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Abstract

Autophagy plays a crucial role in maintaining cellular homeostasis through the degradation of unwanted materials like
damaged mitochondria and misfolded proteins. However, the contribution of autophagy toward a healthy cell environment
is not only limited to the cleaning process. It also assists in protein synthesis when the system lacks the amino acids’ inflow
from the extracellular environment due to diet consumptions. Reduction in the autophagy process is associated with
diseases like cancer, diabetes, non-alcoholic steatohepatitis, etc., while uncontrolled autophagy may facilitate cell death. We
need a better understanding of the autophagy processes and their regulatory mechanisms at various levels (molecules, cells,
tissues). This demands a thorough understanding of the system with the help of mathematical and computational tools.
The present review illuminates how systems biology approaches are being used for the study of the autophagy process. A
comprehensive insight is provided on the application of computational methods involving mathematical modeling and
network analysis in the autophagy process. Various mathematical models based on the system of differential equations for
studying autophagy are covered here. We have also highlighted the significance of network analysis and machine learning
in capturing the core regulatory machinery governing the autophagy process. We explored the available autophagic
databases and related resources along with their attributes that are useful in investigating autophagy through
computational methods. We conclude the article addressing the potential future perspective in this area, which might
provide a more in-depth insight into the dynamics of autophagy.
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Background

The importance of autophagy in maintaining cellular home-
ostasis is ineffable. In Greek, the term autophagy means self-
eating. This term was first coined by Christian de Duve, and
this nomenclature was solely based on the observed degradation
of mitochondria and other intracellular structures within the
lysosome of rat liver perfused with glucagon [1]. Degradation of
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unwanted materials like damaged mitochondria and misfolded
proteins are essential for the maintenance of cellular homeosta-
sis. Autophagy engulfs these unwanted materials and facilitates
the process of cellular filtration. However, the contribution of
autophagy toward a healthy cell environment is not only limited
to the cleaning process; it is indeed much more than that. The
degradation of proteins in the lysosome results in amino acids,
which assist the protein synthesis even if the system lacks the

https://academic.oup.com/
https://doi.org/10.1093/bib/bbaa286
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


2 Sarmah et al.

inflow of amino acids from the extracellular environment due
to diet consumptions [2]. Therefore, under stressed conditions
like starvation, autophagy levels rapidly upregulate and initiate
cellular degradation to provide nutrients to the cell [3–6].

Continuous divulgence of new autophagy-related genes
(ATG), as well as pathways, have made autophagy a growing
field. Deterioration of this aforementioned catabolic process
is evidenced to be associated with various diseases (Figure 1).
Autophagy acts as a Janus in cancer by playing a role both
in tumor suppressor and tumor activator. Autophagy-related
proteins are associated with the prevention of cancer cell growth
in various cancers, including the likes of the colon, gastric, breast
and prostate cancer [7–11]. However, autophagy also helps in
tumorigenesis by promoting the proliferation of cancer-cell
and tumor growth [12–14]. Again, abnormal lipid metabolism
and the excessive accumulation of triglycerides stored in lipid
droplets trigger the non-alcoholic fatty liver disease, which may
eventually lead to non-alcoholic steatohepatitis (NASH) [15,16].
In vitro and in vivo studies have revealed that autophagy plays a
protective role in NASH by selective degradation of these lipid
droplets [17]. Hence, the autophagy pathway can be a potential
target in the treatment of NASH. In various neurodegenerative
diseases, including Parkinson’s disease, Alzheimer’s disease
and Amyotrophic lateral sclerosis [18], misfolded protein
accumulation is considered a pathological hallmark. Since
the accumulation of misfolded proteins is directly affected
by a decrease in the neuronal autophagy level, autophagy is
considered as a target pathway in neurodegenerative diseases.
The importance of autophagy can be mapped to insulin
resistance and type 2 diabetes, as it plays an indispensable
role in the physiology of beta cells. Autophagy takes part in
the regulation of insulin homeostasis and is necessary for
normal beta cell homeostasis [19–21]. The disrupted autophagic
activity has been reported in the beta cells of type 2 diabetes
mellitus (T2DM) patients [22]. Metformin has been widely used
in type 2 diabetes clinical therapy and protects pancreas beta
cells from injury through autophagy activation by the AMP-
activated protein kinase (AMPK) pathway [23]. Due to its crucial
role in cellular housekeeping, autophagy also plays a role in
anti-aging mechanisms [24,25]. It also plays an essential role in
cell remodeling during development [26] and in cellular defense
against pathogens [27].

Nevertheless, despite playing a protective role in various
diseases, uncontrolled autophagy may lead to excessive
degradation of the cellular constituents and may cause cell
death [28–31]. Hence, although important, the autophagy process
needs to be strictly monitored for the smooth functioning of
the cellular homeostasis [32,33]. To understand the significance
of autophagy in cellular processes and its association with
different diseases, we recommend reading two excellent reviews
on autophagy [3,34].

There are three defined types of autophagy, viz.
macro-autophagy, micro-autophagy and chaperone-mediated
autophagy [34]. In this study, by autophagy, we mean macro-
autophagy only (Figure 1). In macro-autophagy, the degradable
constituent is first encompassed by a double membrane
vesicle, which gradually extends to form autophagosome. The
autophagosome then fuses with lysosome and forms autolyso-
some, where the degradation of the cytosolic cargo occurs. The
mammalian target of Rapamycin complex 1 (mTORC1) and
lysosome play a crucial role in macro-autophagy. A nutrient-
rich environment within the cell enables mTORC1 to be located
in the lysosome and promotes growth processes. Transcription
factor EB (TFEB) is a protein that dictates the transcription

levels of lysosomal and autophagy genes. mTORC1 suppresses
autophagy by modulating the nuclear export of TFEB [35] and
by the inhibition of the autophagy initiation complex [36]. This
terminative effect of mTORC1 ceases when starvation triggers
it to dissociate from the lysosome, which leads to autophagy
induction. The process of autophagosome–lysosome fusion, i.e.
the induction of autolysosomes, is facilitated by several proteins.
Cooperative activity of soluble N-ethylmaleimide-sensitive
factor attachment protein receptor proteins embedded in either
membrane helps to overcome the high energy barrier of mem-
brane fusion [37]. Again during fusion, the two vesicles must be
kept close for which HOPS complex, PLEKHM115 and EPG5 simul-
taneously interact with proteins present on both the autophago-
somal membrane and autolysosomal membrane [38–40].
Once the autolysosome forms, the inner autophagosomal
membrane degrades, and more than 60 lysosomal hydrolases
work simultaneously to digest the confined material [41].

This evolutionarily conserved process has always been an
important research topic. A PubMed survey using the keyword
‘autophag∗’ in the Title category revealed that the intensity of
autophagy in the research field had increased exponentially in
the last few years. Though the literature exists from 1956, its
bloom is observed only after the year 2004–05. The autophagic
mechanism is highly sensitive to perturbations of the intra-
cellular or extracellular microenvironment. Its increasing and
decreasing level may play lethal or survival roles in biologi-
cal functions. Hence, a better knowledge about the autophagy
pathway and its part is essential for improving future therapy
that might contribute to recognizing alternative cell death and
cell survival mechanisms in the presence or absence of some
apoptotic pathways.

