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In the recent past, we have witnessed the emergence of many
new infectious diseases, some of which are major public health
threats. The public health threats posed by emerging diseases
have been well described in 2 reports from the Institute of Medi-
cine, 1 in 1992 and 1 in 2001.1,2 Since the outbreak of Legionella
in 19763,4 and AIDS in 19815,6 later demonstrated to be due to
HIV in 1983,7 many emerging infectious diseases have had impor-
tant infection control implications. This review will focus on sev-
eral of the most important current infection prevention threats
including Ebola virus, Middle Eastern respiratory syndrome
(MERS) coronavirus (CoV), carbapenem-resistant Enterobacteria-
ceae (CRE), and Candida auris with a focus on mechanisms of
transmission, environmental contamination and stability, and ger-
micide susceptibility. Germicides that will be discussed include
chemical sterilants used to process critical equipment and devices
(eg, surgical instruments, implants), high-level disinfectants that
are used to disinfect semicritical equipment and devices (ie, med-
ical equipment or devices that come into contact with nonintact
skin or mucous membranes), low-level disinfectants used for dis-
infection of surfaces or shared equipment that come into contact
with intact skin (eg, blood pressure cuffs, room surfaces), and
antiseptics (ie, germicides used on skin or mucous membranes to
reduce the microbial flora).8,9 This review updates a previous arti-
cle that reviewed Ebola and MERS and also reviews CRE and
C auris.10
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DEFINITIONS

The World Health Organization (WHO) states, “an emerging dis-
ease is one that has appeared in a population for the first time, or that
may have existed previously but is rapidly increasing in incidence or
geographic range.”11 The Centers for Disease Control and Prevention
(CDC) provides the following definition of emerging infections as
“infectious diseases whose incidence in humans has increased in the
past 2 decades or threatens to increase in the near future have been
defined as ‘emerging.’” These diseases, which respect no national
boundaries, include: (1) new infections resulting from changes or
evolution of existing organisms; (2) known infections spreading to
new geographic areas or populations; (3) previously unrecognized
infections appearing in areas undergoing ecologic transformation,
and (4) old infections reemerging as a result of antimicrobial resis-
tance in known agents or breakdowns in public health measures.12

FACTORS IN THE EMERGENCE OF INFECTIOUS DISEASES
AND PREPAREDNESS

The factors leading to the emergence of infectious diseases have
been described.13-17 Importantly, all these authors noted that we will
continue to see new and emerging infectious diseases for the foresee-
able future. Recent articles have provided recommendations for pre-
paredness at the health care facility, local and national levels.10,18-20

KEY CONSIDERATIONS IN ASSESSING ANDMANAGING THE THREAT
OF EMERGING INFECTIOUS DISEASES IN HEALTH CARE FACILITIES

Assessing and managing the threat of an emerging infectious dis-
ease requires an understanding of the biology of the pathogen, its epi-
demiology, the clinical manifestations of infection, the methods of
ublished by Elsevier Inc. All rights reserved.
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diagnosis, and therapies (if available).10 All health care facilities
should have a highly communicable disease plan for agents that are
transmitted by droplet or aerosols (eg, severe acute respiratory syn-
drome [SARS], MERS) or are transmitted by contact (eg, Ebola,
Lassa).10 Detailed information is best found, especially early in an epi-
demic, on the web pages of local and state health department, the
CDC, and the WHO. For highly communicable diseases, there are 2
major areas that place a health care facility and the personnel at sub-
stantial risk for disease acquisition and transmission.10 First, inade-
quate screening procedures when patients enter a health care facility
can potentially allow transmission from an ill patient to health care
personnel, other patients, or visitors. Second, inadequate supplies of
personal protective equipment (PPE) and/or training of health care
personnel (HCP) in proper donning and doffing procedures can
increase the risk of exposure for HCP.

A key focus of this article is to review the transmission routes of
new and emerging infectious agents. Preventing disease acquisition
via person-to-person transmission or contact with the contami-
nated environment depends on rapid and appropriate institution of
isolation precautions, appropriate hand hygiene, and appropriate
disinfection of medical equipment, devices, and the surface envi-
ronment. Importantly, once the nature of the emerging disease is
known (ie, enveloped virus, bacteria, fungi, nonenveloped virus,
mycobacteria), it is possible to determine the proper antiseptics and
disinfectants, even in the absence of studies of the exact infectious
agent.21 For example, an enveloped virus (eg, Ebola, MERS-CoV) or
vegetative bacterium (eg, CRE) would be inactivated by any agent
active against nonenveloped viruses or mycobacteria. It is impor-
tant to remember that alcohol has reduced activity against nonen-
veloped viruses (eg, norovirus) and no activity against spores (eg,
Clostridioides difficile).
Table 1
Modes of transmission of Ebola virus

Common
� Person-to-person via direct contact via body fluids (ie, urine, saliva, sweat, feces,

vomit, breast milk, and semen)
� Person-to-person via indirect contact due to environmental contamination

(eg, needles, syringes)
Less Common
� Infected fruits bats
� Nonhuman primates (eg, apes, monkeys)
� Sexual transmission via semen from a man who recovered from Ebola virus

disease (via oral, vaginal, or anal sex)
� Ingestion of bush meat
� Exposure in a laboratory
EBOLA

