory mechanisms for this cytokine which would

need further investigation.

Figure 10. Effect of CORM-2 on NF-kB and AP-1 activation in OA synoviocytes. (A) NF-kB binding to DNA, (B) NF-kB p65 translocation (left
panels: p65, right panels: DAPI), (C) IkBa phosphorylation and (D) AP-1 binding to DNA. Cells were stimulated with IL-1b (10 ng/ml) for 30 min (C) or
1 h (A, B, D) with IL-1b (10 ng/ml) in the presence or absence of CORM-2 (100, 200 mM). IkBa phosphorylation and NF-kB/AP-1 binding to DNA were
determined by ELISA in cytosolic and nuclear fractions respectively, whereas p65 translocation was analyzed by immunofluorescence. Original
magnification x400. Data are expressed as mean6S.E.M. of independent cultures with cells from 3 different donors. AU = arbitrary units. +P,0.05,
++P,0.01 with respect to nonstimulated cells. *P,0.05, **P,0.01 with respect to IL-1b.
doi:10.1371/journal.pone.0024591.g010

Effects of CORM-2 in OA Synoviocytes
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Recent studies have shown that ROS may participate in the

initiation and progression of OA. These mediators are released

during the inflammation of the synovial membrane and can

activate transcription factors such as NF-kB contributing to

cartilage degradation [35]. Consistent with our previous studies in

OA chondrocytes [11], we have found that CORM-2 decreases

the production of ROS and NF-kB activation in OA synoviocytes

stimulated with IL-1b. Our results thus suggest that the anti-

inflammatory effects of CORM-2 on OA synovial cells occur, at

least in part, via its ability to attenuate oxidative stress.

The irreversible destruction of articular tissues is the hallmark of

both rheumatoid arthritis and OA. Collagen degradation is

mediated primarily by the collagenases, MMP-1 and MMP-13,

which have predominant roles in both conditions. MMP-1

efficiently degrades type I, II and III collagen and is produced

mainly by synovial cells [36]. MMP-3 exhibits a broad substrate

specificity and degrades gelatin, proteoglycan, fibronectin, type IV

collagen, laminin, and the N propeptide of type I procollagen [37].

We have shown that CORM-2 inhibits the elevated MMP

production by synovial cells activated by IL-1b. Of note, MMP-1

and MMP-3 have been known for their involvement in tissue

destruction in rheumatoid arthritis and their expression in synovial

fibroblast have been associated with the invasive ability of these

cells [38].

The transcription factors NF-kB and AP-1 mediate MMP-1 and

MMP-3 induction by IL-1b in synovial fibroblasts [19–21].

Therefore, our results suggest that CORM-2 reduces the

production of these MMPs through the down-regulation of both

transcription factors. It is known that JNK phosphorylates c-Jun

and plays a key role in AP-1 activation and MMP-1 transcription

in synovial fibroblasts [39]. It is also known that MAPK could

cooperate with these transcription factors for efficient MMP-1

induction by IL-1b [40]. In addition, it has been reported that

activation of ERK1/2 or the p38 MAP kinase pathway is sufficient

to induce MMP-1 transcription in human primary fibroblasts [41].

In other articular cells, OA chondrocytes, we showed a regulatory

effect of CORM-2 on ERK1/2 and p38 only [12]. In contrast, in

OA synoviocytes CORM-2 strongly decreased JNK1/2 and

ERK1/2 phosphorylation, with a lower effect on p38. Therefore,

the inhibition of MAPK activation by CORM-2 could participate

in its inhibitory effects on MMP production by OA synoviocytes.

In conclusion, our study has shown that CORM-2 down-

regulates key processes contributing to synovial inflammation and

articular degradation in OA. This research will help to elucidate

the molecular mechanisms underlying the pharmacological effects

of CO-RMs and may lead to the development of novel therapeutic

strategies to prevent articular inflammatory and degenerative

conditions.

Methods

Ethics statement
This study was approved by the Institutional Ethical Commit-

tees (Comité Etico de Investigación en Humanos de la Comisión de Etica de

Investigación Experimental de la Universidad de Valencia y Comité Etico de

Investigación Clı́nica del Hospital Clı́nico Universitario de Valencia) and is

in compliance with all ethical standards and patients’ written

consent according to the Declaration of Helsinki.

Isolation, culture and treatment of OA synoviocytes
Human OA synovial membranes were obtained from OA