Biological processes are governed by specific rules, and sys-
tems biology acts as a hatchet to unveil these underlying prin-
ciples [42,43]. Every system possesses a hierarchical structure
and a systematic study of it helps to find how components are
organized, viz. what lies in the core, and what remains on the
periphery of the system. Again, these structures are interlinked
together, where each lower level in the hierarchy creates the level
immediately above (for example, cell to tissue, tissue to organ,
organ to the organ system and so on) by means of some linkages.
Systems biology is nothing but the study of both these structures
and the linkages. By implementing various algorithms to analyze
a disease network, the core modulators of the disease can be
detected, and the dynamics of these core sets of modulators
can be studied through mathematical modeling. The enrichment
analysis can help to identify the core pathways involved in a
disease in the protein–protein interaction (PPI) network. In other
words, mathematical modeling helps to study the system in
parts while system biological approaches (network analysis and
enrichment analysis) help to explore the entire system. Various
systems biology methods have been applied to delineate the
process of autophagy (we have considered macro-autophagy
only) using mathematical modeling and network analysis. Math-
ematical models have been combined with experimental studies
to decipher the complex dynamics of macro autophagy. An
application of mathematical modeling is to study the effect of
starvation-induced autophagy in cell (yeast) population dynam-
ics [44]. Again, these models study the dynamics of the proteins
that govern and modulate macro-autophagy at different phases.
In various diseases like cancer, Alzheimer’s, etc., the core set of
proteins or pathways have been studied mathematically to cap-
ture the mechanism of the disease progression and to extract the
influential parameter to restore the cell homeostasis in disease
conditions [45–51]. The network analysis approaches have been
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Figure 1. The process of autophagy is completed in five steps: initiation, elongation, autophagosome formation, fusion and degradation. Each step is monitored and

modulated by a group of genes called ATG. Autophagy-related diseases can be categorized into two parts: organ-specific (shown in the inner circle) and multisystemic

(shown in the outer circle). This figure shows the autophagy-disease interplay. The association with most human diseases, including varieties of cancer and immune

disorders, has proved that autophagy is a quintessential process, and its manipulation can be targeted as a therapeutic strategy.

applied to observe the topological behavior of autophagy-related
proteins in various diseases. Network analysis of differentially
expressed genes (DEG) in multiple diseases such as leukemia,
pancreatic cancer, etc. has shown the abundance of autophagy-
related proteins and autophagic pathways in the disease [52,53].
Again, the implementation of network centrality measures such
as degree, betweenness centrality, clustering, etc., help to iden-
tify the core set of proteins in the network [54,55]. Although these
two approaches are often studied separately, these studies may
complement each other. For example, for a better understanding
of the underlying mechanism of the association of autophagy
proteins in disease, mathematical modeling can be done on
the core set of proteins obtained from PPI network analysis.
It may identify potential parameters that otherwise could not
be explained by network analysis alone. This methodology is
shown in Figure 2. Hence, with the in vivo and in vitro studies of
autophagy which have explored many novel discoveries, the sys-
tems biology, with the potential of decrypting the system’s com-
plexity both as a whole and in part, have significantly emerged
and made tremendous contributions to the field of autophagy.

In this review, we have encapsulated the overview of
autophagy in computational biology explored via mathematical
modeling and network analysis along with comprehensive
insights about these approaches and their applications in
the exploration of the autophagy process at various levels
(molecules, cells, tissues). We have delineated several well-
established methods such as mathematical models based on
different types of differential equations, Petri net, agent-based
models (ABM), enrichment analysis and centrality analysis to
capture the dynamical behavior or the collective influencers in
the network. Further, we have enlisted the available autophagic

databases and the related resources and their feature selection
and epitomized some conventional software and tools used
for visualization and analysis in computational biology. We
believe that this review provides an in-depth and improved
understanding of autophagy in systems biology and will help the
researchers to select the appropriate method for new studies to
find potential targets in a plethora of diseases, including cancer,
Alzheimer’s, metabolic and immune-related disorders.

Mathematical modeling for autophagy
Significance of mathematical models in studying
biological systems

Biological systems are complex, and a mathematical model acts
as a reflector of this complexity. The complexity of a biologi-
cal system appears due to many reasons. One of them is the
underlying hierarchy of the system that ranges from cells to the
organism level. Each of the different hierarchy levels is dynamic.
Even if they imitate regular and predictable behavior, abrupt
major and stochastic shifts may arise anytime, even for a minute
changes in the cellular environment. These uncertainties lead to
complexities that are difficult to capture in experimental stud-
ies. Even if they do, it is challenging to grasp routes and patterns
of the actual evolution of complexity. For example, to identify the
functional role of a gene, scientists perform the knockout exper-
iments [56]. However, such experiments overemphasize the role
and importance of a single gene and are not ideal to understand
the complex nature of the system. Mathematical models study
these complexities of a system and portray an abstraction of
the reality. These models study the crucial genes/proteins that
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Figure 2. The journey of proteins from being inside the system to the arms of mathematical modeling. The palate (A) shows the processing of data. The raw gene

expression data to study a particular disease is first corrected, including steps like dealing with the null values and the outliers. The data are then normalized, and the

DEG are calculated. The palate (B) shows the autophagy specific study of the disease. The autophagic genes are first obtained from an autophagy database from where

the differentially expressed autophagy genes are selected. Using PPI databases, a PPI network of the DEGs (which may be entirely autophagic DEGs or a mixture of

autophagic and not-autophagic DEGs) is constructed. In the figure, the green color denotes the autophagic, and the orange color represents the non-autophagic genes.

Implementing ML approaches, graph theoretical approaches or enrichment analysis (pathway analysis, disease analysis or gene ontology analysis), the significant

modules or target proteins from the network are extracted. In the first case, the proteins driving the module can further be identified. Finally, the implementation of

mathematical modeling approaches can explore the dynamics and underlying mechanism of the target proteins or the module.

are capable of driving the system and study the underlying
dynamics of the association between the genes/proteins. These
models have the audacity to identify crucial parameters that are
capable to decide the fate of the system undertaken, which can
be further proven by experimental validation. Among the various
models available to investigate the biological processes, ordinary
differential equations based models are the most commonly
used. These equations are of the form

dxi

dt
= fi (x1, x2, . . . . . . . . . , xn, λ1, λ1, . . . . . . . . . . . . . . . , λk, t) ; i = 1 : n

and they describe how individual variables xivary over time, λk

are the model parameters describing different rate constants.
When explicit dependence of the dependent variables on
the independent variable is absent, the system is called
autonomous. The functions, along with the parameters,
beautifully portray the dynamics of the state variables.

Another type of mathematical model, called delay differen-
tial equations (DDE) models, is used in representing biological
phenomena. Time delay is an inherent property and occurs
naturally in biological systems. The time delays in these mod-
els represent the duration of hidden processes between two
major processes. The time between infection of a cell by some
pathogens and the subsequent production of new pathogens can
be taken as an example. A typical DDE is of the form

dX
dt

= F (t, X (t − τ1) , . . . .., X (t − τn)) ; τi, i = 1 : n ≥ 0

τi, i = 1 : n are time delays. They are measurable and may
be constant. Sometimes, the initial or boundary conditions may

not be sufficient to predict the future state of a system. For
such a scenario, it is indispensable to know how the system
behaved in the early stages, and hence, DDEs play a vital role
in understanding a biological system, where the current state of
some variables depends on the past states.

Both ODE and DDE are deterministic methods to map a
biological system of equations. But, a biological system is always
exposed to the uncertainty that is not entirely understood.
An approach to model such systems is by adding stochastic
influence or noise. Some stochastic behavior examples are
hormonal oscillations, respiration, blood pressure variations,
cellular metabolism, etc. The general form of a stochastic
differential equation (SDE) can be expressed as

dxt = f (t, xt) dt + G (t, xt) dwt

Or with the equivalent integral form

xt = xt0 +
∫ t

t0

f (s, xs) ds +
∫ t

t0

G (s, xs) dws

with an initial value, xt0 . Here, f :
[
t0, t

]
X Rd → Rd, G :

[
t0, t

]
X Rd →

Rd x m and
{
wt

}
tε
[

to ,t
]denote an m-dimensional Wiener process

(Brownian motion). Rd and Rd×m are d-dimensional and d × m-
dimensional Euclidian space, respectively.