History and microbiology

The first recognized outbreak of Ebola occurred in West Africa in
1976. In the 40 years since the initial outbreaks in Zaire and Sudan,
>20 outbreaks have occurred.22 The largest outbreak occurred in
West Africa (Guinea, Sierra Leone, and Liberia) from 2014-2016, and
resulted in 28,600 cases and 11,325 deaths.23 Importantly, in the
2014-2016 outbreak >850 HCP developed confirmed or probable
Ebola virus disease (EVD).24 The percentage of exposed HCP who
developed EVD has ranged from 12.5%-76%.24 The mortality of HCP
who developed Ebola has frequently exceeded 50%.24 Key concerns
for HCP include the low inoculating dose required for transmission;
high frequency of HCP infections, especially in resource poor coun-
tries; and high mortality. As of 2019, an EVD outbreak is continuing
with moderate intensity in the Democratic Republic of the Congo.

Overall, 11 people were treated for Ebola in the United States dur-
ing the 2014-2016 epidemic.23 Two out of 149 HCP who cared for a
patient with EVD in the United States developed EVD; both
recovered.24

The microbiology, epidemiology, diagnosis, clinical features, and
treatment of Ebola have been reviewed.22,25-30 Ebola is caused by a
nonsegmented, single-stranded negative RNA virus of the family Filo-
viridae. There are 5 identified Ebola virus species, 4 of which are
known to cause disease in humans: Zaire, Sudan, Tai Forest (formerly
Cote d’Ivoire), and Bundibugyo. The fifth, Reston virus, has caused dis-
ease in nonhuman primates, but not in humans. The natural reservoir
host of Ebola virus remains unknown. However, the detection of anti-
bodies against Ebola and Ebola virus fragments in fruit- and insecti-
vore bats are highly suggestive that these animals serve as a
reservoir.
EVD is characterized by the sudden onset of fever, headache,
myalgias, arthralgias of the large joints, and back pain. Typically, 2-
3 days after the initial symptoms gastrointestinal symptoms occur
including abdominal pain, nausea, vomiting, and diarrhea. A macular
or maculopapular skin rash may appear on days 5-7 of the disease.
Hemorrhage is less common, occurring in only 15%-20% of patients.
Terminal cases develop disseminated intravascular coagulation, sep-
tic shock, and multiorgan system failure. Mortality ranges from 40%-
90% and depends, in part, on the infecting strain.
Epidemiology and transmission

Ebola is transmitted person-to-person most commonly through
direct contact (ie, nonintact skin or via mucous membrane contact)
with blood, body fluids (eg, urine, saliva, sweat, feces, vomit, breast
milk, and semen) of an ill person, or indirectly via objects such as nee-
dles and syringes that have been contaminated with body fluids from
an ill person (Table 1).31 Less common mechanisms include acquisi-
tion from infected fruit bats or nonhuman primates. Sexual transmis-
sion has also been described. Ebola is not transmitted via the air or by
water. However, in Africa it has been acquired by handling bush
meat. The incubation period of Ebola is generally 8-10 days (range, 2-
21 days). Person-to-person transmission has only occurred from per-
sons with signs or symptoms of EVD. Diagnostic testing is achieved
with the use of real time (RT) polymerase chain reaction (PCR) on
blood.32 Viral RNA is usually detectable by PCR between 3 and
10 days after the onset of symptoms.

Patients with EVD should be provided appropriate critical care
including fluid and electrolyte replacement; oxygen therapy to main-
tain oxygen status; medications to support blood pressure, reducing
vomiting and diarrhea, and to manage fever and pain; oral or paren-
teral nutrition; and treating coexisting infections (eg, malaria), if
present.33-34 Although there are currently no antiviral drugs
approved by the US Food and Drug Administration (FDA), a number
of therapies are under investigation including antibody-based thera-
pies (eg, convalescent blood products, monoclonal antibodies), and
drugs and small molecules (eg, Ebola virus gene expression inhibitors,
and Ebola virus entry and inhibitors).33-35 A number of preventive
vaccines are currently in clinical trials.33-35
Environmental contamination and survival

Ebola virus has been isolated by cell culture from multiple body
fluids of infected or convalescent patients including blood, saliva,
stool, vaginal fluid, sweat, and urine for days or months after illness.36

Given the high volume of diarrhea and vomiting and the potential for
fomite transmission, the frequency of environmental contamination
and survival of Ebola virus is of high concern. Several studies have
assessed the frequency of contamination within the health care



D.J. Weber et al. / American Journal of Infection Control 47 (2019) A29−A38 A31
environment of a patient with EVD by culture37,39 or RT-PCR.37-42

Although the frequency of environmental contamination was vari-
able, all studies reported some environmental samples were positive
by RT-PCR. Contamination was most often demonstrated for blood
stained items,37,42 and toilet/latrine,39,40,42 or objects in close proxim-
ity to the patient (eg, mattress, bed rails).37,42 Samples from PPE (eg,
gloves) have tested positive by RT-PCR for Ebola virus.37,42 Viable
virus was not isolated in either of the 2 studies that cultured environ-
mental samples.