patients (16 females, 5 males, aged 7264 years) undergoing total

knee joint replacement surgery. Synovial specimens were finely

minced and isolated by enzymatic digestion with collagenase type

1A (Sigma-Aldrich, St Louis, MO, USA) in DMEM/HAM F12

(Sigma-Aldrich) containing penicillin (100 U/ml) and streptomy-

cin (100 mg/ml) at 37uC in 5% CO2 atmosphere for 16 h. The

digested tissue was filtered through a 70-mm nylon mesh, washed

and centrifuged. Cell viability was .95% according to the Trypan

blue exclusion test. Collected cells were resuspended in DMEM/

HAM F12 (Sigma-Aldrich) containing penicillin (100 U/ml) and

streptomycin (100 mg/ml), supplemented with 10% fetal bovine

serum (Sigma-Aldrich) and cultured at 37uC in 5% CO2

atmosphere until third passage (95% fibroblasts, detected by

immunocytochemistry with anti-collagen I antibody, Chemicon,

Millipore Iberica, Madrid, Spain) where we performed all our

experiments. Synoviocytes were allowed to grow nearly until

confluence and then they were incubated with CORM-2 (at

different concentrations) or vehicle for 30 min before stimulation

with IL-1b (10 ng/ml) (PeproTech EC, London, UK) at different

times. CORM-2 (tricarbonyl dichloro ruthenium(II) dimer, Sigma-

Aldrich) was dissolved in ethanol and then diluted in saline. RuCl3
(Sigma-Aldrich) was used as a negative control. U0126 (MEK/

ERK1/2 inhibitor, 10 mM), SP600125 (JNK1/2 inhibitor, 25 mM),

SB202190 (p38 inhibitor, 10 mM), MK2206 (Akt inhibitor, 20 mM)

and PS1145 (IkB kinase inhibitor, 10 mM), were purchased from

Sigma-Aldrich. Viability studies were performed using the Trypan

blue exclusion test. None of the treatments significantly affected cell

viability, which was greater than 90% in all conditions [CORM-2

(200 mM): 92.962.8%; IL-1b: 99.360.7%; CORM-2 (50 mM)+IL-

1b: 91.962.4%; CORM-2 (100 mM)+IL-1b: 91.5+3.6%; CORM-2

(200 mM)+IL-1b: 90.563.4%; RuCl3 (200 mM)+IL-1b: 94.36

0.5%; U0126 (10 mM)+IL-1b: 96.267.1%; SP600125 (25 mM)+
IL-1b: 96.969.1%; SB202190 (10 mM)+IL-1b: 92.361.9%;

MK2206 (20 mM)+IL-1b: 94.061.6%; PS1145 (10 mM)+IL-1b:

91.062.5%].

Determination of cell proliferation
Synoviocytes were stimulated with IL-1b (10 ng/ml) for 24 h, in

the presence or absence of CORM-2. After discarding superna-

tants, cell proliferation was assessed by the mitochondrial-

dependent reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl-

tetrazolium bromide (MTT) to formazan. Cells were incubated

with MTT (diluted 1/10 in culture medium from a stock of 5 mg/

ml in phosphate-buffered saline, PBS) during 1 h at 37uC in 5%

CO2 atmosphere. Medium was then removed and formazan

crystals were solubilized by dimethyl sulfoxide. Formazan was

quantified at 490 nm.

Chemotaxis assay
Chemotactic assay was performed in 12-well transwell plates

with 8 mM pore size (BD Biosciences, Erembodegem, Belgium).

Briefly, 30,000 synoviocytes/well in 200 ml DMEM/HAM F12

(Sigma-Aldrich) containing penicillin (100 U/ml) and streptomy-

cin (100 mg/ml), and supplemented with 10% fetal bovine serum,

were seeded in the upper compartment of the chamber.

Supernatants harvested from cells incubated 24 h with CORM-

2 in the presence or absence of IL-1b (10 ng/ml) were added to

the lower side. After 24 h at 37uC in 5% CO2 atmosphere, upper

compartment was detached. Cells migrated to the lower side of the

chamber were then fixed with 4% formalin, stained with

hematoxylin-eosin and counted in 6-8 microscopic power fields.

Western blot analysis
After 24 h stimulation with IL-1b (10 ng/ml) or IL-

1b+CORM-2, synoviocytes were lysed in 100 ml of buffer (1%

Triton X-100, 1% deoxycholic acid, 20 mM NaCl and 25 mM

Tris, pH 7.4) and centrifuged at 4uC for 10 min at 10,000 g.

Effects of CORM-2 in OA Synoviocytes

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e24591



Protein content was determined by the DC Bio-Rad protein

reagent (Richmond, CA, USA). Proteins (15–25 mg) in cell lysates

were separated by 12.5% SDS-PAGE and transferred onto

polyvinylidene difluoride membranes. Membranes were blocked

with 3% bovine serum albumin and incubated with specific

antibodies: anti-HO-1, (1:1,000) (Stressgen, Victoria, Canada) for

2 h at room temperature, or anti-phosphorylated or total Akt,

ERK1/2 or JNK1/2 (1:500) (Cell Signalling Technology Inc.,

Beverly, MA, USA) and anti-phosphorylated or total p38 (1:250)

(Promega Corporation, Madison, WI, USA) overnight at 4uC.

Finally, membranes were incubated with peroxidase-conjugated

goat anti-rabbit IgG (DAKO, Glostrup, Denmark) and the

immunoreactive bands were visualized by enhanced chemilumi-

nescence (GE Healthcare, Barcelona, Spain) using the AutoChemi

image analyzer (UVP Inc., Upland, CA, USA).

Enzyme-linked immunosorbent assay
Synoviocytes were stimulated with IL-1b (10 ng/ml) for 24 h, in

the presence or absence of CORM-2. Supernatants were harvested,

centrifuged and frozen at 280uC until analysis. IL-8 and CCL2

levels were determined by specific ELISA kits from eBioscience (San

Diego, CA, USA) with sensitivities of 4 and 7 pg/ml, respectively.