The mathematical modeling is based on four crucial pil-
lars, where the first pillar is a literature survey of the system.
The second pillar is the construction of the model, where the
relationship between the model variables will be established
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using model parameters. This step is followed by the analysis
of the model, and the last pillar is the validation part where
the result of the model will be validated either by literature or
by an experimental approach. If the model fails to deliver the
appropriate output, the necessary changes will be implemented
in the model until the desired outcome appears. Mathematical
models are perfect examples of complexity and simplicity as
they are ornamented with a set of equations, which are complex
enough to replicate the properties of the system and concur-
rently simple enough to grab up the underlying phenomena of
the system. Theoretically, these models can drive a system any-
where, but it has to follow some constraints in systems biology.
For example, a negative concentration of a protein will make
no sense, so as a species’ negative population. Similarly, there
must always be an upper bound, be it concentration of a protein
inside a cell or population of a species. But, although restricted
to biological constraints, a mathematical model can help to find
out the crucial parameters responsible for deciding the fate of
the system. In other words, for a specific cellular process full
of many regulatory patterns, mathematical modeling paves the
way to pick the right one.

Different tools and packages have been built across multiple
platforms (MATLAB, Python, R, etc.) to support mathematical
modeling [57–63]. A structural diagram editor, Cell Designer
[64], has also been developed to draw gene-regulatory and
biochemical networks to make mathematical modeling a
feasible approach in systems biology. CellML is an XML-based
language designed to describe mathematical models in a
machine-independent form suitable for sharing between
different authors and archiving in a model repository [65].

Why model autophagy?

The process of autophagy consists of five steps, and all these
stages are easily observable [66]. Different steps in the autophagy
pathway may exert a different effect on the system. However,
the biochemical reactions in autophagy are mostly nonlinear,
i.e. a minute change in any of its stages will not necessarily
exert a proportional effect throughout the system. Mathematical
modeling endorses simplified abstractions and approximations
to identify the steps of autophagy that are responsible for a par-
ticular behavior in the system. Moreover, the constant shift in the
behavior of the system exerts randomness in the autophagy pro-
cess. Mathematical modeling of autophagy keeps track of these
factors and allows the researchers to investigate the dynamics
of the system following any environmental conditions that may
arise due to various external or internal perturbations or signals.
Autophagy is a bridge between cell survival and cell death.
Depending on certain extracellular or intracellular signaling, the
process of autophagy may decide cell fate. At the single-cell
level, these events may be mutually exclusive, indicating that
cell death and cell survival events are different attractors of the
system. Mathematical modeling can be done to understand the
crosstalk between these two events using attractors, fixed points
and limit cycle concepts.

Cell types differ in their response to autophagy stimuli.
Addressing this cell to cell variability, various therapies have
targeted autophagy manipulation in cancer therapy [67–69].
Mathematical modeling can help in planning and predicting the
parameters that could be targeted and its outcome on the cell
population. For example, autophagy helps in tumor cell survival
under various stress conditions [70]. On the contrary, increased
autophagy may lead to excessive cellular degradation and thus,
may initiate cell death [71]. A mathematical model can perfectly

utilize these conditions to identify the biological parameters that
increase the autophagy process in disease conditions, so that the
tumor cell gets less benefit from the basal level of autophagy and
cell death initiates.

Thus, mathematical modeling can be used in a very effective
way to decipher the process of autophagy and its role in various
diseases or conditions. We have discussed below some of the
modeling work done in the autophagy process to get an idea
of the applicability of mathematical modeling in understanding
the autophagy process.

Differential equations based models for autophagy

In 1975, Deter et al. [72] formulated the first mathematical
model to delineate the glucagon induced autophagy in rat liver.
This primitive study was based on experimental observations,
collision theory and chemical kinetics, and mainly focused on
studying the population of telolysosomes, autophagosomes
and autolysosomes in rat liver. Thereafter, various studies on
autophagy have incorporated different types of mathematical
models, viz. ODE, DDE and SDE. The widely used ODE-based
models are the simplest to study the process of autophagy.
These models are entrenched on the assertion that the system
considered is well-mixed, and there are sufficient numbers
of components so that their numbers can be considered as
continuous quantities. For the benefit of the readers, we have
explained some terminologies associated with the model
analysis in Table 1. Understanding the steady-state, stability,
and other qualitative behavior of a model will unveil the
system’s underlying mechanism. For example, response to
cellular starvation is an intrinsic property of autophagy and
was mathematically addressed by Jin et al. [44]. They classified
the cells to normal phase and autophagic phase, and by taking
nutrition as the third variable, a logistic type (3D) model
of yeast cell population was constructed and analyzed. The
model considered in this example has one unstable trivial
equilibrium point when the nutrient concentration in the
input flux and nutrient loss rate by output flux is constant
and a locally asymptotically stable positive equilibrium point
when the system is considered without autophagy. The model
analysis concluded that an efficient autophagy level might
be adequate to sustain a population during a long duration
of starvation. However, the author did not incorporate any
molecular regulation in their study. A hybrid model consisting
of cell population dynamics and molecular regulation could has
provided a better insight into cell fate regulation by autophagy.
Addressing this issue, the same group later developed a
hybrid model [49] to understand the molecular regulation and
population dynamics of yeast by incorporating molecular level
interactions, the amino acid exchange between cells, and cell
behavior.

ODE models are also built to predict optimal drug schedules
to control autophagy. Shirin et al. [73] formulated a nonlinear
ODE model to predict optimal drug schedules to control
autophagy. Focusing on four autophagosome production
influencers and their specific inhibitors, the model figured
out various drug pairs that are more effective when taken
together. Mathematical models can qualitatively estimate the
protein levels that are capable of deregulating homeostasis, like
Ouzounoglou et al. [74] formulated a model to understand the
dynamics of Alpha-synuclein (ASYN) in Parkinson’s disease.

Autophagy and apoptosis pathways are closely regulated,
and some proteins, which regulate autophagy, can also regulate
apoptosis [75–78]. Hence, proper knowledge of autophagy
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Table 1. Some mathematical definitions

Equilibrium point or steady-state: An equilibrium point or a steady-state of a system of differential equations is the value of the state
variables where the state variables do not change with time. In other words, it is a time-independent solution of the system.
Stability and instability of an equilibrium: An equilibrium is said to be stable if solutions starting close to the equilibrium point remain
close, otherwise it is said to be unstable.
Bifurcation: Bifurcation in a system occurs when a small perturbation made to the parameter values of the system results in a sudden
qualitative or topological change in its behavior. Such parameters are called bifurcation parameters.
Bistability: In a dynamical system, bistability means the system under consideration possesses two stable states.

and apoptosis interconnections may help to stop or promote
fatal cell decisions. Kapuy et al. [79] studied beclin1-mediated
autophagy and caspases-mediated apoptosis by forming an ODE
model. The model was built to address the B-cell lymphoma
2 (BCL2)-Beclin1-caspases minimal network. They have also
considered the effect of stress on autophagy by taking it as a
bifurcation input. Based on the observation, it was suggested
that the autophagy apoptosis transition is adjudicated by a
bistable switch and, depending upon the intensity and duration
of stress levels, sequential activation of cellular response can be
initiated by a combination of BCL2-dependent regulation and
feedback loops between Beclin1 and caspases. Various other
models have also been built to understand the autophagy–
apoptosis interplay [80–82]. A key feature of autophagy is
that it also plays a role in unfolded protein response (UPR).
A literature study has revealed that the complex interactions
between UPR, autophagy and apoptosis may determine cellular
fate in response to drug treatment [83,84]. Cyto-protective or
cyto-destructive UPR gets activated by anti-oestrogens or other
drug therapies. Autophagy assists in the cyto-protective role of
UPR, while the cyto-destructive role contributes to apoptosis
[85]. Addressing these, a mathematical model of autophagy,
apoptosis and UPR was proposed to understand the interactions
that accomplish anti-estrogen resistance and the effects of
GRP78 on both sensitive and resistant breast cancer cells [85].
The model provides a clear picture of interactions of autophagy,
apoptosis and UPR to produce both sensitivity and resistance to
antioestrogen therapy under various conditions.