The environmental survival of Ebola virus has been studied using
culture-based techniques under a variety of environmental condi-
tions (eg, temperature, humidity), in various liquids, aerosols, and
surfaces.43-49 These studies may be summarized as follows. First, via-
ble Ebola can survive in liquids (eg, liquid media, tissue culture media,
water, liquid blood, plasma) for days to weeks. Second, viable Ebola
virus can also survive dried on a variety of surfaces (eg, plastic, glass,
stainless steel, polypropylene, nitrile, bank notes) for days to weeks.
Third, Ebola survives in liquids and on surfaces for a longer duration
of time at lower temperatures (eg, 4°C vs 21°C). Fourth, although
aerosol transmission has not been observed, Ebola virus has been
demonstrated to survive in an aerosol for >3 hours. Fifth, survival of
Ebola on porous surfaces, such as cotton, is substantially less than on
steel and plastic surfaces.

Using macaques, viable Ebola virus was demonstrated to survive
in corpses for at least 3 days and RNA could be detected for tissues for
the entire 10-week study period.50 Ebola virus was detected by RT-
PCR in a deceased patient’s house 14 days after a patient was bur-
ied.41 Consistent use of appropriate PPE with strict adherence to don-
ning and doffing protocols is crucial to preventing acquisition of EVD
during patient care.28,51,52 A key component of reducing HCP risk is
proper training in PPE donning and doffing with ongoing training to
maintain competency.
Table 2
Modes of transmission of Middle Eastern respiratory syndrome coronavirus

Transmission Well Established
� Human-to-human transmission via direct contact due to droplet spread

(source may be asymptomatic)
� Animal-to-human transmission (dromedary camels to humans)
Transmission Unclear
� Human-to-human transmission via direct contact due to airborne transmission
� Human-to-human transmission via indirect contact (ie, fomites, contaminated

surfaces)
Susceptibility to germicides

Ebola virus is not inactivated by detergents.53 Using RT-PCR, Cook
et al54 demonstrated that Ebola virus outbreak variants dried with an
organic soil load on a stainless steel carrier were inert after 5 minutes
exposure to sodium hypochlorite (≥0.5%) and after 2.5 minutes expo-
sure to 70% ethanol. Smither et al55 confirmed the activity of sodium
hypochlorite; 104 Ebola viruses as measured by PCR were inactivated
by 0.75% sodium hypochlorite with 10 minutes contact time. In a later
study, Smither et al56 reported that multiple disinfectants (ie, 0.5%
hypochlorite, 10% hypochlorite, 5% peracetic acid, 70% ethanol) were
effective against dried cell culture medium containing Ebola virus.
However, only 5% peracetic acid consistently reduced Ebola virus
titers in dried blood to undetectable levels. Based on the hierarchy of
microbial susceptibility to germicides and studies of germicide effi-
cacy, the CDC states that any US Environmental Protection Agency-
(EPA) registered hospital disinfectant with a label claim for a nonen-
veloped virus (eg, norovirus, rotavirus, adenovirus) can be used to
disinfect environmental surfaces in rooms of patients with known or
suspected EVD.57

In a systematic review, Kampf58 reported that 80% ethanol was
highly effective against all 21 tested, enveloped viruses within 30 sec-
onds. A >4-log10 reduction of an Ebola strain was achieved in 15 sec-
onds using the following povidone-iodine solutions: 4%, 7.5%, 10%,
and 3.2% iodine with 78% alcohol.59 Therefore, data suggests that
hand antisepsis for skin contamination with Ebola virus can be
obtained with either povidone-iodine or 70%-80% alcohol (although
proper PPE should always be worn).

An ultraviolet-light (UV-C) booth was demonstrated to inactivate
>3-log10 bacteriophage MS2 (a nonenveloped virus) and could be
useful for disinfection of contaminated PPE.60
MERS

History and microbiology

The history of MERS has been reviewed.61-63 MERS, a new viral
respiratory disease of humans, was first described in 2012 and later
discovered to be caused by a novel coronavirus, MERS-CoV (lineage
2C b CoV). The WHO has reported that between 2012 and December
2018, there were 2,279 laboratory-confirmed cases of MERS, includ-
ing 806 associated deaths (case-fatality rate = 35.3%), reported glob-
ally.64 Although cases have been reported from 27 countries, the
majority of cases (ie, 1,901) have been reported from Saudi Arabia.64

Two cases of MERS have been reported in the United States, both of
whom were health care providers who acquired infection in Saudi
Arabia.65 No transmission has been reported in the United States.

The microbiology, epidemiology, and clinical manifestations of
MERS have been reviewed.66-72 MERS-CoV, a betacoronavirus, is a
single-stranded, positive-sense enveloped RNA virus that can cause
an acute respiratory illness in humans. MERS-CoV is a zoonotic dis-
ease that is transmitted from animals-to-humans. Dromedary camels,
hosts for MERS-CoV, have been implicated in direct and indirect
transmission to humans, although the exact mode of transmission is
unknown.63,67,71 Bats are likely the main mammalian reservoir.71

The clinical spectrum of MERS infection ranges from asymptom-
atic or mild respiratory symptoms to severe acute respiratory disease
and death. Typical symptoms of MERS include fever, cough, and
shortness of breath. Pneumonia is common but not always present.
Gastrointestinal symptoms (vomiting, diarrhea) frequently occur.
Risk factors for more severe disease include older age, comorbidities
(eg, chronic lung diseases, diabetes), and immunosuppression. The
diagnosis is confirmed by a positive RT-PCR assay targeting at least 2
different genomic regions. Currently, there are no specific therapies
or vaccines available.