CCL20 was determined by using a specific ELISA from R&D

Biosystems (Abingdon, UK) with sensitivity of 0.47 pg/ml. MMP-1

and MMP-3 protein levels were quantified by specific ELISA kits

from Raybiotech (Norcross, GA, USA) with sensitivities of 8 pg/ml

and 0.3 ng/ml, respectively. IkBa phosphorylation was measured

in cytosolic extracts stimulated with IL-1b (10 ng/ml) or IL-

1b+CORM-2 for 30 min with K-LISATM IKKb Inhibitor

screening kit (Calbiochem EMD Bioscience, Darmstadt, Germany).

NF-kB binding to DNA was quantified by ELISA in nuclear

extracts from synoviocytes stimulated with IL-1b (10 ng/ml) or IL-

1b+CORM-2 for 1 h, using the Nuclear Extract Kit Active Motif

for nuclei extraction followed by Trans AMTM NF-kB kit (both

purchased from Active Motif Europe, Rixensart, Belgium),

according to the manufacturer’s recommendations.

Real-time PCR
Following incubation for 16 h, total RNA was extracted using

the TriPure reagent (Roche Applied Science, Barcelona, Spain)

according to the manufacturer’s instructions. Reverse transcription

was accomplished on 1 mg of total RNA using random primers

(TaqMan reverse transcription reagents, Applied Biosystems,

Madrid, Spain). PCR assays were performed in duplicate on an

iCycler Real-Time PCR Detection System using SYBR Green

PCR Master Mix (Bio-Rad Laboratories, Richmond, CA, USA).

Sequences of primers used have been reported previously [42–46].

For each sample, differences in threshold cycle (DCt) values were

calculated by correcting the Ct of the gene of interest to the Ct of

the reference gene glyceraldehide-3-phosphate dehydrogenase

(GAPDH). Relative gene expression was expressed as DDCt with

respect to nonstimulated cells.

Determination of MMP activity
Cells were stimulated with IL-1b (10 ng/ml) or IL-1b+CORM-

2 for 24 h and supernatants were harvested, centrifuged and

incubated with p-aminophenylmercuric acetate for 6 h at 37uC to

activate MMPs. Aliquots of supernatants were then transferred to

a 96-well plate and after addition of the 5-FAM peptide substrate

(AnaSpec Inc., San Jose, CA, USA), fluorescence was measured

for different times at 490 nm (excitation)/520 nm (emission) in a

Victor3 microplate reader (PerkinElmer, Madrid, Spain).

Oxidative stress quantification
Formation of intracellular ROS was detected using dihydror-

hodamine 123 (Molecular Probes, Invitrogen S.A., Barcelona,

Spain), which is oxidized to fluorescent rhodamine [485 nm

(excitation)/534 nm (emission)]. For this purpose, synoviocytes

were seeded (10,000 cells/well) in 8-well Lab-tek chambers (Nalge

NuncInternational, Naperville, IL, USA) in DMEM/HAM F12

containing penicillin (100 U/ml), streptomycin (100 mg/ml) and

10% fetal bovine serum in a humidified 5% CO2 incubator at

37uC and kept in culture until they reach a confluence of 80%

approximately. Then cells were washed with DMEM without

phenol red (Sigma-Aldrich) and incubated for 15 min at 37uC
with dihydrorhodamine 123 (5 mM) in DMEM without phenol

red. After washing, fresh medium was added and cells were

incubated with IL-1b (10 ng/ml) for 30 min in the presence or

absence of CORM-2. Cell nuclei were counterstained with 49,6-

diamidino-2-phenylindole (DAPI) solution (1:1,000). Slides were

examined under a fluorescence microscope (Eclipse E800, Nikon

Instruments Europe, Amstelveen, The Netherlands). Rhodamine

positive cells were counted in 6–8 microscopic power fields. Each

experiment was done in triplicate.

Immunofluorescence
Synoviocytes (20,000 cells/well) were grown in 8-well chamber

slides and treated with CORM-2 in the presence or absence of IL-

1b for 1 h. Cells were fixed with methanol:acetic acid solution

(95:5) for 20 min at 220uC. After being washed in PBS, cells were

permeabilized with 0.25% Nonidet P-40 in PBS for 10 min and

incubated with rabbit polyclonal p65 antibody (Santa Cruz

Biotechnologies, Santa Cruz, CA, USA) (1:100) for 1.5 h at

37uC. Cells were then washed and incubated with secondary goat

anti-rabbit antibody conjugated to Alexa FluorH 488 (Invitrogen,

Barcelona, Spain) (1:250 in PBS) for 45 min at 37uC. Cell nuclei

were counterstained with DAPI solution (1:1,000). Slides were

examined under a fluorescence microscope (Eclipse E800). Each

experiment was done in triplicate.

Statistical analysis
Results are expressed as mean6S.E.M. Statistical analysis was

performed using the Kruskal-Wallis test and Dunn’s post-test. P

values,0.05 were considered significant.
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