The time delay associated with any biological process are
not facilitated by ODE-based models. This is mainly addressed
by DDE. These models address the time lags between biological
processes and thus offer a better portrayal of biological systems.
Time lag plays a vital role in autophagy, as in many biological
processes. Various studies have implemented DDE-based math-
ematical modeling to understand the hidden mechanisms in the
autophagy process. For example, in autophagy, the formation
of autolysosome follows autophagosome formation indicating
a time delay. Han et al. [47] formulated an 8D model using
the delay to study the behavior of both resident (normal) and
abnormal proteins along with the formation of autophagosomes
and autolysosomes, the intracellular concentration of adeno-
sine triphosphate (ATP), and amino acids. The study showed
that intracellular levels of autophagosomes and autolysosomes
display an oscillatory behavior. The same group later formed
another mathematical model to explore the role of autophagy in
the protein/organelle quality control when exposed to different
physiological perturbations [86] and further extended their study
to Alzheimer’s disease [87].

ODE-based models do not consider the effect of noise, which
is an inherent property in many dynamical systems. This prop-
erty is addressed by the SDE models, as done by Martin et al.
[46], who studied autophagy vesicle dynamics in a single cell.

They used live-cell fluorescent microscopy to measure the syn-
thesis and lysosomal turnover of autophagic vesicles (AV). The
data were used to build a 4D ODE model, followed by a 23D
SDE model for the accurate prediction of AV dynamics in a
cell. The SDE model has implemented a sequence of biochem-
ical and physiological steps in the autophagic pathway from
PtdIns3KC3 activation through LC3 conjugation that comprises
of the nucleation of the phagophore, maturation of the AV and
lysosomal degradation. The mechanistic model was a better
portrayal of the autophagy dynamics in a cell. For example,
correlating with the experimental data, the SDE model captured
a time lag in the production of AV in response to treatment
initiation, but no such behavior could be achieved with the deter-
ministic model. The SDE model was also capable of accurately
predicting that an 80% decrease in ATG9 content would result
in a corresponding reduction in vesicle synthesis rate. It also
stated the correlation between AV size and LC3 levels across
single cells. The study can be taken as an example to quote that
although ODE models are less complicated and can portray bio-
logical behavior, SDE models are a better illustrator of biological
phenomena.

Agent-based models for autophagy

ABM is an alternative approach that relies on a predefined
logical programming language. In ABM, the system consists of
a collection of interacting autonomous decision-making bodies
known as agents. ODE modeling presupposes a homogeneous
environment, while ABM is capable of simulating a transient
and spatial evolution of a system that each participant in the
model is represented as an individual agent per its laws. One of
the fundamental aspects of ABM is the occurrence of complex
behavior from a set of simple rules. It simulates the interactions
between multiple independent agents and evaluates their effect
on the overall system. It captures the emerging phenomena of
a complex system from the perspective of its constituent com-
ponents, making ABM a bottom-up approach [88]. The benefits
of ABM include their flexibility, the natural way of description
of the system and the capability of capturing the emergent phe-
nomena due to the interactions of individual entities [88]. ABM
facilitates both discrete and continuum mathematical modeling
approaches. The study of tumor cell density, nutrient distribu-
tion, etc. comes within the radar of the continuum modeling
approach, whereas cellular automation is a representation of
discrete mathematical modeling.

ABMs have been used extensively to explain biological
phenomena in various biological systems. For example, a 3D
agent-based Voronoi–Delaunay hybrid model was developed
by Schaller and Meyer-Hermann [89], where reaction–diffusion
equations depicted the spatiotemporal distribution of oxygen
and glucose. Their study was an effort to test the hypothesized
functional dependence of the absorption rates of glucose and
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oxygen, and to determine suitable mechanisms for necrosis
induction. Another ABM was built by Engelberg et al. [90], where
different spaces for tumor cells, oxygen, nutrient and toxic
inhibitors were considered. The goal of the study was to create
a model consisting of separate cells that fairly represents the
behavior of an in vitro multicellular tumor spheroid.

However, the applications of ABM to study autophagy are
very few. The creation, movement, fusion and deterioration of
autophagy pathway vesicles are dynamic both temporally and
spatially. To delineate the spatio-temporal aspects of autophagy
regulation and its dynamic behavior, Borlin et al. [91] has con-
structed an ABM using the NetLogo ABM platform. The first
agent being phagophore, which grows and matures to form the
second agent autophagosome, which then fuses with the third
agent lysosome to generate the last agent autolysosome. The
newly formed autolysosomes can then either fuse with lyso-
somes, autophagosomes or other autolysosomes to grow. They
inferred spontaneous motion for phagophores and autolyso-
somes to simulate organelle movements, while autophagosomes
and lysosomes travel directly toward or directly away from the
nucleus to replicate their active transport along the cytoskeleton,
at a pace that is independent of its size. The key parameters of
the model were fitted with an iterative method using a genetic
algorithm and a predefined fitness function. The model, inte-
grated with high-resolution fluorescence microscopy data, could
successfully reproduce the short-term and long-term behavior
and cell-to-cell variability.

Biological processes like autophagy involve complex mech-
anisms with many pathways and molecules that change over
time and space, and understanding such systems ABM would
play a vital role. These models can also help to mathematical
portraiture of the biological phenomenon like the spatial and
temporal requirement of autophagy-related protein to bacte-
ria [92]. However, ABM has certain drawbacks. For instance,
it demands more details to be provided about the system of
interest, which may not always be reported in the literature.
Another disadvantage of ABM is that it is more computationally
expensive than partial differential equations (PDE) or ordinary
differential equations.

Petri net

Petri net is the creation of Carl Adam Petri in his doctoral
dissertation [93]. It is constructed using two types of nodes, viz.
places, depicted as circles, and transitions represented as narrow
black rectangles. In systems biology, places refer to chemical
species such as metabolites, proteins, enzymes, DNA, RNA, etc.
and transitions refer to chemical reactions such as activation,
inhibition, phosphorylation, etc. Nodes are connected by arcs,
which may only be directed from place to transition (input arcs)
or transition to a place (output arcs). A Petri net is always bipar-
tite. The stoichiometry of a reaction is indicated by the weight
of the arc. Although initially designed to model only discrete
processes, improvements have been made in Petri nets to deal
with a continuous process [94,95].

Literature has witnessed many applications of Petri nets
to different biochemical systems. For example, Koch et al. [96]
built a metabolic Petri net (where the places represent metabo-
lites and the transitions represent the biochemical reactions
between metabolites) consisting of 17 places and 27 transitions,
that qualitatively modeled the carbon metabolism in the potato
tuber. Using this Petri net model as an example, the author
has provided a method for model validation of metabolic net-
works using Petri net. Signal transduction pathways are com-
monly modeled with a set of ordinary differential equations,

but unknown parameter estimation is a problem inherent with
ODE modeling. To deal with this problem, Sackmann et al. [97]
implemented the Petri net theory to model and analyze signal
transduction pathways. The authors put forward a systematic
model validation method for signal transduction pathways that
depends only on the network structure. This method is then
illustrated using the mating pheromone response pathway in
Sacchromyces cerevisiae.