Epidemiology and transmission

MERS may be transmitted from person-to-person via direct con-
tact likely due to droplet transmission (Table 2). This occurs most
commonly when there is close contact such as providing unprotected
care to an infected patient. Thus far, no sustained community trans-
mission has been documented. Studies of family clusters and HCP
contacts of patients have reported low frequencies of transmission
(ie, 1%-3%). However, increased transmission has occurred in health
care settings with limited infection control procedures. Importantly,
MERS may be transmitted from an asymptomatic source.73 However,
super spreaders have also been reported.74

The epidemiology and prevention of MERS in health care settings
has been reviewed.10,75-77 Infection prevention strategies have been
informed by the multiple reports of outbreaks of MERS involving
health care facilities,78-81 and by the large outbreak in South Korea.82

Importantly, during these outbreaks >20% of cases may have occurred
in health care providers. Factors contributing to intrahospital trans-
mission include: (1) the initial symptoms of MERS are nonspecific



Table 3
Modes of transmission and reservoirs of carbapenem-resistant Enterobacteriaceae

� Patient-to-patient via direct contact
� Patient-to-patient via indirect contact

^ Transient hand carriage by health care personnel
^ Contaminated shared medical devices
^ Contaminated endoscopes (especially duodenoscopes)

� Health care facility reservoir to patient
^ Contaminated sinks
^ Contaminated endoscopes (especially duodenoscopes)
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leading to a failure to isolate the patient; (2) inadequate compliance
with infection control practices; (3) inadequate health care facilities
(eg, overcrowding, close proximity of patients to cases); (4) use of
aerosol generating procedures; and (5) prolonged viral shedding.83

Environmental contamination and survival

Extensive environmental contamination has been documented by
both culture and RT-PCR in clinical areas housing MERS patients.84,85

Positive sites have included patient room surfaces (eg, bed sheets,
bedrails, intravenous fluid hangers), anteroom surfaces, medical devi-
ces (eg, portable x-ray machines, thermometers), and air-ventilating
equipment. Touchable surfaces have been found to be contaminated
through respiratory secretions from clinically fully recovered
patients.84 MERS-CoV has also been detected in air samples in the
vicinity of patients.85 However, 1 large outbreak evaluation failed to
demonstrate any transmission via the potentially contaminated envi-
ronment without direct contact with the index case.86

MERS-CoV has been shown to be recoverable after 48 hours on
steel or plastic washers (20°C and 40% relative humidity).87 Further,
no decrease in stability was observed during aerosolization experi-
ments. Multiple studies on CoVs other than MERS-CoV have demon-
strated that these viruses can remain viable for days to weeks on
environmental surfaces.88,89 Survival is enhanced at low tempera-
tures (ie, 4°C vs 20°C).89

Susceptibility to germicides

As MERS-CoV is an enveloped virus, it is likely susceptible to EPA-
registered hospital disinfectants and FDA-approved antiseptics. Stud-
ies on inactivation of surrogates for SARS-CoV (mouse hepatitis virus
and transmissible gastroenteritis virus) demonstrated the following
inactivation after 1-minute contact time: (1) for transmissible gastro-
enteritis virus, there was a log10 reduction factor of 3.2 for 70% etha-
nol, 2.0 for phenolic, 2.3 for ortho-phthalaldehyde, 0.35 for 1:100
hypochlorite, 4.0 for 62% ethanol, and 3.5 for 71% ethanol; and (2) for
mouse hepatitis virus, log10 reduction factors were 3.9 for 70% etha-
nol, 1.3 for phenolic, 1.7 for ortho-phthalaldehyde, 0.62 for 1:100
hypochlorite, 2.7 for 62% ethanol, and 2.0 for 71% ethanol.90

Guidance from the CDC for managing patients with MERS states,
“HCP should perform hand hygiene before and after all patient con-
tact, contact with potentially infectious material, and before putting
on and upon removal of PPE, including gloves. Hand hygiene in
healthcare settings can be performed by washing with soap and
water or using alcohol-based hand rubs. If hands are visibly soiled,
use soap and water, not alcohol-based handrubs.”91 The CDC further
states “Standard cleaning and disinfection procedures (eg, using
cleaners and water to pre-clean surfaces prior to applying an EPA-
registered disinfectant to frequently touched surfaces or objects for
appropriate contact times as indicated on the product’s label) are
appropriate for MERS-CoV in healthcare settings, including those
patient-care areas in which aerosol-generating procedures are per-
formed. If there are no available EPA-registered products that have a
label claim for MERS-CoV, products with label claims against human
coronaviruses should be used according to label instructions.”91

CRE

Definition and microbiology

The CDC defines CRE for surveillance purposes as Enterobacteria-
ceae that are “resistant to imipenem, meropenem, doripenem, or
ertapenem OR documentation that the isolate possess a carbapene-
mase.”92 The CDC further elaborates that CRE is “a phenotypic defini-
tion (ie, based on the antibiotic susceptibility pattern of the
organism) and it includes bacteria that are not susceptible to carbape-
nems via more than one type of mechanism.” The CDC specifies that
carbapenem resistance mechanisms include the following: (1) the
production of carbapenemases (called carbapenemase-producing-
CRE), enzymes that break down carbapenems and related antimicro-
bials making them ineffective. This includes enzymes like Klebsiella
pneumoniae carbapenemase; and (2) the combination of mechanisms
other than carbapenemase production (called non-carbapenemase-
producing-CRE), most commonly the production of b-lactamases (eg,
AmpC) in combination with alterations in the bacteria’s cell mem-
brane (eg, porin mutations). The CDC has reported the following types
of CRE in the United States: NDM, OXA48, VIM, IMP, and Klebsiella
pneumoniae carbapenemase.93
Epidemiology and transmission

The biology, epidemiology, and management of CRE have been
reviewed.94-97 Recent articles have reviewed newer antibiotic thera-
pies for CRE.98,99 Follow-up of hospitalized CRE colonized patients
demonstrated that the mean duration of colonic carriage was >1
year.100 However, HCP are rarely, if ever, colonized. A study of fecal
carriage among HCP in a hospital endemic for CRE revealed none of
177 evaluated health care providers were colonized with CRE.101

The main reservoir leading to human CRE infections is the human
gut. Person-to-person transmission via direct and indirect contact are
the most common mechanisms of transmission (Table 3). Multiple
hospital outbreaks have resulted from contaminated endoscopes,
especially duodenoscopes.102-104 These outbreaks have occurred
despite all steps in cleaning and high-level disinfection of endoscopes
compliant with current guidelines. Strategies to provide pathogen-
free endoscopes have been reviewed.104 Water sources in the hospital
(eg, faucets, wash basins, showers, toilets), especially sinks have been
demonstrated to be a reservoir of CRE.105-107 Strategies and success
rates of interventions to eliminate CRE from water reservoirs have
been reviewed.105,106 Companion animals have been demonstrated
to occasionally be colonized with CRE.108 This is of relevance to health
care facilities considering that US health care facilities must permit
persons with “service” animals in the facility and many hospitals per-
mit animal-assisted therapy.

Strategies to manage CRE colonized/infected patients and to con-
trol outbreaks in health care facilities have been reviewed.109-111

Both the WHO112 and the CDC113 provide detailed guidance on meth-
ods to control CRE. The use of bundles to control horizontal transmis-
sion of CRE in health care facilities have been reviewed.114
Environmental contamination and survival

CRE has been isolated from the environment in the vicinity of hos-
pitalized colonized/infected patients including pillows, infusion
pumps, bedside tables, and toilet areas.115-117 The frequency of
recovery has varied among studies, but objects closer to the patient
are more likely contaminated with 5%-15% of samples from bedrails
and over bed tables yielding CRE.115,116 Fecal continence is an



Table 4
Modes of transmission of Candida auris

Common
� Patient-to-patient via direct contact
� Patient-to-patient via indirect contact due to environmental contamination

(ie, sharing same hospital room, admission to a hospital room previously
occupied by a patient with C auris)

Less Common
� Patient-to-patient via indirect contact: shared equipment due to inadequate

disinfection (eg, thermometer)
� Patient-to-patient via direct contact: donor-derived transmission

(eg, lung transplantation)
� Person-to-person via indirect contact due to transiently colonized health

care provider’s hands
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independent predictor of being a nonspreader of CRE.117 CRE has also
been isolated in the environment of long-term care facilities.118

Havill et al119 reported survival of CRE on stainless steel discs for
>10 days. However, Weber et al120 reported that 3 species of CRE
(Klebsiella, Enterobacter, and Escherichia coli) survived poorly (>85%
die-off in 24 hours). Likely this difference was owing to the fact that
Havill et al119 used a high inoculum (ie, 5-7-log10) whereas Weber
used a low inoculum (ie, »2-log10), which is similar to the actual
amount of CRE found on surfaces in the vicinity of patients colonized/
infected with CRE.

Susceptibility to germicides

With rare possible exceptions, antibiotic-resistant bacteria includ-
ing multidrug-resistant organisms do not have reduced susceptibility
to EPA-registered germicides.121 Even when reduced susceptibility to
a germicide (eg, quaternary ammonium compounds by methicillin-
resistant Staphylococcus aureus [MRSA]) has been demonstrated, the
pathogen has not demonstrated resistance to the use concentration
of the germicide.121 Kanamori et al122 assessed the efficacy of 21 ger-
micides against multiple CRE Enterobacteriaceae strains at 1-minute
contact time and in the presence of 5% fetal calf serum. Four high-
level disinfectants achieved >4-log10 kill for all tested strains, but
0.55% ortho-phthalaldehyde achieved a 2.4-4.8-log10 kill depending
on the CRE strain tested. Eight disinfectants all achieved a >4-log10
kill. Among the 9 antiseptics tested (70% ethanol, 10% povidone-
iodine, 2% and 4% chlorhexidine gluconate, 70% isopropyl alcohol,
and 1% chloroxylenol) achieved ≥2.9-log10 kill against all test CRE
strains. Based on this study, EPA-registered disinfectants and FDA-
approved antiseptics can be used with assurance for equipment/
instrument high-level disinfection, surface disinfection, and hand
antisepsis. A UV-C device for room disinfection has been shown to
inactivate >5-log10 CRE reduction in direct line of sight and >4-log10
CRE reduction in indirect line of sight when used at the recom-
mended cycle time (ie, 5-10 minutes).123 The effectiveness of UV-C
for room disinfection was confirmed in another study.124