Minimal literature is available on the use of Petri net in the
study of autophagy. Jennifer et al. [98] studied the Salmonella
xenophagy in epithelial cells by designing a Petri net model.
The model includes all biochemically proven and published pro-
cesses of Salmonella xenophagy in epithelial cells and comprises
61 places (proteins/macromolecular complexes/organisms/sig-
nals) and 184 arcs. The model consists of 16 T-invariants describ-
ing biological subpathways in steady-state and represents the
fundamental dynamics of the system. The author has imple-
mented in silico knockouts of specific proteins to investigate
the model behavior and the corresponding biological effect.
So, the Petri net model helps to combine different molecular
processes like ubiquitination, binding of the autophagy receptor,
etc., which can then be used for various analyses like in silico
knockout experiment. This type of model is advantageous in
the absence of quantitative data. So, in the field-like autophagy,
where a lot of pathways are involved, we believe the Petri net
model would play a vital role. However, it has the limitation that
it will not capture the mechanism, which one can obtain with
the help of differential equation-based models.

Limitations of mathematical modeling

Despite being an excellent approach to study biological system
dynamics, mathematical modeling possesses certain limitations
and difficulties. These limitations must be taken into account
in capturing the characteristics of a certain biological process
with the help of mathematical modeling. Equations in a math-
ematical model contain parameters, and mathematical models
are driven by these parameters. These parameters can be deter-
mined by experimental studies. However, many parameters still
remain unknown because either the relevant experimental data
are not available or the parameter values obtained in the litera-
ture are not from the system addressed by the model. For exam-
ple, in a lung cancer model, the rate of degradation of beclin1 is
a parameter, but in literature, this parameter value is reported in
pancreatic cancer. Another difficulty in mathematical modeling
is the different functioning time of various components of a
pathway. For example, genetic regulatory processes are caused
by metabolic reactions, but while the time taken by metabolic
reactions is in seconds or minutes, the regulatory processes
could occur for several hours or days. A mathematical model
of a biological system should always be abided by biological
constraints. The findings of the model need to be validated
according to the objectives of the model. Hence, a qualitative
or quantitative association of model output and biological data
is very much necessary. But quantitative experimental data on
the time course of interaction between model variables are
often very limited. Biological systems possess hierarchical layers
(cells–tissue–organs etc.). To understand a system, it is necessary
to understand the dynamics of each layer. However, it is hard to
model the entire system as a whole as the model formulated
would be non-computable. Hence, modeling is limited to study
the system in parts that necessitate the emergence of system
biology approaches like network analysis, which can study the
entire system as a whole.
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Systems biology approach for autophagy
Importance of systems biology and network analysis

Biological systems can be portrayed as networks, and these
networks depict the physical and spatial organization of the
organism. Systems biology employs a pragmatic approach to
elucidate the emergent properties of such networks with the
aim of quantitative explanation and to foresee the biological
processes occurring at molecular, cellular, tissue, organ and
whole-body level. It focuses on a holistic analysis of biological
networks of various processes, including autophagy. The process
of autophagy is governed by a large number of proteins as being
a protective and life-sustaining process; it is associated with var-
ious physiological processes and pathological conditions. Sys-
tems biology quests for the understanding of the extent to
which the intermodular connectivity modulates the autophagy
process. The systems biological approaches, especially the net-
work analysis, are necessary to decipher the crosstalk between
autophagy and various diseases.

Network analysis investigates the entire system as a whole. It
is like a snapshot of the entire system at a particular time, where
we can see all the nodes and their interactors. In systems biology,
there are various types of the network depending on the nodes
studied, such as protein– PPI network, where nodes are proteins,
and the edges are the interaction between them; metabolic
network, where the nodes are metabolites and the edges are
the reactions between them; gene regulatory networks, where
nodes are genes and edges are the physical and/or regulatory
relationships between the genes; ecological networks, where
species are nodes and edges are the interactions which can be
either trophic or symbiotic. In this review, we have focused on
PPI networks. They are scale-free networks in nature, i.e. the
majority of proteins possess only a few interactions with other
proteins. In contrast, some proteins are connected to many other
proteins in the network and are coined hub proteins. The degree
distribution of a PPI network follows a power law. The diameter
of a PPI network (the shortest distance between two distant
nodes) is smaller. This confirms the fact that these networks
show a small world effect. Another essential property of PPI
networks is transitivity, which is the proneness of proteins to
form clusters together.

In systems biology, network analysis can be divided into two
categories. Enrichment analysis belongs to the first category.
Some genes possess similar biological attributes like involve-
ment in disease, common pathways or localizations. Enrichment
analysis helps to classify these genes and points out essential
processes, pathways or diseases in a gene list generated from
genome-scale experiments. The second category is based on
algorithm-related works where the goal is to find potential
targets, i.e. to find important nodes in a network. Since the word
importance is vague, it gives rise to the centrality analysis, where
many methods have been used to find the important nodes
of the system. Some of these methods include degree central-
ity, betweenness centrality, radiality, clustering coefficient, etc.
Novel algorithms have also been developed to find important
nodes in a PPI network [99–101]. Although distinguished, these
studies are not mutually exclusive. In literature, evidences of
both these categories studying together have also been reported
[99,102].

Many packages across various platforms have also been used
to perform the network-based study. We have enlisted a few
useful and most used packages in Table 2. Proper visualization of
data is crucial for understanding the biological network. There
is various visualization software that exist [103–111], but four

of the most widely used visualization and analysis software are
Cytoscape [112], Gephi [113], Tulip [114] and Pajek [115]. Web tools
like CellNetVis [116], Biographer [117] are also used for network
visualization purposes. A detailed review of different types of
visualization software in biological networks can be found in
the study of Pavlopoulos et al. [118]. Table 3 contains some useful
Cytoscape plugins used in network analysis, visualizations and
enrichment analysis. A detailed review of the Cytoscape plugins
can be found in [119]. The next section will provide a concise
description of network analysis studies done in autophagy (in
humans only).

Omics technologies and autophagy

The emergence of omics technologies such as genomics,
epigenomics, transcriptomics, proteomics, metabolomics,
microbiomics, etc. has embraced new possibilities to study a
biological system to an extraordinary detailed level. Genomics
is the study of the genome of an organis, epigenomics aims at
exploring global epigenetic changes that offer crucial insights
to mechanisms and function of gene regulation across several
genes in a cell or organism, transcriptomics relies on the
qualitative and quantitative genome-wide study of RNA levels,
while proteomics facilitates the study of the whole proteome
of an organism [120]. Mass spectrometry-based proteomics is
an indispensable approach to delineate protein expression, PPI,
subcellular localization and post-translational modifications.
Similarly, metabolomics is the large-scale study of metabolites
within cells, biofluids, tissues or organisms [121]. The study
of the microorganism in a given community comes under
the focus of microbiomics [120]. Throughout the times, new
dimensions have been added to omics such as lipidomics,
nutrigenomics, etc. Omics methods produce data to provide
biological understanding based on methodological inferences
from large (in most cases) datasets. These technologies allow
different molecular level investigations of the system that, too
in a highly parallelized manner. For example, the microarray
analysis measures the expression of almost all the genes in
the system at a time. This parallelization encourages scientists
not only to track an organism’s anticipated but also unexpected
responses.