C AURIS

History and microbiology

C auris is a novel Candida species that was first reported following
its isolation from the ear canal of a patient in Japan in 2009.125 Since
then, C auris has been reported from multiple countries throughout
the world.126-128 The CDC reported that as of January 22, 2019, 551
cases of C auris had been reported from 12 states, with some states
(ie, New York, Illinois, New Jersey) reporting >100 cases.129 C auris is
an emerging pathogen that presents a serious global health threat for
the following reasons: (1) it causes serious infections with a high
mortality; (2) it is often difficult to identify with standard laboratory
methods and can be misidentified in laboratories unless specialized
technology is used; (3) it is often multidrug resistant (intrinsic or rap-
idly inducible antifungal resistance); (4) it is becoming more wide-
spread geographically; (5) increasing prevalence; (6) biofilm
formation; (7) persistence in the environment; and (8) it has caused
multiple outbreaks in health care facilities.128,130,131

The microbiology, clinical syndromes, diagnosis, and treatment of
C auris have been reviewed.127,132-136 Genetic analyses have shown that
C auris is most closely related to C lusitaniae and C haemulonii, although
it has a striking divergence from some other Candida species.127 C auris
is often misidentified in conventional diagnostic laboratories using bio-
chemical typing.127 C auris most commonly has been misidentified as
C haemulonii, but also as C famata, C sake, Rhodotorula glutinis, R mucila-
ginosa, and Saccharomyces boulardii.127,137,138 Currently, accurate
identification of C auris can be accomplished by the use of MALDI-TOF
or PCR assays specific for C auris. Multiple virulence factors have been
described.133

The most common clinical syndromes reported have been blood-
stream infections (candidemia), wound infections, and ear infec-
tions.129 Other clinical syndromes reported have included infections
of the respiratory tract, central nervous system, urogenital system,
intra-abdominal, skin and soft tissues, and bone.127 Patients with C
auris infection have almost always presented with underlying ill-
nesses or comorbidities such as diabetes, chronic or acute renal fail-
ure, pulmonary disease, immunosuppressive conditions, tumor or
malignancies, liver disease, or solid organ transplants.137 Risk factors
for infection have usually included care in an intensive care unit, the
presence of indwelling central venous catheters, arterial lines, Foley
catheters, invasive surgical procedures, mechanical ventilation, and
prior or continued exposure to broad-spectrum antibiotics and anti-
fungal agents.132,133,136 Mortality rates >30% have been reported for
patients with invasive infections.127,132,133

At the present time, there are no clinical breakpoints for C auris.
High minimum inhibitory concentrations have been reported to flu-
conazole and other triazole antifungals such as voriconazole, itraco-
nazole, and isavaconazole.127,132 Variability in susceptibility of
isolates has also been reported to amphotericin.127
Epidemiology and transmission

C auris has been associated with multiple nosocomial outbreaks,
especially in the intensive care setting.139-144 An evaluation of C auris
in New York City health care facilities demonstrated epidemiologic
links between cases in multiple hospitals and long-term care facili-
ties.138 Importantly, colonization with C auris has been detected at
multiple body sites including nares, groin, axilla, and rectum.127 Pro-
longed colonization has been reported with C auris detected >3
months after initial isolation and despite multiple negative screens
and antifungal therapy.136,138

Multiple mechanisms for transmission of C auris are likely based
on outbreak investigations (Table 4). Risk factors for colonization or
infection have been reported to include contact with patients known
to harbor C auris.138,145 Sharing an environment with a C auris patient
or sequential bed occupancy that was previously occupied by a
patient with C auris has also been described as a risk.145 Importantly,
patients occupying a room that previously housed a patient with
C auris have acquired C auris even though the room had been
decontaminated prior to occupancy.145 An outbreak evaluation found
that use of reusable probes for temperature monitoring was associ-
ated with a significantly increased risk of C auris colonization with an
odds ratio of 6.80.142 Transmission of C auris via transplantation of
lung from a patient with respiratory tract colonization or infection to
the lung transplant recipient has been reported.146

C auris has occasionally been isolated from health care providers.
Biswal et al144 reported that C auris was detected on the hands of 4
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health care providers (2.8%), although this was likely due to inade-
quate hand hygiene rather than long-term colonization. Schelenz
et al,139 while conducting an outbreak investigation in the United
Kingdom, screened (nose, axilla, groin, and throat) >250 health care
providers for colonization and found only a single person (nurse)
transiently colonized with C auris.