The integrated method of these omics strategies and PPI
networks would enable a better understanding of the autophagy
process. There are studies that incorporate a large-scale multi-
omics approach to study the broad framework of autophagy and
its association with other biological processes. These studies
have deciphered the role of autophagy in host–pathogen inter-
actions, tumor growth, various cancers, nervous systems etc.
[122–125]. Considering that ‘omics’-based studies are a pivotal
area of current research to provide a more systematic view of
biological processes, these approaches have driven our insights
into the regulation of autophagy.

Network analysis for autophagy

Throughout the decades, the advancement of high-performing
data collection technology has resulted in a large number of
autophagy-related data. Network analysis approaches have
been implemented in these data to delineate the association
of autophagy with various diseases and biological processes.
Network analysis also helps to uncover the organizing principles
of a disease and identifies the potential targets accountable for
the pathogenesis of the disease.
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Table 2. List of useful packages and software for the network-based study of systems biology

S. no. Package/software and Link Platform Description Ref.

1 dplyr
https://CRAN.R-project.org/package=
dplyr

R The dplyr is a powerful R package that facilitates the
manipulation, cleaning and summarizing unstructured
data. It comes with many functions that perform widely
used data manipulation operations such as specific column
selection, applying a filter, data sorting, addition or
deletion of columns, and aggregating data. The functions of
dplyr are very user friendly and are very easy to learn.

[155]

2 ggplot2
https://CRAN.R-project.org/package=
ggplot2

R ggplot2 is an excellent data visualization package and is
based on the grammar of graphics. It is a flexible, mature
and complete graphics system, but it has some cons like it
is not capable of 3D graphics.

[156]

3 Bioconductor
https://www.bioconductor.org/

R The Bioconductor project is a collaborative effort to create
computational biology and bioinformatics extensible
packages and software. It uses the R programming platform
and is open source and open development. A total of 1903
software are available in the latest release of bioconductor
(3.11)

[157]

4 mlr
https://CRAN.R-project.org/package=
mlr

R mlr is an R package to perform ML tasks. This package
offers a standardized, object-oriented and extensible
framework for classification, regression, survival analysis
and clustering.

[158]

5 linear models for microarray data
(limma)
https://bioconductor.org/packages/re
lease/bioc/html/limma.html

R This R package is used for the analysis of gene expression
data coming from microarray or RNA-seq technologies.

[159]

6 Weighted correlation network analysis
https://CRAN.R-project.org/package=
WGCNA

R WCGNA is a popular R analytical package that constructs a
gene co-expression network and identifies gene modules.
Biologically or clinically significant modules are then
determined and topological properties of the network are
evaluated.

[160]

7 biomaRt
https://CRAN.R-project.org/package=
biomartr

R This open-source R package incorporates easy and
user-friendly functions to capture all genomic data or data
for selected proteomes, genomes, coding sequences and
annotation files contained in the databases hosted by the
National Center for Biotechnology Information (NCBI) and
European Bioinformatics Institute (EMBL-EBI).

[161]

8 DESeq2
https://bioconductor.org/packages/DE
Seq2/

R DESeq2 is a widely used method for differential expression
analysis of count data and freely available through
Bioconductor. The differential expression tests of DESeq2
are based on a negative binomial generalized linear model.
DESeq2 has several new features that allow for more
quantitative analysis of RNA-seq comparative data with
shrinkage estimators for dispersion and fold change.

[162]

9 CFinder
http://www.cfinder.org/

– CFinder is a platform-independent, stand-alone application
that locates overlapping groups of densely interconnected
nodes in a network with the aid of the clique percolation
method. It can predict the function(s) of a protein and can
also be used to discover novel modules.

[163]

10 Enrichr
https://amp.pharm.mssm.edu/Enrichr/

– This is a useful web-based and mobile software application
to perform gene enrichment analysis and is facilitated by
various interactive visualization approaches to display
enrichment results. Enrichr uses different databases for the
enrichment analysis and displays results obtained by each
database separately.

[164]

11 PyPathway
https://pypi.org/project/pypathway/#fi
les

Python PyPathway is a free and open-source python package that
performs functional enrichment analysis, network
modeling and network visualization.

[165]

The network analysis is well supported by autophagic
databases, which play a crucial role in delineating the role of
autophagy in various diseases. Various studies have been done
by the implementation of the specific autophagic information

obtained from these databases [123,126,127]. Lin et al. [127]
carried out a comprehensive study of ATG and associated
noncoding RNAs and transcription factors to investigate the
association of autophagy with digestive system tumors (DST).

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://www.bioconductor.org/
https://CRAN.R-project.org/package=mlr
https://CRAN.R-project.org/package=mlr
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://CRAN.R-project.org/package=WGCNA
https://CRAN.R-project.org/package=WGCNA
https://CRAN.R-project.org/package=biomartr
https://CRAN.R-project.org/package=biomartr
https://bioconductor.org/packages/DESeq2/
https://bioconductor.org/packages/DESeq2/
http://www.cfinder.org/
https://amp.pharm.mssm.edu/Enrichr/
https://pypi.org/project/pypathway/#files
https://pypi.org/project/pypathway/#files
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Table 3. List of useful Cytoscape plugins. Among these, BINGO, MCODE, Agilent Literature Search and jActiveModules are the four most
downloaded Cytoscape plugins in the order they are mentioned [119]. All these plugins are freely available at Cytoscape app store (https://a
pps.cytoscape.org/)

S. no. Plugin Description References

1 BiNGO Quantifies GO terms that have been overrepresented in the network and
portrays them as a network of relevant GO terms.

[166]

2 Mosaic and cerebral These two are visualization plugins for Cytoscape and can
compartmentalize the genes/proteins in a network according to their
subcellular localization.

[167,168]

3 PathLinker This package reconstructs signaling pathways from PPI networks. [169]
4 CytoNCA Perform centrality analysis of weighted and unweighted networks. [170]
5 ClueGO It helps to create and visualize a functionally grouped network of

terms/pathways.
[171]

6 GeneMANIA Uses public databases to import interaction networks from a list of genes
with their annotations and putative functions.

[172]

7 BiNoM It helps to access and analyze pathways. [173]
8 PiNGO Helps to locate candidate genes in a network that are linked with

user-defined target GO terms.
[174]

9 MCODE Create clusters in a given network based on the topology to identify densely
connected regions.

[175]

10 ConsensusPathDBplugin Retrieves interaction evidence for a given pair of genes or proteins. [176]
11 AgilentLiteratureSearch Mines scientific literature to find publications associated with the search

term and to create an interaction network based on the search result.
[177]

12 jActiveModules Detects clusters where nodes show significant changes in expression levels. [178]
13 cytoHubba By using various topological algorithms, this Cytoscape plugin can predict

and find important nodes and subnetworks in a given network.
[179]

The Cancer Genome Atlas database was used to get the digestive
tumor transcription details. The autophagy genes were extracted
from the Human autophagy modulator database. The study,
facilitated by WGCNA, crosstalk connection, pivot analysis and
functional analysis, revealed that the autophagic genes control
the pathogenesis of DST and highlighted the potential role of
autophagy in the treatment of DST. Wang et al. [123] constructed
a disease autophagy network where disease genes were taken
from online Mendelian inheritance in man (OMIM) [128] and
autophagic genes were extracted from the human autophagy
database (http://www.autophagy.lu/), the autophagy database
[129] and the autophagy regulatory network database [130]. The
autophagy genes were observed to act as a bridge between
diseases and were found to be topologically important in the
disease–autophagy network.

Network-based studies often facilitate the identification of
hubs and modules. Modularity is an essential property of a net-
work. It refers to the organization of nodes in clusters. Module-
based analyses can contribute to a deeper understanding of
biological systems. Hub proteins are also crucial in maintaining
the global network structure. A study carried out by Durocher
and co-researchers [55] to elucidate the gene network in the
peripheral blood transcriptome associated with human intrac-
erebral hemorrhage. Using the WGCNA package in R, they iden-
tified the hubs and the modules in the network, and used
ingenuity pathway analysis (IPA) and the DAVID Bioinformatics
Database [131] to find the associated pathways and processes.

Various studies [53,54,132] have performed a network-based
analysis on autophagy by using the dataset obtained from the
Gene Expression Omnibus (GEO) repository [133]. After following
the preliminary analysis, the WGCNA package in R has been
used to identify significant modules and hubs in the network.
Databases like OMIM and the cancer genome atlas (https://www.
cancer.gov/tcga) have also been used to facilitate the network-
based study of autophagy processes.

Although network analysis approaches have been applied
extensively to study autophagy, methods like network stability,
control theory, percolation, etc., are yet to be integrated to study
the autophagy process. Given the importance of these methods,
their implications will surely help to identify novel targets and
pathways related to autophagy. The lack of sufficient temporal
data to understand a disease progression has also limited the
network-based study of autophagy processes. Nonetheless, with
time the data are growing, and we believe in the coming years,
we will have enough data to make better and more accurate
predictions.

Artificial intelligence associated research
of autophagy
With the recent explosion of data, the applicability of artificial
intelligence (AI) is getting excellent attention and has emerged
as a promising field in systems biology. It creates algorithms that
help in the classification, pattern recognition and predictions
using available data. As in many other biological processes, AI-
based approaches have also been incorporated in the field of
autophagy. In a recent study, Zhaoyue et al. [134] applied machine
learning (ML) techniques to classify renal cell carcinoma (RCC)
subtypes using autophagy proteins. The expression data of the
key autophagy proteins in RCC were measured by immunohis-
tochemical images. The data were then normalized with mean
and standard deviation. The ML algorithm, K-Nearest Neighbor
(KNN) algorithm, was applied to the normalized data for clas-
sification. Their study identified the basal level of autophagy
as a potential measurement for discrimination of RCC. In an
early work, by Janos and co-researchers [135], an image analysis
pipeline was developed using the support vector machine for
the determination of novel selective pharmacological inducers
of autophagy in human cancer cell lines. A variety of software

https://apps.cytoscape.org/
https://apps.cytoscape.org/
http://www.autophagy.lu/
https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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Table 4. Some of the most used databases in autophagy. The features of these databases are shown in Figure 3

S. no. Name Full form URL Ref.

1 HAMDb Human Autophagy Modulator Database http://hamdb.scbdd.com [180]
2 ARN Autophagy Regulatory Network http://autophagyregulation.org/ [130]
3 Autophagy database Autophagy database http://www.tanpaku.org/autophagy [129]
4 ncRDeathDB The noncoding RNA (ncRNA)-associated

cell death database
http://www.rna-society.org/ncrdeathdb [181]

5 ACDB Autophagic compound database http://www.acdbliulab.com [182]
6 THANATOS Autophagy, Necrosis, Apoptosis

OrchestratorS database
http://thanatos.biocuckoo.org [183]

7 HADb Human Autophagy Database http://www.autophagy.lu/ –
8 AutophagySMDB Autophagy Small Molecule Database http://www.autophagysmdb.org [184]
9 ATD Autophagy to disease http://auto2disease.nwsuaflmz.com [185]
10 iLIR In silico identification of functional LC3

interacting region motifs database
https://ilir.warwick.ac.uk [186]

11 ATdb Autophagy and Tumor Database http://www.bigzju.com/ATdb/#/ [187]

incorporating a broad range of ML algorithms has been devel-
oped recently. For example, Serrano et al. [136] have used the
software Scikit-learn [137] to study the effect of mRNA alter-
ations of some autophagic genes, one proapoptotic gene and one
antiapoptotic gene in HIV-infected patients effectively treated
with combined antiretroviral therapy.

In the past two decades, the pharmacological modulation
of autophagy has gathered a great deal of attraction. The
process of autophagy gets manipulated by various autophagy
modulators. ML methods can be blended to study the mech-
anism of actions of these autophagy modulators to gain
knowledge on various factors that include side effects, drug
repurposing and development of novel polypharmacological
strategies [138]. AI approaches are powerful tools that associate
important molecular changes with an observed phenomenon.
However, these approaches remain silent on the underlying
mechanism for such observations. To capture the possible mech-
anism, we need to take help from differential equation-based
models.

Databases with the information related
to autophagy
Biological databases play a central role in systems biological
studies. They offer the opportunity to access a wide variety
of biologically relevant data, which include PPI information,
disease-protein association information, microarray, next-
generation sequencing, protein localization, post-translational
modification, the structural details of a protein or compound
and pathways associated with proteins, etc. However, databases
containing exclusively autophagic information are very few. In
Table 4, we have enlisted 11 most used databases in autophagy.
These databases contain various information like disease
associations, pathways, the specific effect on autophagy, etc.
In Figure 3, we have compared the features of these databases.

Data repositories like GEO [133] and Array Express [139] can
also be used for mining information such as microarray, next-
generation sequencing and other forms of high-throughput
functional genomic data. There are currently 510, and 181
studies on autophagy are available in GEO and ArrayExpress,
respectively. The information regarding the biological pathways
and diseases can be derived from databases such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [140] and reactome
[141].

One single process and various computational
approaches: which door to choose?
The Mathematical modeling and network analysis approaches
can grasp the underlying dynamics and topology of any biologi-
cal system. We have summarized the applications of mathemat-
ical and computational biology tools to study autophagy with
differential environmental conditions (Figure 4). Nevertheless,
the complexity and the choice of the approach can vary from
system to system, depending on the perspective of the study.
A mathematical model, as we have already stated, unveils the
fundamental nature of a biological phenomenon. From the initi-
ation to degradation, the process of autophagy comes under the
influence of many proteins and stresses. Taking a few or all of
them together, a mathematical model helps to understand how
the dynamics of these sets of proteins influence the progression
of autophagy by taking a deterministic approach. These models
can predict cellular fate through autophagy by using a suitable
set of parameters and a core set of autophagy modulators. They
can also be used to study the randomness in the process of
autophagy occurring due to the variability of the stress and
frequent changes in the cell’s energy requirements. ABM can
range from continuous to discrete based on the requirement.
Petri nets facilitate both the qualitative and quantitative models
and hence can be used to model the involvement of autophagy
in the cellular biochemical reactions.

On the other hand, network theory can be used to identify
crucial autophagy-related proteins responsible for the progres-
sion of diseases. Different sets of targets will be obtained for
the same disease owing to the method applied, which hence
will further require a biological validation. For example, if the
intention is to select only the most connected proteins, the
proper method will be to measure the degree centrality. But,
if the goal is to find the proteins that can disperse informa-
tion very effectively, the closeness centrality would be the best
approach to consider. Contrary to the analysis of the topology
of the system by network analysis, enrichment analysis focuses
on extracting the pathways, localization and functions of the
proteins present in the disease network. These pathways can
then further be studied by constructing an autophagy specific
PPI network to detect influential proteins in that pathway.