Environmental contamination and survival

Widespread contamination of the surface environment has been
reported by multiple investigators.138 Importantly, contaminated
sites have included sites in the patient’s room such as surfaces, toilets,
ventilator/respiratory equipment, and sites outside of the patient’s
room such as computer workstations, thermometers, glucometers,
housekeeping carts, dialysis equipment, ultrasound equipment, and
vital sign machines.138 The environmental survival of C auris has
been studied.144,147,148 In laboratory tests, C auris and other Candida
spp were demonstrated to persist for 7 days on moist or dry (steel
disks) surfaces.147 Survival on dry linen for up to 7 days has been
demonstrated.148 C auris cells have been demonstrated to remain via-
ble on plastic surfaces for at least 4 weeks, or 2 weeks after they were
no longer culturable.148

Susceptibility to germicides

Several reviews have included a discussion of the susceptibility of
C auris to germicides.149 The susceptibility of C auris to germicides (ie,
antiseptics and disinfectants) has been studied by several investiga-
tors.139,144,150-153 Rutala et al153 assessed the germicidal activity of
high-level disinfectants and/or chemical sterilants and reported that
all agents (ie, 0.20% peracetic acid, 2.4% glutaraldehyde, 0.65% hydro-
gen peroxide plus 0.14% peroxyacetic acid, 2% accelerated hydrogen
peroxide) achieved a ≥4.1-log10 reduction of C auris with the excep-
tion of 0.55% ortho- phthalaldehyde that achieved only a 2.3-log10
Table 5
Susceptibility of Candida auris to low-level disinfectants used for surface disinfection*

Highly Effective (≥3.8-log10
Reduction) [ET, minutes]

Moderately E
Reductio

� 70% isopropyl alcohol [1]
� 1:10 dilution, 5.25% sodium
hypochlorite (»6,100-6,700 ppm) [1]

� 1:128 dilution, 9.09% o-phenylphenol,
7.66% p-tertiary amylphenol [1]

� 1.4% hydrogen peroxide [1]
� 58% ethanol, 0.1% QACy [1]
� 55% isopropyl alcohol, 0.5% QACz [1]
� 28.7% isopropyl alcohol, 27.3% ethyl
alcohol, 0.61% QACx [1]

� 0.65% sodium hypochlorite [1]
� 0.39% sodium hypochlorite [1]
� 0.825% sodium hypochlorite [1]
� Peracetic acid 1200 ppm, hydrogen
peroxide <1%, acetic acid [3]

� 1.4% hydrogen peroxide [1]
� 0.5% hydrogen peroxide [10]
� 29.4% ethyl alcohol [0.5]

� >5% acetic ac
(white distill

NOTE. Susceptibility of Candida auris to low-level disinfectants used for surface disinfection.1

ET, exposure time; ppm, parts per million; QAC, quaternary ammonium compound.
*Disc-based quantitative carrier test, 1 minute exposure time unless otherwise noted, 5% feta
yQAC: alkyl (C14 50%, C12 40%, C16 10%) dimethyl benzyl ammonium saccharinate 0.1%.
zQAC: n-alkyl (C12 68%, C14 32%) dimethyl ethylbenzyl ammonium chlorides 0.25%; n-alkyl
xQAC: didecyl dimethyl ammonium chloride 0.61%.
kQAC: octyl decyl dimethyl ammonium chloride 6.51%; dioctyl dimethyl ammonium chlorid
C16) dimethyl benzyl ammonium chloride 8.68%.
{Alkyl dimethyl benzyl ammonium chlorides.
#Didecyl dimethyl ammonium chloride, n-alkyl dimethyl benzyl ammonium chloride.
inactivation for E coli. Importantly, these in vitro experiments were
done under challenging conditions (ie, 5% fetal calf serum and 1-min-
ute exposure time). It is likely that all high-level disinfectants that are
currently approved by the FDA when used appropriately (ie, after
appropriate cleaning and the manufacturer’s recommended concen-
tration and duration) are effective against C. auris.

The activity of low-level disinfectants has been evaluated by several
investigations.152,153 Direct comparison between the studies is
impeded by the use of different test conditions including test method,
duration of exposure, and presence or absence of proteins such as fetal
calf serum. The activity of low-level disinfectants has been most com-
prehensively investigated using the disc-based quantitative carrier test
and is summarized in Table 5.152,153 Importantly, both investigators
added 5% fetal calf serum to assess germicidal efficacy under more
stringent conditions (ie, presence of proteins). Importantly, quaternary
ammonium disinfectants alone were significantly less effective against
C auris than other products.152,153 Some investigators reported that
concentrations of sodium hypochlorite ≥1,000 ppm were effective in
killing >4-log10 C auris in 3-5 minutes,150,151 whereas others153

reported sodium hypochlorite »1,200 ppm at an exposure time of
1 minute resulted in only a 1.6-log10 reduction in C auris. It is unclear
whether the longer exposure times and lack of protein load led to the
high reduction rates reported by Abdolrasouli et al150 and Moore
et al.151 However, all investigators have reported that a 1:10 dilution
of 5.25% sodium hypochlorite is effective in killing >4-log10 C auris
even with short exposure times (ie, 1 minute) and in the presence of
protein.152,153 Based on current studies, the CDC states “Quaternary
ammonium compounds (QACs) that are routinely used for disinfection
may not be effective against C auris. . ..Until further information is
available for C auris, CDC recommends use of an Environmental Protec-
tion Agency (EPA)-registered hospital-grade disinfectant effective
against Clostridium difficile spores (List K)”.154 CDC further states that
when the use of products on List K is not feasible, published research
has found that the following products led to a substantial reduction
ffective (2.0-3.8-log10
n) [ET, minutes]

Less Effective (<2.0-log10 Reduction)
[ET, minutes]

id (pH 2.0)
ed vinegar) [3]

� 1:50 dilution, 5.25% sodium
hypochlorite
(»1,245 ppm) [1]

� 1:256 dilution, 21.7% QACk [1]
� QAC{ [1]
� QAC# [1]

52,153

l calf serum.

(C14 60%, C16 30%, C12 5%, C18 5%) dimethyl benzyl ammonium chlorides 0.25%.

e 2.604%; didecyl dimethyl ammonium chloride 3.906%; alkyl (50% C14, 40% C12, 10%



Table 6
Susceptibility of Candida auris to antiseptics in selected studies*

Disinfectant Log10 Reduction (minutes) Reference

Alcohol
70% alcohol 6.0 (NS) Biswal et al, 2017144 y

70% ethanol 4.0 (1)z Rutala et al, 2019153

70% isopropanol 3.8 (1)z Rutala et al, 2019153

CHG
0.5% 6.0 (NS) Biswal et al, 2017144

2.0% 1.6 (1)z Rutala et al, 2019153

4.0% 1.9 (1)z Rutala et al, 2019153

CHG/alcohol
2% CHG/61% ethanol >5.06 (2) Moore et al, 2017151

1% CHG/61% ethanol 2.0 (1)z Rutala et al, 2019153

Povidone-Iodine
10% >4.56 (2) Moore et al, 2017151

10% 2.5 (1)z Rutala et al, 2019153

Triclosan
0.5% 1.4 (1)z Rutala et al, 2019153

Hydrogen peroxide
3.0% 1.4 (1)z Rutala et al, 2019153

Chloroxylenol
1% 2.8 (1)z Rutala et al, 2019153

CHG, chlorhexidine gluconate; NS, not stated.
*All tests were conducted in vitro unless otherwise noted.
yHuman challenge study.
zTest conditions included addition of 5% fetal calf serum.
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(>4-log10) of C auris in laboratory testing: Oxivir TB (Diversey Inc.,
Charlotte, NC), Clorox Healthcare Hydrogen Peroxide Cleaner Disinfec-
tant (Clorox, Oakland, CA), Prime Sani-Cloth Wipe (PDI, Inc., Woodcliff,
NJ), and Super Sani-Cloth Wipe (PDI, Inc., Woodcliff, NJ).154

Room disinfection with a UV-C device has been investigated for its
ability to inactivate Candida spp, MRSA, and Clos difficile.155 C auris
demonstrated substantially less susceptibility to UV-C than MRSA
and less susceptibility than C albicans or C glabrata at 10 minutes
exposure time.155 Reductions in C auris and Clos difficile were similar
at 10 minutes.155 With regard to room disinfection devices, the CDC
states that “data on hands-free disinfection methods, like germicidal
UV irradiation, are limited, and these methods may require cycle
times similar to those used to inactivate bacterial spores (eg, Clostrid-
ium difficile) when used for C auris.”154 We recommend that daily and
terminal room cleaning/disinfection be done with an agent demon-
strated to be effective against C auris. The use of a UV-C device for ter-
minal disinfection should be considered as a supplemental method.

The activity of antiseptics against C auris has been studied by sev-
eral investigators (Table 6). There is good agreement that 70% alcohol
(both isopropyl and ethyl) is effective against C auris at 1 minute.
Importantly, the activity of alcohol has not been studied at the times
used by most health care providers when performing hand hygiene
(ie, 10-15 seconds). Unfortunately, studies on the activity of other
important antiseptics such as chlorhexidine gluconate and povidone-
iodine have produced variable results (Table 6). This variability is
likely explained by differences in the test conditions including in vitro
versus human challenge, duration of exposure, and presence of a pro-
tein load (eg, fetal calf serum). It appears that 10% povidone-iodine
would provide adequate skin antisepsis if applied for ≥1 minute.
Using a panel of C auris clinical isolates, Kean et al,156 screened them
for their planktonic and sessile susceptibilities to skin disinfection
challenge using povidone-iodine, chlorhexidine gluconate, and
hydrogen peroxide. C auris biofilms displayed increased tolerance to
antisepsis compared with planktonic cells. Analysis using a complex
biofilm model demonstrated reduced susceptibility against clinically
relevant concentrations of chlorhexidine gluconate (0.05%) and
hydrogen peroxide (3%), with eradication achieved only with povi-
done-iodine (10%). As noted by Forsberg et al,136 whether topical
antiseptics might reduce the burden of C auris on the skin, and there-
fore provide a potentially valuable tool for infection prevention,
remains unclear. The CDC states that when caring for patients with C
auris “healthcare personnel should follow standard hand hygiene
practices, which include alcohol-based hand sanitizer use or, if hands
are visibly soiled, washing with soap and water. Wearing gloves is
not a substitute for hand hygiene.”154
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