In the conclusion of this section, the choice of a compu-
tational approach depends on the perspective of the study.
Although modeling methods always possess limitations in terms
of the realistic portrayal of the biological phenomenon, they

http://hamdb.scbdd.com
http://autophagyregulation.org/
http://www.tanpaku.org/autophagy
http://www.rna-society.org/ncrdeathdb
http://www.acdbliulab.com
http://thanatos.biocuckoo.org
http://www.autophagy.lu/
http://www.autophagysmdb.org
http://auto2disease.nwsuaflmz.com
https://ilir.warwick.ac.uk
http://www.bigzju.com/ATdb/#/
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Figure 3. Comparison of some of the well-explored autophagy databases in literature. The columns contain the name of the databases, and features are placed in

the row. The orange color means that the particular feature is present in the database, and the blue color means it is absent. Here, the agent feature includes drugs,

chemicals and small molecules. Only autophagy-related proteins are considered for the ARN database. (##autophagy related genes extracted using text mining, #human

autophagy related proteins).

Figure 4. Application of mathematical and computational biology tools to study autophagy in different environmental conditions. Abbreviations: DEBM, differential

equation-based mathematical models; ABM, agent-based model; PN, Petri net; NA, network analysis and ML, machine learning.
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can still postulate conditions, parameters or factors that are
necessary to govern the system.

Future direction
The number of papers published in autophagy is growing year
after year, showing its increasing importance. But the ratio of
computational studies to experimental studies is meager. For
a better insight into the dynamics of the autophagy pathways,
these gaps need to be narrowed down. Computational methods
are rapidly evolving. Although the literature has reported the
application of various computational methods in systems biol-
ogy, many methods are yet to be appended to the autophagy
domain, like models based on PDE and image-based modeling
(IBM).

PDE-based modeling is well established in many biological
fields. Crucial insights into biological systems can be obtained
by the implementation of PDE as they are used to classify the
spatiotemporal evolution of biological systems. PDE, unlike
ODE, investigates spatial patterns of inherently heterogeneous
systems with regionally varying fields. A literature study has
revealed the application of these models in various fields,
including bone remodeling [142], dengue [143] and cancer
[144]. Studies complimented with PDE and ML approaches
have also opened a new window for disease treatment
[145,146]. The same goes for IBM, which relies on interpreting
images as quantitative measurements. It acts as a bridge
between systematic quantitative image data collection and
spatiotemporal systems modeling. The first step in IBM is to
collect images and to quantify objects, shapes, intensities or
motion trajectories [147]. This step is succeeded by the model
formulation part. The domain of the models can be divided into
four categories, viz. discrete/stochastic, discrete/deterministic,
continuous/stochastic and continuous/deterministic [148]. This
step is followed by a simulation phase. Different types of models
require various forms of simulations, which can be either
custom made or some predefined methods/software packages
[149]. The last phase of IBM is the parameter estimation and
validation part to check whether the output of the formulated
model correlates with the desired output or not. A lot of studies
have been done on various diseases with IBM [150–152].

The process of autophagy has been a prominent focus of
research as it is still a puzzle with various missing pieces due to
its complex mechanism in numerous biological processes and
diseases. AI-based approaches could be the ideal tools to locate
these missing pieces. Such methods can be used to capture the
association of autophagy with various other diseases to gain a
more comprehensive insight. For example, the complex role of
autophagy in cancer is yet to be fully elucidated. Integration
of ML in cancer to study the role of autophagy can help a
detailed insight to the process as well as to cancer prognosis and
personalized medicine approach. The ML methods can also help
to identify autophagy related genes and pathways which have
not been addressed before.

From a network analysis perspective, temporal analysis of
genes is done in diseases like obesity [100], but none has been
reported in autophagy. Such a study will help to decipher the
change in behavior of ATG with respect to time and identify
potential drug targets. A structure-based study can be done to
determine the possible binding sites of the targets. The iden-
tification of binding sites of a protein can help in the rational
designing of the therapeutic agents [153,154]. This study can also
be facilitated by the mathematical modeling of the identified
targets. Such a pipeline based study in autophagy is lacking and

will surely help to provide fruitful insights into the autophagy
process.

Conclusion
Autophagy is a quintessential biological process that breaks
down the unwanted cellular constituents and thus plays a cru-
cial role in maintaining cellular homeostasis. Due to its immense
importance toward the modulation of cellular fate, the pro-
cess of autophagy remains at the crossroads of various cellu-
lar processes and signaling pathways. The tracking of signals
that modulate autophagy, and genes, which have a role in the
autophagy process, has encouraged detection and controlling of
the autophagy pathway, and any hindrance to either of them
may lead to various diseases. In the last decade, there is eminent
progress in understanding the role of autophagy in different pro-
cesses, but the underlying mechanism that leads to the observed
phenomenon is still far from being captured. This is because
autophagy is a very complex process and exhibits different
behaviors depending upon the situation. To understand the
underlying complexity, comprehensive knowledge of autophagy
is important, necessitating a joint effort of experimental and
theoretical biologists to unravel this complexity.

Decades of research on autophagy have resulted in con-
siderable accumulation of experimental data. Comprehensive
information on the core set of proteins that govern the process
of autophagy and their underlying dynamics can be availed by
the implementation of system biology approaches on these data.
In this review, we attempted to elucidate how these approaches
are being used for the study of the autophagy process, both
from modeling and network perspectives. For the benefit of
the readers, we have provided multiple examples from different
types of mathematical models and computational tools that are
applied to understand the autophagy process. We have shown
that mathematical modeling is a way to illustrate the underlying
complex dynamics of the autophagic process emanating from
the interaction of the individual components of the system.
However, modeling approaches possess various limitations like
complexity, parameter values and lack of experimental data for
model validations. We have also shown that to get a global
perspective of the process, we need to take the help of systems
biology tools such as network analysis that will decipher the
crosstalk between autophagy and various diseases. Despite var-
ious systems biology tools, the retrieval of valuable information
from omics data is still a challenging task in computational
biology, and AI associated research has exhibited an unprece-
dented performance in doing so. These approaches can detect
and predict the association of autophagy genes with various
diseases leading to a more detailed understanding of the disease.
By the identification of crucial autophagy-related proteins, AI
can provide researchers more holistic insight into the complex
autophagy process. We have discussed the different environ-
mental conditions in autophagy and illustrated that the choice
of analysis depends upon the question that a researcher wants
to address.

Our present review is aimed at reaching a broader audience
and supporting researchers with and without prior expertise on
mathematical and computational tools. We have, therefore, pro-
vided some essential tools, plugins and software that are being
used by researchers to study and visualize biological systems.
The hope is that, by such means, this review will help researchers
working in the field of autophagy to analyze their generated data
in a better way. We have also drawn attention to some of the pos-
sible and helpful applications of computational methods that
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are yet to be integrated to study autophagy. In other words, our
study limits autophagy with computational tasks that have been
done before and can be performed in the near future, and thus
serves as the footsteps of autophagy in computational biology.

Key Points
• Autophagy is a quintessential evolutionary conserved

process and plays a crucial role in maintaining cellular
homeostasis through the degradation of unwanted
cellular materials.

• Computational biology approaches like mathematical
modeling and network analysis have been applied
to delineate the underlying dynamics of complex
autophagy mechanisms.

• These approaches are bound up with constraints such
as complexity, realistic description of the biological
system, etc., and thus the method to be implemented
should be chosen very carefully.

• Although there is a plethora of PPI databases avail-
able in the literature, databases containing exclusively
autophagic information are very few.

• With the rapid development of the field, current chal-
lenges lie in how to choose the appropriate compu-
tational method that will address the problem one is
studying.

• Mathematical modeling enhances the mechanistic
understanding of a system but works better in parts,
while a network studies the changes associated with
the whole system. For a better understanding of the
process of autophagy, it is of utmost importance to
link these two approaches and study the pipeline
connecting them.
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